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1.  INTRODUCTION

This paper is an extension of work originally presented at the 
10th Annual Computing and Communication Workshop and 
Conference [1].

The first Bug Bounty Program (BBP) was launched in 1995 by 
Netscape [2]. The company created the program to discover 
pre-release software defects in Netscape Navigator, which gave 
rise to a new paradigm of security research. Other companies 
and organizations were slow to adopt a similar program at first; 
however, adoption began to increase in 2002. Organizations either 
formed their own BBP or joined existing programs from third-
party providers. Today, BBPs provide a platform for people of all 
skill-levels to ethically find, report, and get paid for discovering 
security vulnerabilities.

Typically, organizations must create a BBP before individuals can 
search for vulnerabilities without legal repercussions. Doing so 
beforehand is potentially a violation of the organization’s license 
agreement [3]. Those who participate in the program are known 
as bug hunters, bug bounty hunters, security researchers, white-hat 
hackers, or, for the purposes of this paper, testers. For a tester to be 
considered ethical or litigation-safe, they should only search for vul-
nerabilities from companies that have agreed to host such a program.

Once such a program is established, a tester can begin searching 
for bugs within the bounds of the given BBP. When a bug is discov-
ered, the tester creates a report and submits it through the system 

as described in the program. The report is evaluated, and the com-
pany decides if the submission is acceptable. If so, the tester is typ-
ically rewarded for their efforts.

There are two issues that bug bounty programs currently have. 
First, organizations are not held accountable for poor reporting 
of security issues. For example, Uber, the ride sharing service, was 
breached in 2016, exposing the credentials of over 57 million users 
[4]. However, the company did not disclose the breach until a year 
after the incident. Breaches involving users’ privacy or personally 
identifying information must not be withheld and must remain 
transparent according to security breach notification law [5].

Second, testers are susceptible to nonrecognition. A successful BBP 
relies on good faith and incentivization. Testers hope to receive 
a recognition along with a reward for finding a vulnerability. In 
return, an organization is made aware of a security flaw that might 
cost much more than the bounty payout [6].

An implementation of a BBP on a public blockchain with a success-
ful token economy can guarantee a timely payout while maintain-
ing transparent and persistent records of bug submissions. Thus, 
it would hold organizations accountable for security breaches and 
ensure recognition of testers. Additionally, blockchain transactions 
can prove that security issues were addressed and when they were 
addressed to help mitigate against any potential investigations or 
litigation from regulating authorities.

For those reasons we propose Bountychain, a security bounty 
management program that utilizes Smart Contracts (SCs) on the 
Ethereum blockchain and a decentralized storage system called 
the Interplanetary File System (IPFS). Bountychain aims to be an 
automated, third-party managed platform that provides testers the 
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A B S T R AC T
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ability to easily report security vulnerabilities and gives companies 
an easy, guaranteed mechanism to send payouts to testers.

In our implementation, the tester chooses the reward value derived 
from a matrix based on the bug’s severity, impact to users and like-
lihood of occurring [6]. Once the bug report is addressed, the com-
pany can accept the report as valid, reject the report as invalid or 
duplicate, or edit the reward value. If the report is accepted, the 
smart contract will automatically and immediately distribute pay-
ment to the tester. Lastly, any report accepted by the organization is 
saved on IPFS for immutable storage.

The remainder of this paper is structured as follows. Section 2 
presents related studies using blockchain for BBPs. Section 3 dis-
cusses background about BBPs, Ethereum, IPFS, and other web 
technologies used to build Bountychain. In Section 4, we provide 
a comprehensive overview of Bountychain’s architecture, accom-
panying SCs, and web framework. Section 5 presents some lim-
itations while Section 6 discusses some mitigations. We conclude 
with Section 7.

2.  RELATED WORKS

Using blockchain for BBP is a new topic, and relatively few studies 
have been published so far. Canidio et al. [7] proposed VeriOSS, a 
blockchain-based platform for bug bounties. The authors address a 
particular challenge in BBPs, which is that organizations lack com-
mitment with respect to the eligibility of the bugs. This leads testers 
to look for other opportunities in other markets, such as gray and 
black markets [8]. The goal of VeriOSS is to increase the reward for 
testers to foster more bug hunting and consequently, decrease the 
appeal of grey and black markets.

