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1. INTRODUCTION

In recent years, Convolutional Neural Networks (CNN) have been 
achieved state-of-the-art performance in varied tasks including 
image recognition [1] and object detection [2]. However, when 
comparing CNN with a Multilayer Perceptron (MLP) having the 
same number of weight parameters, CNN utilizes significantly 
more Multiply-Accumulate Operations (MAC) than MLP. This 
may lead to a bottleneck when deploying a CNN to a mobile device 
with low computational capacity. Addressing this problem, several 
research directions emerge from a structure pruning [3], network 
slimming [4], and early-exit network [5]. Structure pruning focuses 
to on reducing the number of filters in each layer of CNN by prun-
ing filters with small magnitude. With a lower number of filters, this 
reduces the run time during inference in both the central process-
ing unit and the field-programmable gate array. Network sliming 
focuses on creating a neural network model that can be detached 
into smaller models through inference. Therefore, the user can 
select trade-offs between latency and performance by selecting an 
inference with either a larger model or smaller model (detached 
model). In contrast, the early-exit network allows fast inference via 
predictions from the early layer of the neural network to its exit if 
the classifier on the early layer is sufficiently confident. Otherwise, 
feature maps from the early layer are passed and processed further 
in later layers, thereby producing more confident predictions.

In this research, we focus on network sliming. In our previous 
works, we purposed the Network with sub-Networks (NSN) [6,7] 
which introduced layer-wise detachment ability to MLP. Detaching 

weight layers on demand allows NSN to operate with lower MAC, 
therefore; it can decrease overall latency with a tradeoff in perfor-
mance. However, it is not possible to directly apply the methods 
of NSN to CNN because of the following compatibility issues as 
follow. First, NSN requires a targeted neural network model to 
contain a same shape of a feature map throughout the model. 
This creates a major constraint to the CNN model; for example, 
the CNN cannot contain spatial reduction layers (pooling layers 
or convolutional layers without padding), without which, the CNN 
may operate with higher MAC than the layer detaching can reduce. 
The second issue is that NSN requires parallel training of N + 1 
models (both base-model and sub-models), where N is the number 
of hidden layers. This indicates that NSN methods are not feasi-
ble with recent CNN models that contain more than 100 hidden 
layers. The third issue is that NSN required manual control of gra-
dients across base-model and sub-models, causing high complexity 
during programing.

In this research, we propose Convolutional Network with sub- 
Networks (CNSN) to address the three aforementioned issues iden-
tified during the previous work. CNSN allows the use of different 
shapes of the feature map by attaching a step-down convolutional 
layer as the input layer of sub-models. This layer preprocesses and 
reshapes input images to a preferred representation to the sub-
model. To allow CNSN to operate more depth CNN models, CNSN 
reduces a number of sub-models by allowing only few selected 
sub-models to be detached. Instead, of manually controlling the 
gradients, we introduce a multi-model loss, i.e., the combination 
of losses from a base-model and sub-models. This loss allows the 
base model to be detached into sub-models during inference and 
reduces its overall complexity in programing for the user making 
comparisons with NSN.
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A B S T R AC T
In this research, we propose a Convolutional Network with sub-Networks (CNSN), i.e., a Convolutional Neural Network (CNN) 
or base-model that can be divided into sub-models on demand. The CNN architecture, entails that feature map shapes are varied 
throughout the model, therefore, the hidden layer within CNN may not directly process an input image without modification. To 
address this problem, we propose a step-down convolutional layer, which is a convolutional layer acting as an input layer for the 
sub-model. This step-down convolutional layer reshapes and processes an input image to a preferred representation to the sub-
model. To train CNSN, we treat the base-model and sub-models as distinct models. Each model is forward- and back-propagated 
separately. Using multi-model loss, i.e., a linear combination of losses from base-model and sub-models, we thus update model 
parameters that can be utilized in both base-model and sub-models.
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To detach several convolutional layers on demand, CNSN promises 
a greater reduction in overall MAC than demonstrated in our pre-
vious work, which can detach only fully connected layers. CNSN 
also provides a select-ability between the amount of MAC and test 
accuracy to the user. By deploying CNSN to mobile devices that are 
diverse in specifications, the user can freely select a base model or 
sub-models that suits the user’s mobile device and preferences. Our 
main contributions in this research are as follows:

 • We propose CNSN, a CNN with the ability to detach a base-
model into sub-models during inference.

