
Research Article

Measuring Test Suite Reusability Based on the Usage
Frequency and Coverage of Reused Test Cases

Mochamad Chandra Saputra1,*, Tetsuro Katayama1, Yoshihiro Kita2, Hisaaki Yamaba1,
Kentaro Aburada1, Naonobu Okazaki1

1Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuen-Kibanadai Nishi,
Miyazaki 889-2192 Japan
2Department of Information Security, Faculty of Information Systems, Siebold Campus, University of Nagasaki, 1-1-1 Manabino,
Nagayo-Cho, Nishi-Sonogi-gun, Nagasaki 851-2195, Japan

1.  INTRODUCTION

White-box testing knows as structural testing is one of the software
testing approaches to test the program based on the internal struc-
tures of the program [1]. It is used to analyze internal logic and
behavior, data structure, and code coverage. The important asset
of software testing is the test suite that contains a set of test cases.
On the white-box testing approach, the test suite is important to
guarantee all independent paths or statements within a program
executed at least once. Test cases in the test suite should execute
all true or false logical decisions and all loops at their or within the
boundaries and ensure the validity of internal data structures [2].

Currently, reusing assets in the software development process have
a great purpose. A reusable test suite during the testing phase is
decreasing testing time and cost [3]. The research is considered to
code coverage has been conducted. The research on test cases reus-
ability measurement considers to code coverage is reported by mod-
ifying the program with reducing branches, the test suite is highly
reusable but, modifying the program such as splitting, and loop, the
test suite is less reusable [4]. The research has shown test suite reus-
ability measurement is needed to consider the code coverage.

The use of code clones is increased day by day due to the growth of
the use of open-source software and variants [5]. Code clones are
efficient in reducing the cost and time on software development
that have similar requirements. Testing code clones is needed a
strategy to achieve efficiency on it. Test suite reusability is one of
the best strategies to test the code clones.

This research proposes the formula for the test suite reusability
score to measure the degree of test suite reusability based on reused
test cases on another program. The formula is considered to test
suite reusability frequency and distinct of code coverage. The test
suite reusability score measurement is including good information
to evaluate the efficiency of the test suite on reusability.

The rest of the paper is organized as follows. Section 2 describes the
principle of test suite reusability and code clones method. Section 3
describes the test suite reusability measurement considering fre-
quency and code coverage of successful reused test cases in the test
suite. Section 4 describes the experimental activity and its result.
Section 5 describes the results and discussion of the research.
Section 6 describes the conclusion and future work of the research.

2. � TEST SUITE REUSABILITY
AND CODE CLONES

The test suite contains a set of test cases that helps the software
tester to examine the object of tested and reporting the test execu-
tion status. A test case is a set of test inputs, execution conditions,
and expected results developed for a particular objective, such as to
exercise a particular program path or to verify compliance with a
specific requirement [6].

The principle of software reusability is defined as the capability of
an attribute to be reused in various objects [7]. This research uses
the terms of software reusability to interpret the context of test suite
reusability. The test suite reusability defines as the capability of test
cases in the test suite to examine several or all paths of method
should be tested on diverse objects.

A RT I C L E I N F O
Article History

Received 25 November 2020
Accepted 06 April 2021

Keywords

Test suite reusability
reused frequency
code coverage
reused test cases

A B S T R AC T
Test suite reusability measurement is important to obtain the value of reusability as the degree of effectiveness of reused test suite.
The measurement in this experiment considers not only the frequency of the successful test suite to examine different objects but
also the code coverage as the criteria of a good test suite. The combination of the frequency and code coverage in the measurement
reports the current condition of test suite reusability. The research confirms the test suite reusability measurement provides
useful information to know the degree of effectiveness of reused test suite, especially in regression testing and automated testing.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: chandra@earth.cs.miyazaki-u.ac.jp

Journal of Robotics, Networking and Artificial Life
Vol. 8(1); June (2021), pp. 24–28

DOI: https://doi.org/10.2991/jrnal.k.210521.006; ISSN 2405-9021; eISSN 2352-6386
https://www.atlantis-press.com/journals/jrnal

http://creativecommons.org/licenses/by-nc/4.0/
mailto:chandra%40earth.cs.miyazaki-u.ac.jp?subject=
https://doi.org/10.2991/jrnal.k.210521.006
https://www.atlantis-press.com/journals/jrnal

	 M.C. Saputra et al. / Journal of Robotics, Networking and Artificial Life 8(1) 24–28	 25

The test suite reusability additionally needs to consider code cov-
erage on the reusability measurement. One of the criteria of good
test cases in the test suite related to white box testing is that the
test cases can achieve 100% code coverage. The case of test suite
reusability measurement on white box testing considers not only
the capability of the test suite to examine different objects but also
code coverage as the criteria of a good test suite.