Another study proposed the Hydra Framework, a general, princi-
pled approach to modeling and administering bug bounties that 
incentivizes bug disclosure [9]. The core idea behind the frame-
work is an exploit gap, a program transformation that enables 
runtime detection and rewarding of critical bugs. The goals of 
Hydra Framework are to solve issues in BBP such as pricing 
bounties, due to lack of research giving principled guidance and 
market inefficiency, caused by the uncertainty of a bug reward 
being awarded.

Wang et al. [10] proposed a new consensus protocol for a block-
chain platform in medical records that considered the capability 
and credibility of software testers called Proof of Skill. The authors 
set out to create a new protocol in response to weaknesses in BBPs 
such as transparency and risk of rewards not being paid out by 
organizations.

Sentinel protocol is a blockchain-based BBP that helps facilitate 
decentralized detection and reporting of threat defects [11]. While 
the operation is like that of other third-party BBPs, this program 
focuses on the cryptocurrency security market. Sentinel Protocol 
does not provide their BBP as a service to non-cryptocurrency- 
based companies.

As far non-blockchain related BBP, several major software compa-
nies host their own program. Google, Facebook, and Microsoft run 
private BBPs [12–14]. Alternatively, companies such as Netflix use 
trusted third parties to issue bugs. The most notable third-party 
platforms are HackerOne, Bugcrowd and Cobalt [15–17].

3.  BACKGROUND

In this section, we discuss how BBPs operate and the technolo-
gies used to develop Bountychain, such as blockchain and IPFS. 
We specifically used the Ethereum blockchain due to its ability to  
support SCs.

3.1.  Bug Bounty Programs

Bug Bounty Programs leverage crowd sourcing to discover and 
report software vulnerabilities [18]. They are generally comprised 
of the following:

•• Organization: an organization can be a company, university, 
group of people etc., who allow their software to be tested to 
uncover bugs.

•• Tester: a tester, also known as a bug hunter, bug bounty hunter, 
security researcher, or white-hat hacker, searches for bugs found 
in an organization’s software.

•• Platform: platform represents a third-party that hosts organiza-
tions bounty hunting directives and allows people to sign up to 
become testers.

•• Bug: a bug is a security vulnerability or defect in an organization’s 
software.

•• Bug Report: a report written and submitted by a tester describing 
a bug in detail.

•• Rewards: compensation given by the organization to the tester 
for discovering a bug in their software.

There are currently two types of BBPs: internally managed programs 
and third-party managed programs [8]. Figure 1 shows how orga-
nizations and testers interact between the two types of programs.

Figure 1 | Bug Bounty Programs types.
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Internally managed programs are hosted by an organization. 
Technology giants such as Facebook, Google and Microsoft host 
direct programs. Testers submit bug reports directly back to the 
organization.

Third-party managed programs enable organizations and tes-
ters perform actions relative to each entity’s distinct needs [19]. 
Organizations subscribe to platforms and publicly list which of 
their applications they want tested. Platforms normally charge 
organizations a fee for the subscription. Testers sign up with the 
platform and are given the freedom to submit a bug relating to an 
organization of their choice. Unlike internally managed programs, 
bug reports are submitted through the platform and forwarded to 
the corresponding organization.

3.2.  Blockchain

Blockchain is a data structure invented by Nakamoto [20] and 
serves as the public transaction ledger for the Bitcoin cryptocur-
rency. Blockchain functions as an immutable data store and is  
comprised of cryptographically linked groups of transactions 
called blocks. Blocks contain the following information: the pre-
vious block-hash, transactions, transaction timestamps, and the 
current block-hash. The current block-hash is a hash of all the data 
inside the block and serves as the block’s identifier.

