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1.  INTRODUCTION

Research on anomaly detection is of great interest in machine 
learning and data mining. Detecting anomalies or finding outliers 
involves identifying abnormal or inconsistent patterns in a data-
set. Abnormal data often results from unauthorized activity. Credit 
card fraud offers a well-known example. Transactions with a stolen 
or fake credit card can produce suspicious data. A fake card can be 
made by copying information from an authorized card and using it 
to create a new unauthorized one. Data such as personal identifying 
information may be obtained through phishing or from employees 
who work in credit card companies [1]. Another source of abnor-
mal data may derive from unauthorized intrusions in networks. 
Abnormal traffic or user actions are common signs of intrusions, 
which may occasion breaches of sensitive or confidential data. 
Intrusions may also cause sensor networks to generate erroneous 
data. When a sensor malfunctions, it is unable to capture data cor-
rectly and thus may produce anomalies. Abnormal changes in data 
sources may also result in anomalies [2].

Anomaly detection typically uses data mining and machine learn-
ing methods for detecting abnormal activities in systems. Many 
anomaly detection techniques have been developed, including 
Support Vector Machines (SVM), which can solve classification 
and regression problems. The performance of SVM depends on the 
selection of kernel function and kernel parameters. The selection 
quality of SVM parameters and kernel functions has an effect on 
learning and generation performance. Appropriate kernel function 
and associated parameters should be selected to obtain optimal 
classification performance. When an appropriate kernel function 

and parameters are selected, the prediction error of SVM can be 
minimized.

This paper reports on application of the support vector machine 
method to eight real world time series data sets to detect anomalies 
using three different kernels for analysis and prediction. In addi-
tion, SVM kernels are compared for effectiveness based on Area 
under the Curve (AUC), Precision, Recall, F1-Score, Specificity, 
and Jaccard index criteria.

2. � SUPPORT VECTOR MACHINE  
ALGORITHM

The SVM algorithm’s goal is to create the best line or decision 
boundary that can decompose an n-dimensional space into sets 
supporting categorization of new data points. Hyperplanes define 
the boundaries in this space.

In our proposed method, we used SVM provided by Scikit-learn to 
detect the anomaly in time series data.

For a given dataset x with a number i of training data, SVM finds 
the maximum margin hyperplane separating different classes of 
data [3]:

      x x y x y i Ni i i
p

i= ∈ ∈ −{ } ∀ =( , ), , , , , , ...,� 1 1 1 2 � (1)

where xi is the p-dimensional input vector, yi is the output value 
(1 or −1) and “·” is the dot product which has a formula form by 
x y x yi i� � � . A decision vector separating two classes is given 
by:
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where wT is the optimal weighting vector and b is the bias. The mar-
gins of linearly separable training data can be defined as:

	     w x b w x bT T� � � � � � �1 1and � (3)

The distance between the margins can be defined by 2/‖wT‖. 
Therefore, minimizing ‖wT‖ is an objective function. In practice, it 
is not easy to linearly decompose the training dataset. Let C be the 
regularization parameter that defines the separation of two classes 
and the error when using a training dataset. The hyperplane is 
determined by minimizing:
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with constraints ti y(xi) ≥ 1‒ei, i = 1, …, N  where ti is the target value 
and ei is the set of slack variables.

Instead of using a minimization model (4), the problem may be 
formulated using Lagrangian dual multipliers a  as:
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Kernel trick can be applied to reduce the complexity of the optimi-
zation problem.

Support vector machine with nonlinear kernel has an objective 
function form as follows:
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3.  KERNELS

In machine learning, kernel methods are a popular class for a vari-
ety of tasks. Kernel methods can generate the model complex data 
through the kernel trick, which is an important feature [4].

In this paper, two types of kernel functions are chosen and eval-
uated, namely the linear and Radial Basis Function (RBF). The 
mathematical formula for the said functions are as follows:

3.1.  Linear Kernel

		    k x x x xi j i j( , ) ( , )= � (8)

3.2.  Radial Basis Function Kernel
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K(xi, xj) = xi · xj is the kernel function, which is generalized dot 
products. “·” denotes the dot product. The two kernels have their 
own advantages and limitations. The linear kernel offers ease of 
performance as well as an ability to deal with small and linearly 
separable samples. The RBF kernel, on the other hand, is known 
as a good mapping function since it can be used for all kinds of 

samples, small or large with both high and low dimensions [5]. The 
SVM performance for each kernel will be evaluated in this study to 
determine the optimal kernel.