The asset is defined as any kind of product from any part of the
software process [8]. The core asset in software testing is the test
suite. The test suite consists of the set of tests for a module in the
program such as a class or method. Reusing assets on software test-
ing will help to reduce the cost of software testing. The test suite is
not very valuable if it is not reusable in testing another program.
Test suite reusability measurement is important to obtain the value
of reusability as the degree of effectiveness of reused test suite.

The test suite reuse can boost productivity at least as much as reuse
of code and it is referred to similar features of a software system
under testing [9]. Code clones are indicated as the highest opportu-
nity to reuse the test cases in the test suite. The test suite reusability
measurement is applied on code clones because the reusability of
the test cases in the test suite needs to use the same characteristic.
This research uses several types of code clone [10,11] such as code
clone type 1 (exact clones) are identical clones and the second type
is code clone type 2 which the differences from the original code
are renamed identifiers, literals, types, layout, and comments but
the structurally and syntactically are similar. The code clones type
3 are modified the statement such as statement insertions/deletions
in addition to changes in identifiers, literals, types, and layouts.
Code clone type 4 has been modified on code fragments to per-
form the same objective but different syntactic variants.

3. � TEST SUITE REUSABILITY
MEASUREMENT

The research on test suite reusability has been conducted such as
function calling path based for test cases reuse method is deter-
mined the correlation function by investigating with manual anal-
ysis of the change path to be tested and the change of test case in
test case reuse method is completed [12]. The method is testing the
part of code that affected by the modification but has not measure-
ment of the test suite reusability that related to the number of test
cases reduction on regression testing, the workload of the tester,
and the test cost.

The test suite which consists of the test cases is implemented on
Junit testing. Figure 1 shows the test suite reusability measurement
activity. The several information of test suite execution then uses
for the test suite reusability measurement. The first information
used on this measurement is the number of successful reused test
cases in the test suite. The successful reused test cases are the exam-
ination result of the test cases on Java program that could achieve
the objective of the testing without any error. The next information
is distinct code coverage. The test cases in the test suite are possible
to execute similar lines of code.

The similar lines of code executed by the test cases in the test suite
then count as one line of code executed or called distinct code
coverage.

To simplify the formula, the research uses the following notation.

•• SRTC: Successful reused test cases

•• DCC: Distinct code coverage

•• OT: Objects tested

•• OLOC: Original line of code

•• TC: Test cases

By using the notation, the formula for test suite reusability score
as follows.

  Test suite reusability score
SRTC DCC

OT TC OLOC
=

∑ + ∑
∑ ×∑() + ∑

� (1)

The proposed formula for test suite reusability score has consider-
ing frequency and code coverage of successful reused test cases in
the test suite.

4.  EXPERIMENT

The research uses the parallelogram Java program as shown in
Figure 2 with two given test suites. The test suite reusability mea-
surement on this experiment is excluding the result of the origi-
nal test suite examination data. The experiment is focused on the

Figure 1 | Test suite reusability measurement activity.

Figure 2 | Parallelogram source code.

26	 M.C. Saputra et al. / Journal of Robotics, Networking and Artificial Life 8(1) 24–28

test suite reusability measurement on another Java program that is
reused the test suite to test the program. The test suite examines the
code clones to collect the information of the number of successful
reused test cases and distinct code coverage.

This research has two given test suites. The first test suite con-
tains three test cases and the second test suite contains four test
cases. The original Java program is cloning by code clones type 1–4
approach.

5.  RESULTS AND DISCUSSION

The parallelogram java program is cloned by using code clones
type 1–4. The given test suite is examined to collect information
such as the lines of code executed by the test cases in the test suite
and the number of successful reused test cases. The result of the
examination of the test suite is shown in Table 1. Table 1 shows that
the given test cases on the test suite successfully examine the code
clones without any error.