Because the previous block-hash partially determines the current 
block-hash, each block is cryptographically connected. The first 
block, known as the Genesis Block, is the only block that does not 
contain a previous block-hash. If any data is changed in a block, its 
block-hash would change; consequently, every subsequent block’s 
hash would also change. This mechanism provides an efficient 
method to detect data mutation and enables the blockchain to be 
tamper resistant.

There are two types of blockchains regarding access control; choos-
ing the correct type for an application’s purpose is important. The 
first is a public blockchain, also known as a permissionless block-
chain. Anyone can join the network and participate within the 
blockchain [21]. Bitcoin and Ethereum are examples of a public 
blockchain.

The second type of blockchain is a permissioned blockchain, also 
referred to as a private blockchain chain. These blockchains work 
based on access controls, which restrict the people who can partic-
ipate in the network [22]. Participants in the network are known, 
although transactions can remain hidden or anonymized from 
other participants depending on the implementation of the block-
chain. Hyperledger Fabric, Corda and Quorum are examples of 
permissioned blockchains [23–25].

Recent research discusses blockchains that have attributes of 
both permissionless and permissioned access known as hybrid 
blockchains [26–28]. We use the definition given in Freuden 
[29] to describe a hybrid blockchain and its architecture.  
A hybrid blockchain consists of a public blockchain and a pri-
vate network. The private network is comprised of participants 
who have been invited by a centralized body and the transac-
tions generated by the network are stored and verified on the 
public blockchain.

3.3.  Ethereum

Ethereum is a public, open source blockchain that natively supports 
SCs. An aim of Ethereum is to provide developers with a tightly 
integrated end-to-end system to build software on a novel system: a 
trustful object messaging computer framework [30]. The combina-
tion of being a public blockchain chain and the ability of each node 
to execute SCs makes Ethereum ideal for building Decentralized 
Applications (DApps).

Smart contracts in Ethereum are defined as applications that run 
exactly as programmed without any possibility of downtime, 
censorship, fraud, or third-party interference [30]. Ethereum 
created its own programming language for developers to write 
smart contracts called Solidity [31]. Once compiled into byte-
code and uploaded to an Ethereum node, each participating node 
then stores, validates, and executes the SC, which creates a true 
decentralized application.

Additionally, SCs require a fee, known as gas, to be deployed, val-
idated, and executed. Gas, which is priced in subunits of ether, 
is consumed in return for computation resources allocated from 
nodes. Gas costs are directly correlated to the complexity of the SC, 
internal SC functions, and the desired execution time. Paying more 
gas will reduce the execution time [32].

3.4.  Web3.js

Interaction with Ethereum and a SC from within a DAapp, such 
as a web application, requires a JavaScript library called Web3.js.  
Web3.js is the Application Programming Interface (API) for the 
Ethereum blockchain [33]. The library allows actions such as cre-
ating new contracts, deploying contracts, and interacting with 
existing contracts. Web3.js provide applications the capability to 
send data to and receive from the Ethereum blockchain. The most 
common received data is transaction IDs to enable event tracking.

3.5.  Interplanetary File System

Interplanetary File System is a protocol that uses a peer-to-peer 
network to create a distributed file system [34]. Machines running 
IPFS, called nodes, hold a portion of the overall data, creating a 
decentralized and resilient network. Similar to BitTorrent, IPFS 
nodes can store, serve, and share files [35]. If a node goes offline 
and was serving a file of interest, the file is still available for access 
as long has one other online node has the file.

Unlike location-based addressing used in traditional file systems, 
IPFS utilizes content-based addressing. When a node initially 
serves a file, the file is partitioned into 256 KB pieces called blocks. 
Files that are smaller than 256 KB are padded with filler bytes. Each 
block is hashed using a variation of the SHA256 hashing algorithm, 
then each pair is re-hashed from a Merkle Tree; the root of the tree 
is the Content Identifier (CID), which is shown in Figure 2. The 
CID additionally ensures security of the file because any changes 
to a file’s content would change the hash of the file. Thus, changes 
are readily apparent due to differing file hashes. Most importantly, 
IPFS utilizes the CID as the file’s address on the network.
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Interplanetary File System aims to solve the centralized model used 
in most services today. When used with blockchain, large amounts 
of data can be addressed and stored in a secure, decentralized and 
persistent fashion.