 • We introduce multi-model loss, a linear combination of losses 
from the base-model and sub-models.

 • We introduce a step-down convolutional layer that operates as an 
input layer to sub-models.

2.  CONVOLUTIONAL NETWORK WITH 
SUB-NETWORKS

Convolutional network with sub-networks consists of a base-
model and several sub-models. The sub-model is a subset of the 
base-model with an exception, the step-down convolutional layer. 
Therefore, all parameters from sub-models the exception of step-
down convolutional layer, are identical to those of the base-model in 
both learnable parameters and structure. In terms of the memory 
usage of CNSN, we only required the storage of the base-model and 
several step-down convolutional layers.

An overview of CNSN is illustrated in Figure 1 which shows a base-
model represented at the top row and two sub-models are in the two 
bottom rows. Each base-model and sub-model directly receives an 
input image and independently produces predictions. With fewer 
number of parameters in the model, the sub-model contains less 
capacity compared with the base-model. However, it promises to 
perform inference faster than the base-model.

With both base-model and sub-models, the CNSN consists of the 
three components, making CNN detached to become sub-models. 
These three components are as follows: the step-down convolutional 
layer, sub-models, and multi-losses. We describe each component in 
the following sections.

2.1. Step-down Convolutional Layer

The step-down convolutional layer is a general convolutional layer 
designed to solve the spatial difference between an input and a 
hidden layer in the CNN. Solving this problem allows the CNSN to 
reuse a hidden convolutional layer of the base-model as a layer of 
the sub-model. However, there are some concerns, which are out-
lined as follows.

The first problem is the number of input filters of the hidden layer 
may not be the same as the number of channel of the input image. 
Consequently, the hidden layer cannot directly process the input 
image. To address this problem, we can insert a step-down convo-
lutional layer with the same number of input filters to the number 
of channel of the input image. Another issue is that the expected 
width and height of the input feature is difference between the 
base-model to the sub-models. By adjusting the number of strides 
and size of the kernel of the step-down convolutional layer, we can 
adjust the shape of output feature maps as we desired and the pro-
cessed feature maps can be further processed in the sub-model.

2.2. Sub-models

Instead of allowing every layer of the neural network to be similarly 
detachable as the NSN, CNSN only allows a few sub-models to be 
detached. In each training batch, both NSN and CNSN requires 
base-model and sub-models to be propagated in the same itera-
tion. This causes a problem in that parameters from base- and sub- 
models may not be fitted in a single graphics processing unit if the 
base-model is large and contains many sub-models. Therefore, to 
train the CNSN for a large CNN, we reduced the detachability of 
the model to only a few sub-models.

2.3. Multi-model Loss

To allow both the base-model and sub-models to operate as an 
individual model, we purpose a method termed multi-model loss, 
which is designed to balance between the loss from the base-model 
and sub-models. By assuming N sub-models in the base-model, 
multi-model loss or lall is formulated as illustrated in Equation (1), 
where lN is the loss from N numbered sub-models, and lbase is the 
loss from the base-model. To utilize this loss, all models must be 
forward propagated in the same batch training first, to find all lN 
and lbase. Subsequently, we can utilize lN and lbase to solve for lall as 
follows.

   l l l
N

Nall base= +∑
1

  (1)

3.  EXPERIMENTAL RESULTS  
AND DISCUSSION

We implemented our CNSN using a VGG-16 [8]-like model as 
the base-model. Because VGG-16 is designed for the ImageNet 
Large Scale Visual Recognition Challenge [9] 2014, some layers 
in VGG-16 are required to be modified to operate with CIFAR10 
[10]. We removed first two fully-connected layers and modified 

Figure 1 | Overview of CNSN. The top row represents a base model of 
CNSN whereas the two bottom rows represent sub-models. Each model 
can receive an image and produce a prediction. During training, losses 
from all models are accumulated as a multi-model loss.
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the last fully-connected layer to 512 input and 10 output neurons. 
To stabilize the training process of CNSN, we also attached Batch 
Normalization (BN) [11] layers after each weight layer, except the 
last fully-connected layer. We utilized rectified linear units as an 
activation function except for the last fully-connected layer, which 
was instead assigned the log-softmax.