Table 1 | The result from code coverage information on code clones

Test suite-1 Test suite-2

No. LOC TC-1 TC-2 TC-3 Distinct code
coverage TC-1 TC-2 TC-3 TC-4 Distinct code

coverage

Code clone type-1
  1 1 1 1 1 1 1 1 1 1
  2 1 1 1 1 1 1 1 1 1
  3 1 1 1 1 1 1 1 1 1
  4 1 1 1 1 1 1 1 1 1
  5 1 1 0 1 1 1 1 1 1
  6 1 1 0 1 1 1 1 1 1
  7 0 0 1 1 0 0 0 0 0
  8 0 0 1 1 0 0 0 0 0
  9 0 0 1 1 0 0 0 0 0
10 1 1 1 1 1 1 1 1 1
11 1 1 0 1 1 1 1 1 1
12 0 1 0 1 1 1 1 0 1
13 0 1 0 1 1 1 1 0 1
14 1 0 0 1 0 0 0 1 1
15 1 0 0 1 0 0 0 1 1
Code clone type-2
  1 1 1 1 1 1 1 1 1 1
  2 1 1 1 1 1 1 1 1 1
  3 1 1 1 1 1 1 1 1 1
  4 1 1 1 1 1 1 1 1 1
  5 1 1 0 1 1 1 1 1 1
  6 1 1 0 1 1 1 1 1 1
  7 0 0 1 1 0 0 0 0 0
  8 0 0 1 1 0 0 0 0 0
  9 0 0 1 1 0 0 0 0 0
10 1 1 1 1 1 1 1 1 1
11 1 1 0 1 1 1 1 1 1
12 0 1 0 1 1 1 1 0 1
13 0 1 0 1 1 1 1 0 1
14 1 0 0 1 0 0 0 1 1
15 1 0 0 1 0 0 0 1 1
Code clone type-3
  1 1 1 1 1 1 1 1 1 1
  2 1 1 1 1 1 1 1 1 1
  3 1 1 1 1 1 1 1 1 1
  4 1 1 1 1 1 1 1 1 1
  5 1 1 0 1 1 1 1 1 1
  6 1 1 0 1 1 1 1 1 1
  7 0 0 1 1 0 0 0 0 0
  8 0 0 1 1 0 0 0 0 0
  9 0 0 1 1 0 0 0 0 0
10 0 0 1 1 0 0 0 0 0
11 1 1 1 1 1 1 1 1 1
12 1 1 0 1 1 1 1 1 1
13 0 1 0 1 1 1 1 0 1
14 0 1 0 1 1 1 1 0 1
15 1 0 0 1 0 0 0 1 1
16 1 0 0 1 0 0 0 1 1

(Continued)

	 M.C. Saputra et al. / Journal of Robotics, Networking and Artificial Life 8(1) 24–28	 27

The unsuccessful test case is represented by the value 0 on all lines
of code and in this experiment there is no unsuccessful test case.

The result of code coverage information is shown in Table 1. The
value 1 means this line is executed and 0 is not executed. Distinct
code coverage information is shown in Table 1. The value 1 means
this line is executed and 0 is not executed during the testing by
using one or more test cases. The distinct code coverage on code
clones shows that several lines of code on code clones type 1–3 are
not executed by test cases on the test suites during the testing indi-
cated by value 0.

The result of the number of successful reused test cases is shown
in Table 2. The result obtains from test cases examination on code
clones. Table 3 shows the result of test suite reusability measure-
ment uses formula (1). The test suite reusability measurement is
very common information to reduce the cost of software testing.
The different number of lines of code is possible for code clones
type 3 and 4, for code clones type 1 and 2 usually the number lines
of code are the same. The distinct code coverage is used to selecting
the redundant line of code executed by the test cases on the test
suite. By using the distinct code coverage, the calculation of per-
centage code coverage is represented the actual condition.

The test cases in the test suite are possible to execute similar lines
of code. The number of successful reused test cases on the test suite
as shown in Table 2 is important for test suite reusability measure-
ment. The number of successfully reused test cases is one of the
important parameters for the test suite reusability measurement.