3.6.  Metamask

Metamask is a browser add-on that acts as a bridge between the 
internet browser, Ethereum, and DApps built on Ethereum [36]. 
In combination with Web3.js, Metamask enables direct Ethereum 
interaction without needing to keep a local copy of the blockchain, 
allowing for faster and lighter development environments. The 
add-on provides wallet management, which makes it possible to 
pay for gas costs when creating and interacting with SCs. These 
features allow people to use Ethereum-based DApps as if they were 
normal web applications.

4.  BOUNTYCHAIN ARCHITECTURE

4.1.  System Components and Workflow

The steps below and Figure 3 provide a high-level workflow of 
how Bountychain works as well as why certain technical decisions 
were made.

1.		  Register to be a Tester and Discover a Bug: A user signs up on 
Bountychain to become a tester. A tester submits a bug report 
through the Bountychain portal once a bug is discovered 
within an organization’s software.

2.		  Instantiate the Smart Contract: After a bug report is submitted 
by the tester, Bountychain writes the data into its local data-
base. The local database allows testers to retrieve and make 
updates to bug reports. Additionally, only testers and organi-
zations can see bug reports. Bountychain then creates a Keccak 
hash of the bug report. The SC factory is called, and the hash is 
stored in the contract along with the tester’s Ethereum address, 
the organization’s Ethereum address, and a proposed reward 
value.

3.		  Organization Views the Bug: After the organization is notified 
of a new bug, they log into Bountychain to review the report. 
Additionally, the organization may view the proposed payout 
value set by the tester.

4.		  Organization Rejects (4a) or Accepts/Modifies (4b) the Bug 
Report: An organization can reject a submission if they deter-
mine the bug and its report invalid. This action immediately 
closes the submission, and the smart contract locks in the 
rejected state. If the organization decides the bug is valid, they 
can then apply a patch and deploy it into production. Once 
deployed, the organization can accept the bug in Bountychain. 
Organizations may also choose to modify the reward value. 
If so, the reward value changes, and the bug is automatically 
accepted. In either case, the smart contract switches to the 
accepted state.

5.		  Accepted and Payout: The bug submission and its report are 
written to IPFS once accepted. The Keccak hash from step 2 is 
used as the IPFS file name; files shared on IPFS are available 
to the public, regardless if they have access to the Bountychain 
platform. In addition, the SC automatically pays out the 
reward to the tester who discovered the bug.

4.2. � Ethereum Smart Contract  
Implementation

Bountychain utilizes the Ethereum blockchain because of its 
prominence and native support of SCs. In the platform’s primary 
SC, there exist two contracts for Bountychain to utilize, the con-
tractFactory and the BugSubmission contract. The contractFactory 
(Algorithm 1) deploys BugSubmission contracts (Algorithm 2).  
A page exists in the front end where testers can fill out a form 

Figure 2 | File partitioned and hashed into a Merkle Tree to form an IPFS file CID.

Figure 3 | Bountychain workflow.
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to submit a bug report. After a tester submits the report, a new 
instance of the BugSubmission contract is created. The following 
values are collected and saved in the contract: the hashed summary 
of the report, the tester’s public Ethereum address, the organiza-
tion’s public Ethereum address, and the expected compensation. 
The values are immutable once saved.

The web interface for the Dapp provides organizations the ability 
to read bug submissions and the ability to accept, modify, or reject 
unresolved contracts. A contract can be modified when the com-
pany perceives the report is valid but the severity and/or frequency 
which it occurs was not accurately assessed by the tester who 
reported it. Thus, the organization can give a reason for modifi-
cation and change the payout value. A modified contract is treated 
the same as an accepted contract.

Denying a bug submission is simplistic because it does not trans-
fer funds. It sets the summary reason to the reason the organi-
zation denied the bug and sets the status to contract denied. 
A contract is no longer active once in the accepted state or the 
denied state, which prevents tampering or nefarious actions by 
malicious actors.