The overall setting of the reported experiment is illustrated in 
Figure 1. We assigned two sub-models within the base-model. 
Including neither an activation function, BN, nor a pooling layer, 
the first sub-model or sub-model0 is a base-model following the 
removal of the first two convolutional layers. The second sub-
model, sub-model1, is the base-model after removing the first seven 
convolutional layers. Each sub-model is attached to a step-down 
convolutional layer which acts as the input layer of a sub-model. 
The step-down convolutional layer for sub-model0 is the convolu-
tional layer with stride two and kernel size two. For sub-model1, 
the step-down convolutional layer is the convolutional layer with 
stride eight and kernel size eight. We defined the baseline model as 
a VGG-16-like model that was trained without modification.

We conducted a benchmark using CIFAR10 dataset. CIFAR10 con-
sists of 10 different classes and 60,000 images. Each image is an 
RGB image with a size of 32 × 32, and each class consists of 5000 
training and 1000 test images, we performed data augmentation 
by padding 4 pixels into the training image and randomly crop-
ping back to the original size. The training images were further 
augmented by horizontal flipping and normalizing with a channel- 
wise mean and standard deviation of the CIFAR10 dataset. In 
this experiment, we trained all models using a stochastic gradient 
descent with a momentum of 0.9. We set an initial learning rate as 
10−2 and it is step-downed to one-tenth after training for 50, 100, 
and 150 epochs. We warmed up the learning rate for one epoch and 
trained our models for 300 epochs using a training batch size of 32. 
We reported the best test accuracy identified during this training.

Experimental results are shown as Table 1, where we compared 
the CNSN base model with the baseline model having the same 
setting as CNSN except for weight decay. We found that the opti-
mized weight decays differ between the baseline model and CNSN. 
Therefore, to ensure fair comparisons, we applied different weight 
decays to each model. Our base-model achieved a loss in test accu-
racy 0.0049 in exchange for an ability to detach into sub-models. 
The sub-models1 was able to reduce more than half of MAC com-
pared with the baseline model; however, this detachability was asso-
ciated with a significant drop in terms of test accuracy relative to 
the base-model.

4. CONCLUSION

We propose CNSN, a CNN that can be detached into smaller CNNs 
or sub-models on demand. To enable CNN detachability, we propose 

the multi-model loss and step-down convolutional layer. Multi-model 
loss is used to introduce a model-wise detachability to the CNSN 
model. Although the step-down convolutional layer acts as a prepro-
cessing or input layer to the sub-model, our sub-model can deliver a 
performance comparable with that of regular trained models, while 
sub-models significantly reduce the amount of MAC; however, this 
may be associated with a tradeoff in test accuracy.

5. FUTURE WORKS

The main issue facing CNSN is that the performance of sub- 
models is decreased relative to that of the base-model. In future 
works, we plan to improve this problem by utilizing CNSN using 
knowledge distillation [12]. Generally, knowledge distillation 
requires a large teacher and small student model to distill knowl-
edge from the teacher to the student model. In this case, our 
CNSN contains both models as base-model (teacher model) and 
sub-models (student models). However, we cannot directly utilize 
conventional knowledge distillation without modification. This 
requires one to many relations between a single teacher (base-
model) and multi-student models (sub-models), which raises a 
research question regarding how to effectively distill knowledge 
from the teacher model to student models while each teacher and 
student model shares parameters. Furthermore, sub-models con-
tain both strong and weak classifiers. Distillation between them is 
also possible. Currently, our CNSN can detach only in the depth 
or layer-wise directions. We are interested to expand its detach-
ability to CSNS in the filter-wise direction. Our main goal is to 
discover detachable sub-models with an arbitrary number of fil-
ters and layers inside a base model. Each sub-model has objective 
functions that enable it to maximize performance and minimize 
the number of MACs.
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