4.  EXPERIMENTS

This section introduces the data sets and the evaluation metric 
used. We have compared the three kernels and evaluated their 
effectiveness for anomaly detection in SVMs.

4.1.  Data Sets

Time series data obtained from UCR public data set [6] were used 
to evaluate effectiveness. Table 1 shows the details of the datasets. 
All datasets are presented in time series form, and every data point 
is manually labeled. For all datasets, we designated the minority 
class as an anomaly class. Twenty percent of the data was used for 
testing.

4.2.  Evaluation Metrics

The accuracy of an anomaly detection method is evaluated using 
the AUC of the Receiver Operating Characteristic (ROC), Precision 
(Pre), Recall (Rec), F1-Score, Specificity, and Jaccard index, defined 
as follows (Figure 1):

		  Precision TP
TP FP

=
+ � (10)

Figure 1 | Structure of anomaly detection in time series data used SVM. 
We used eight time series data sets processed by SVM, and three different 
kernels based on AUC, Precision, Recall, F1-Score, Specificity, and Jaccard 
index criteria.

Table 1 | Summary of the datasets

Datasets Length Number of 
instances

Anomaly  
ratio

ItalyPowerDemand 24 1096 0.49
Wafer 152 7164 0.11
SonyAIBORobotSurface2 65 980 0.38
ECGFiveDays 136 884 0.50
TwoLeadECG 82 1162 0.50
MoteStrain 84 1272 0.46
Herring 512 128 0.40
Strawberry 235 983 0.36
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where TP is the accurately detected abnormal, FP is the false 
detected abnormal, TN is the accurately assigned normal, and FN 
is the false assigned normal.

5.  RESULTS AND DISCUSSION

The efficiency of the following three SVM kernels are compared:

1. Linear Kernel

2. RBF Kernel (Default parameters value)

3. RBF1 Kernel (We define the parameters C = 20, γ = 0.02)

We performed experiments on accuracy of analysis and prediction 
of anomalies for eight time series data sets using the three different 
SVM kernels. Accuracy of analysis and prediction can be measured 
by the AUC as shown in the ROC in Figures 2–9. The blue line is 
the Linear Kernel of SVM, the orange line is the RBF kernel, and 
the green line is the RBF1 kernel.

Figure 7 | The kernel performance comparison of Linear, RBF and RBF1 
for testing MoteStrain dataset using ROC.

Figure 6 | The kernel performance comparison of Linear, RBF and RBF1 
for testing TwoLeadECG dataset using ROC.Figure 2 | The kernel performance comparison of Linear, RBF and RBF1 

for testing ItalyPowerDemand dataset using ROC.

Figure 3 | The kernel performance comparison of Linear, RBF and RBF1 
for testing Wafer dataset using ROC.

Figure 4 | The kernel performance comparison of Linear, RBF and RBF1 
for testing SonyAIBORobotSurface2 dataset using ROC.

Figure 5 | The kernel performance comparison of Linear, RBF and RBF1 
for testing ECGFiveDays dataset using ROC.
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Figure 2 shows that the RBF1 kernel is slightly more efficient than 
the Linear and RBF kernels for the ItalyPowerDemand data set. 
However, all three kernels yield almost 100% accuracy.

Figure 3 shows that the RBF and RBF1 kernels are more efficient 
than the Linear kernel, and that the RBF kernel is almost 100% 

accurate. In particular, the RBF1 kernel gives a ROC value perfectly 
for the Wafer data set.

Figure 4 reveals that RBF1 is slightly more efficient than the 
linear and RBF kernels for the SonyAIBORobotSurface2 data set. 
In particular, the RBF and RBF1 kernels provide almost 100% 
accuracy.

Figure 5 shows that all three kernels give perfect ROC values for the 
ECGFiveDays data set.

Figure 6 shows that the RBF kernel is almost 100%. Linear and 
RBF1 kernels give nearly perfect ROC values for the TwoLeadECG 
data set.

Figure 7 shows that the RBF1 kernel to be slightly more efficient 
than the linear and RBF kernels for the MoteStrain data set.

Figure 8 reveals that the Linear kernel gives slightly more accurate 
ROC values than does the RBF kernel, but the RBF1 kernel is the 
most accurate for the Herring data set.

Finally, Figure 9 shows that the Linear kernel is more accurate than 
the RBF kernel. In particular, the RBF1 kernel is almost 100% for 
the Strawberry data set.

Table 2 shows the summary of anomaly detection results and 
comparisons. The results show that SVM with RBF1 kernel gives 
the highest accuracy, specificity, Jaccard index, and F1-Score 
on all aspects and data sets, except for the Herring data set, for 
which the RBF kernel gives the highest of F1-Score and Jaccard. 
All three kernels gave perfect results for AUC, Precision, Recall, 
F1-Score, Specification, and Jaccard index on the ECGFiveDays 
data set.