The information of code coverages and number of successful
reused test cases in the test suite is used for test suite reusability
measurement. The result of test suite reusability measurement uses
formula (1) as shown in Table 3. The result of test suite reusability
score shows the different scores for several test suites because they
have a different number of distinct code coverage by the test cases as
shown in Table 1. The number of distinct code coverage is important
to ensure the capability of the test suite to achieve 100% code cover-
age. The score of test suite reusability 100% means the test suite has
the perfect capability to achieve 100% code coverage and reused on
another program. The test suite reusability measurement provides
useful information to know the degree of effectiveness of reused test
suite, especially in regression testing and automated testing.

6.  CONCLUSION

This research confirms the test suite reusability measurement is
calculated by combining the number of successful reused test cases
and code coverage. Code coverage is enriching the information on
test suite reusability measurement. The result of test suite reusabil-
ity measurement is valuable information to reduce the cost of soft-
ware testing, especially in regression testing and automated testing.

Our future works will focus on other measurement for test suite
quality measurement.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

REFERENCES

[1]	 I. Sommerville, Software engineering 9th ed. in: M. Hirsch (Ed.),
Software engineering, Addison-Wesley Publishing Company,
USA, 2010, pp. 133–170.

[2]	 R.S. Pressman, B.R. Maxim, Software engineering: a practitioner’s
approach, McGraw-Hill, NY, USA, 2009.

[3]	 A.G. Sutcliffe, The domain theory: patterns for knowledge and
software reuse, Lawrence Erlbaum Associates, Inc., Publishers,
Mahwah, NJ, 2002.

Table 2 | Result of the number of successful reused test cases

Code clones Number of
test cases

Number of successful
test cases tested

Test suite-1 Type-1 3 3
Type-2 3
Type-3 3
Type-4 3

Test suite-2 Type-1 4 4
Type-2 4
Type-3 4
Type-4 4

Table 3 | Result of test suite reusability measurement

Code clones Test suite reusability score Average

Test suite-1 Type-1 100% 100%
Type-2 100%
Type-3 100%
Type-4 100%

Test suite-2 Type-1 84% 87%
Type-2 84%
Type-3 80%
Type-4 100%

Table 1 | The result from code coverage information on code clones—Continued

Test suite-1 Test suite-2

No. LOC TC-1 TC-2 TC-3 Distinct code
coverage TC-1 TC-2 TC-3 TC-4 Distinct code

coverage

Code clone type-4
  1 1 1 1 1 1 1 1 1 1
  2 1 1 1 1 1 1 1 1 1
  3 1 1 0 1 1 1 1 1 1
  4 1 1 0 1 1 1 1 1 1
  5 1 1 0 1 1 1 1 1 1
  6 1 1 0 1 1 1 1 1 1
  7 1 1 0 1 1 1 1 1 1

28	 M.C. Saputra et al. / Journal of Robotics, Networking and Artificial Life 8(1) 24–28

[4]	 Y. Dong, Y. Wang, M.F. Lau, Sy. Lin, Experiments on test case
reuse of test coverage criteria, 2010 7th International Conference
on Ubiquitous Intelligence & Computing and 7th International
Conference on Autonomic & Trusted Computing, IEEE, Xi’an,
China, 2010, pp. 277–281.

[5]	 N. Saini, S. Singh, Suman, Code clones: detection and manage-
ment. Procedia Comput. Sci. 132 (2018), 718–727.

[6]	 The Institute of Electrical and Electronics Engineers (IEEE),
IEEE standard computer dictionary: a compilation of IEEE stan-
dard computer glossaries, IEEE, New York, 1990, pp. 1–217.

[7]	 S. Younoussi, O. Roudies, All about software reusability: a sys-
tematic literature review. J. Theor. Appl. Inf. Technol. 76 (2015),
64–75.

[8]	 M. Ezran, M. Morisio, C. Tully, Practical software reuse, Springer,
London, 2002.

[9]	 S.P.R. Asaithambi, S. Jarzabek, Towards test case reuse: a study
of redundancies in android platform test libraries, in: J. Favaro,
M. Morisio (Eds.), Safe and Secure Software Reuse, Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 7925, Springer, Berlin, Heidelberg, 2013, pp. 49–64.