4.3.  Web Front End

Bountychain’s web front end was developed using a popular 
JavaScript library called React. Additionally, the Axios library 
was used for interacting with the API server. The front end was 
deployed on an AWS micro instance running Ubuntu 18.04 LTS.

4.4.  API Server

The prototype was built in Python 3.6. The Tornado Web Server 
[37] and Tornado-JSON package [38] were used to serve RESTful 
APIs and interact with IPFS. A PostgreSQL database was used to 
store structured data. These choices enabled a permissioned system 
that help protect user privacy and provide high throughput. Both 
the API server and PostgreSQL database were deployed in an AWS 
micro instance running Ubuntu 18.04 LTS.

5.  LIMITATIONS AND SOLUTIONS

Although the first working blockchain was created in 2008 by the 
person or group named Nakamoto [20], it has been theorized since 
the early 1990s, it continues to have limitations and drawbacks. 
Blockchain is ideal for creating immutable records, but there is a 
cost to perpetually archiving these records. In most implementa-
tions on a public blockchain, the entire blockchain is stored locally 
on every mining node. The constant growth of a blockchain and 
the requirement to perpetually expend energy to mine to verify 
new transactions limits the potential to store data on the block-
chain. Effectively, it adds a cost burden for every transaction on the 
blockchain.

In this implementation or any such future work, a tester would pref-
erably not have to pay to submit a bug to an organization. Due to 
the fundamental rules of Ethereum as well as our desire to prevent 
this implementation from requiring our involvement, testers must 
pay for a BugSubmission SC to be put on the blockchain. Gas cost to 
deploy the BugSubmission SC was reduced via optimization of the 
SC, but costs could not be fully eliminated. We were also not able 
to shoulder the burden of the gas costs due to the inherent security 
properties of the Ethereum blockchain because only the originator 
of an SC, in this case a tester, can pay for the SC to be deployed [39]. 
While there are workarounds for this, it would mean putting more 
burden and management overhead on the Bountychain solution. 
This would also have the ramification of increasing gas costs due 
to additional computations. At the same time, the DApp operator 
would need additional security overhead as well as turn an other-
wise transparent process opaque. Thus, outside of using a different 
blockchain than Ethereum, the gas cost must be paid by the users of 
the system rather than the system itself, which is why we emphasize 
the gas cost reduction at this stage. While Ethereum is not the only 
blockchain with the advantages of having SC interaction, advan-
tages and disadvantages of using alternate blockchains is reserved 
for a future work.

Another limitation of the Ethereum blockchain is that it is not 
directly human-readable. One must be able to work with bytecode 
[30]. It is a different experience to try to interpret and interact with 
an address on the Ethereum chain relative to the ease of invoking 

Algorithm 2 | BugSubmission contract.

Algorithm 1 | contractFactory.
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a web URL and interacting with a website. The storage mechanism 
was not designed for readability, so the Ethereum bytecode must be 
somehow translated to human-readable text to see what is stored 
in any given transaction. A layer must be added between the con-
sumer, e.g. tester or organization, and the blockchain to facilitate it. 
Web3.js library and the Metamask browser add-on were utilized in 
our implementation. These two technologies enable simple, highly 
readable interaction with the Ethereum blockchain, but there are 
inherent security risks with using additional technologies. That 
subject is also saved for a future work.

The property of the Ethereum blockchain that is the most limiting 
as well as the most useful is immutability. For example, all infor-
mation about reported bugs would be stored on the blockchain in 
perpetuity, even if the Bountychain system was terminated. The pri-
mary issue is the cost of this storage, even though it is this inherent 
property that makes using blockchain so compelling. Additionally, 
even though the records are not directly human-readable, the fact 
that the records are transparent to the public and can be interpreted 
with software assistance is beneficial. By only storing the hash of 
the bug on the chain, we were able to take full advantage of these 
properties while mitigating the cost factor. Conversely, this means 
we cannot rely solely on blockchain. While it would be ideal to have 
a system that could exist entirely on the chain, the factors of cost, 
security, and privacy makes such a solution impractical.