We compared our results to the latest research in “Time Series 
Anomaly Detection with Variational Autoencoders [7]”, which used 
a different method. There are six data sets utilized in our method, 
namely, ItalyPowerDemand, Wafer, ECGFiveDays, TwoLeadECG, 
MoteStrain, and Herring. Table 3 shows the AUC results of the 
latest research. These results demonstrate that our proposed 

Figure 9 | The kernel performance comparison of Linear, RBF and RBF1 
for testing Strawberry dataset using ROC.

Figure 8 | The kernel performance comparison of Linear, RBF and RBF1 
for testing Herring dataset using ROC.

Table 2 | Summary of the kernel performance comparison of Linear, RBF, and RBF1

Datasets
Kernel: Linear Kernel: RBF (Default) Kernel: RBF (C = 20, γ = 0.02)

AUC Precision Recall F1-Score AUC Precision Recall F1-Score AUC Precision Recall F1-Score

ItalyPowerDemand 0.9994 0.9818 0.9818 0.9818 0.9990 0.9910 1.0000 0.9955 0.9999 0.9910 1.0000 0.9955
Wafer 0.7510 0.9687 0.9946 0.9815 0.9999 1.0000 0.9969 0.9985 1.0000 1.0000 0.9985 0.9992
SonyAIBORobotSurface2 0.9819 0.9646 0.9478 0.9561 0.9974 0.9910 0.9565 0.9735 0.9997 1.0000 0.9826 0.9912
ECGFiveDays 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
TwoLeadECG 1.0000 0.9915 1.0000 0.9957 0.9994 0.9915 1.0000 0.9957 1.0000 1.0000 1.0000 1.0000
MoteStrain 0.9540 0.9552 0.8767 0.9143 0.9789 0.9783 0.9247 0.9507 0.9840 0.9716 0.9384 0.9547
Herring 0.6667 0.7647 0.7647 0.7647 0.6275 0.6538 1.0000 0.7907 0.7255 0.7692 0.5882 0.6667
Strawberry 0.9884 0.9908 0.8710 0.9270 0.9366 0.6327 1.0000 0.7750 0.9904 0.9911 0.8952 0.9407

Datasets
Kernel: Linear Kernel: RBF (Default) Kernel: RBF (C = 20, γ = 0.02)

Specificity Jaccard Specificity Jaccard Specificity Jaccard

ItalyPowerDemand 0.9818 0.9643 0.9909 0.9910 0.9909 0.9910
Wafer 0.6719 0.9636 1.0000 0.9969 1.0000 0.9985
SonyAIBORobotSurface2 0.9506 0.9160 0.9877 0.9483 1.0000 0.9826
ECGFiveDays 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
TwoLeadECG 0.9914 0.9915 0.9914 0.9915 1.0000 1.0000
MoteStrain 0.9450 0.8421 0.9725 0.9060 0.9633 0.9133
Herring 0.5556 0.6190 0.0000 0.6538 0.6667 0.5000
Strawberry 0.9863 0.8640 0.0137 0.6326 0.9863 0.8880
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method achieves superior results compared to the approach taken 
in Zhang and Chen [7] for all six datasets.

This shows that the RBF kernel with parameter values C = 20,  
γ = 0.02 exhibits good performance in anomaly detection for time 
series data.

6.  CONCLUSION

In this paper, we presented an analysis of anomaly detection in 
time series data using SVM with three different kernels, namely, 
Linear, RBF and RBF1. We evaluated the accuracy of anomaly 
detection methods based on AUC, Precision, Recall, F1-Score, 
Specificity, and Jaccard index criteria. The evaluation results show 
that the kernel with defined parameters can improve accuracy on 
all aspects and data sets. This application of the SVM method, 
with the RBF kernel, can be efficient for detecting anomalies 
in time series data. The results for data set ECGFiveDays show 
100% accuracy with all three kernels, and the results for the 
TwoLeadECG show almost 100% with all three kernels. Moreover, 
the results indicate a high degree of accuracy for the three ker-
nels on all the data sets, perhaps because our data was trained in 
supervised conditions. Since we train the machine using data that 
is well labeled, and the algorithms learn to predict output from the 
input data. It means some data is already tagged with the correct 
answer.

In the future, we intend to implement the variational autoencoder 
method for detecting and predicting anomalies in time series and 
spectrum data to compare it with the autoencoder method.
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