[10]	 S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo,
Comparison and evaluation of clone detection tools, IEEE Trans.
Softw. Eng. 33 (2007), 577–591.

[11]	 C.K. Roy, J.R. Cordy, A survey on software clone detection
research, Technical Report No. 2007-541, School of computing,
Queens University, Kingston, ON, Canada, 2007.

[12]	 Y. Mu, X. Gao, M. Shen, Research of reuse technology of test case
based on function calling path, Chinese J. Electron. 27 (2018),
768–775.

Mr. Mochamad Chandra Saputra

He received the Master’s degree from
the University of Miyazaki, Japan, and
Brawijaya University, Indonesia on Double
Degree Program on 2014. Since 2015,
he has been a lecturer on the Faculty of
Computer Science, Brawijaya University.
Currently, he is persuing the Doctoral Study
at the University of Miyazaki. His research

interests include software testing, software quality, and software
project management.

AUTHORS INTRODUCTION

Mr. Tetsuro Katayama

He received the PhD degree in engineering
from Kyushu University, Fukuoka, Japan
in 1996. From 1996 to 2000, he has been a
Research Associate at the Graduate School
of Information Science, Nara Institute
of Science and Technology, Japan. Since
2000, he has been an Associate Professor
at Faculty of Engineering, Miyazaki

University, Japan. He is currently a Professor with the Faculty of
Engineering, University of Miyazaki, Japan. His research inter-
ests include software testing and quality. He is a member of the
IPSJ, IEICE, and JSSST.

Mr. Yoshihiro Kita

He received a PhD degree in systems engi-
neering from the University of Miyazaki,
Japan in 2011. He is currently an Associate
Professor with the Faculty of Information
Systems, University of Nagasaki, Japan.
His research interests include software
testing and biometrics authentication.

Mr. Kentaro Aburada

He received the B.S., M.S., and PhD degrees
in computer science and system engineer-
ing from the University of Miyazaki, Japan
in 2003, 2005, and 2009, respectively. He
is currently an Associate Professor with
the Faculty of Engineering, University of
Miyazaki, Japan. His research interests
include computer network and security.

He is a member of IPSJ and IEICE.

Mr. Hisaaki Yamaba

He received the B.S. and M.S. degrees in
chemical engineering from the Tokyo
Institute of Technology, Japan in 1988 and
1990, respectively, and the PhD degree in
systems engineering from the University
of Miyazaki, Japan in 2011. He is currently
an Assistant Professor with the Faculty
of Engineering, University of Miyazaki,
Japan. His research interests include net-

work security and user authentication. He is a member of SICE
and SCEJ.

Mr. Naonobu Okazaki

He received his B.S., M.S., and PhD degrees
in electrical and communication engineer-
ing from Tohoku University, Japan in 1986,
1988, and 1992, respectively. He joined the
Information Technology Research and
Development Center, Mitsubishi Electric
Corporation in 1991. He is currently a
Professor with the Faculty of Engineering,
University of Miyazaki since 2002. His

research interests include mobile network and network security.
He is a member of IPSJ, IEICE, and IEEE.

https://doi.org/10.1109/UIC-ATC.2010.71
https://doi.org/10.1109/UIC-ATC.2010.71
https://doi.org/10.1109/UIC-ATC.2010.71
https://doi.org/10.1109/UIC-ATC.2010.71
https://doi.org/10.1109/UIC-ATC.2010.71
https://doi.org/10.1016/j.procs.2018.05.080
https://doi.org/10.1016/j.procs.2018.05.080
https://doi.org/10.1109/IEEESTD.1991.106963
https://doi.org/10.1109/IEEESTD.1991.106963
https://doi.org/10.1109/IEEESTD.1991.106963
https://doi.org/10.1007/978-3-642-38977-1_4
https://doi.org/10.1007/978-3-642-38977-1_4
https://doi.org/10.1007/978-3-642-38977-1_4
https://doi.org/10.1007/978-3-642-38977-1_4
https://doi.org/10.1007/978-3-642-38977-1_4
https://doi.org/10.1007/978-3-642-38977-1_4
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1049/cje.2018.04.012
https://doi.org/10.1049/cje.2018.04.012
https://doi.org/10.1049/cje.2018.04.012