6.  DISCUSSION

6.1.  Gas Cost Limitations

The primary limitation of Ethereum is gas cost. Interacting with 
SCs requires paying gas fees and contracts with greater complexity 
use more gas. Table 1 shows the cost to deploy an SC with spe-
cific variables. To collect the gas costs, we deployed a SC that only 
contained the variable as specified in each row along with a single 
setter function. We recorded the gas cost to deploy the SC with 
that single variable, and the gas cost to call the setter function 
to set the variable. While optimized and non-optimized contracts 
produce the same results, non-optimized contracts are more 
costly. Non-optimized SCs are a primary source of unnecessary 
gas costs [40].

Storing a bug submission hash is a useful demonstration of SC 
optimization. We opted to store the hash as two byte32 variables 
rather than a string of 80 characters; this saved approximately 
21,164 gas units, a 19.6% reduction. Setting a variable as type 
uint costs approximately twice that of setting an enum variable. 
Interestingly, smaller data types are not necessarily cheaper in gas. 

Continuing with the previous example, if the bug submission hash 
is stored as eight byte8 variables, equivalent in storage space to 
the two byte32 variables, the gas cost would have been 339,232, a 
1503% increase.

An optimized SC saved significant gas both to deploy and update 
itself. Using Table 1, we optimized our SC to be as efficient as 
possible, especially with regard to utilizing enums and minimiz-
ing functions. Double-spending on deploying SCs and initial-
izing data were avoided by having a contract factory. The cost of 
deploying the contractFactory, paid by Bountychain, was reduced 
by 6.87% through contract optimization. Deploying individual 
BugSubmission contracts, paid by testers, was reduced by 5.94% 
(Figure 4). This is significant for development because of the goal 
to maintain a hands-off approach. The contractFactory is only 
deployed once and costs a small amount of gas to create a template 
that generates as many bug submissions as needed. The gas reduc-
tion to deploy BugSubmission contracts is also important. Over 
time, the optimized contract saves testers a significant amount of 
gas costs.

6.2.  Storage Limitations

Managing the cost of storage is a key component in our implemen-
tation. In Table 1, string has a high deployment cost, and the gas 
to set increases as length of the string increases. Storing a short 
bug report summary on the Ethereum blockchain costs 1,443,697 
in gas. Today, one gas is about 42 gwei and at $3.4E-7/gwei; the cost 
to store such report is estimated at $20.1 This cost is large compared 
to traditional server storage, where one can buy several gigabytes of 
storage for the same price. Additionally, there is also no bytecode-to- 
human-readable translation required in traditional datastores, 
which is another advantage such datastores have over storing data 
in a SC. High storage costs and the need for bytecode translation 
make medium-to-large file storage in the Ethereum impractical.

For that reason, IPFS was chosen to work in conjunction with the 
Ethereum SCs. IPFS allows us to host plain-text bug summaries for 
a fraction of the cost of storing it in the chain itself, and this cost is 
not required to be incurred by the platform, tester, nor organiza-
tion. IPFS helps solve most public blockchains’ storage issues.

1https://www.cryps.info/en/Gwei_to_USD.

Table 1 | Gas cost comparisons

Data type Gas to deploy Gas to set

string (2000 chars) 268,328 1,443,697
string (280 chars) 268,328 242,592
string (180 chars) 268,328 175,516
string (100 chars) 268,328 129,988
string (80 chars) 268,328 108,510
byte32 113,355 43,673
byte8 157,381 42,404
uint 113,355 42,009
enum 95,919 26,686

Figure 4 | Contract and contractFactory deploy gas costs.
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6.3.  Incentives in a Token Economy

The Token Economy is a cryptocurrency-based system of incentives 
that builds and supports beneficial conduct from actors in a block-
chain ecosystem [22]. In such a system, all parties are incentivized 
to perform and promote ethical behavior to produce and maintain 
mutually beneficial outcomes, which why we chose Ethereum for 
this project. Because Ethereum is widely supported, the chances of 
a sudden loss of the entire ecosystem is unlikely, whereas a newly 
created blockchain built specifically for this project would have a 
lesser chance of surviving. Hence, building upon Ethereum pro-
vides more trust and reliability than a newly developed system.

While the incentives for individuals have been discussed, testers 
can also be paid automatically, quickly, and reliably. Blockchain 
systems like Ethereum are also excellent options for the unbanked. 
People are shielded from wire transfer and international currency 
conversion fees. Finally, APIs could allow third parties to publish 
accepted bugs to the Bountychain system. The intent would be to 
provide a single aggregated, cross-platform system for testers to 
receive recognition, rather than functioning as a payment process-
ing system. Furthermore, the reports could be stored on IPFS to 
ensure availability in an immutable and reliable manner.

There are multiple potential incentives for organizations to par-
ticipate. As mentioned earlier, organizations can use bug reports 
as evidence in an investigation. Financially, Bountychain provides 
several cost-saving incentives. Most organizations pay for third-
party organizations to manage their BBP. Bountychain reduces that 
financial burden. In addition, organizations that perform internal 
bounty management programs will have a lower cost of manage-
ment overhead both in reducing platform management and in 
financial management for processing payments.

There are several incentives for organizations to act fairly. The 
purpose of organizations joining BBPs is to incentivize testers to 
help ethically discover vulnerabilities. Testers help to find bugs that 
could otherwise be exploited; hence, organizations have a strong 
reason to keep such skilled people happy and acting ethically. An 
organization that does not follow through with paying the reward 
is unlikely to engender good will with testers. Testers who are not 
treated fairly may seek alternate markets for any bugs they find, 
which, as noted earlier, could lead to bugs being sold on the black 
market. Additionally, organizations want to attract the best tes-
ters they can to find security flaws. Recording an organization’s 
blockchain address and reward amount in each report allows the 
public to see how often and how much each organization pays out. 
The organizations that pay testers most frequently and lucratively 
will gain more testing support, and those organizations that try to 
cheat or regularly depreciate its tester’s report values will likely lose  
support and credibility.

7.  CONCLUSION

In this paper we propose Bountychain, a decentralized BBP built 
on the Ethereum blockchain and IPFS. We discuss Bountychain’s 
implementation and addressed the motivation for choosing 
Ethereum and IPFS. Ethereum SCs allows organizations and testers 
to make automated agreements, while IPFS stores data in a distrib-
uted and highly available manner. Additionally, we highlight how 
Bountychain solves two issues faced by current BBPs: inadequate 

security vulnerability reporting by organizations and insufficient 
compensation and recognition given to testers. Transparency is 
inherent to the public Ethereum blockchain, and once a defect is 
submitted to the system, Ethereum SCs ensure tester recognition 
and rewards.

High gas costs and low storage on the Ethereum blockchain was 
an initial issue for Bountychain. Efficient programming and pru-
dent data types resolves high gas costs. Moreover, IPFS allowes for 
mass storage which is not offered by Ethereum. Overall, our model 
solves the current underlying issues of traditional BBPs. However, 
additional research on blockchain and IPFS is needed to ensure 
Bountychain is capable of becoming a model that modern BBPs 
can follow.

7.1.  Future Works

For comparison, we could implement the same system on Hyper 
Ledger Fabric instead of Ethereum blockchain. There are pos-
itives and negatives to using Hyper Ledger Fabric. As a posi-
tive, Hyper Ledger Fabric can perform more transactions per 
second. It can perform than 3500 transactions per second, while 
Ethereum can only perform nine transaction per second. As a 
negative, Hyper Ledger is private. While it might be for conve-
nient for an organization to make all bug bounties private, this 
goes against the philosophy of the BBPs in general. Additionally, 
Ethereum can be made public or private. Hyper Ledger does 
not have a cryptocurrency system. Therefore, if we build same 
system with Hyper Ledger, we need to find the way to pay tes-
ters. Such an implementation would be for comparative results 
rather than demonstrating Hyper Ledger Fabric to be a better 
solution. 
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