
Research Article

Bountychain: Toward Decentralizing a Bug Bounty
Program with Blockchain and IPFS

Alex Hoffman*, Phillipe Austria, Chol Hyun Park, Yoohwan Kim

Howared Hughes School of Engineering, Department of Computer Science, University of Nevada, 4505 S. Maryland Parkway,
Las Vegas, NV 89154, USA

1.  INTRODUCTION

This paper is an extension of work originally presented at the
10th Annual Computing and Communication Workshop and
Conference [1].

The first Bug Bounty Program (BBP) was launched in 1995 by
Netscape [2]. The company created the program to discover
pre-release software defects in Netscape Navigator, which gave
rise to a new paradigm of security research. Other companies
and organizations were slow to adopt a similar program at first;
however, adoption began to increase in 2002. Organizations either
formed their own BBP or joined existing programs from third-
party providers. Today, BBPs provide a platform for people of all
skill-levels to ethically find, report, and get paid for discovering
security vulnerabilities.

Typically, organizations must create a BBP before individuals can
search for vulnerabilities without legal repercussions. Doing so
beforehand is potentially a violation of the organization’s license
agreement [3]. Those who participate in the program are known
as bug hunters, bug bounty hunters, security researchers, white-hat
hackers, or, for the purposes of this paper, testers. For a tester to be
considered ethical or litigation-safe, they should only search for vul-
nerabilities from companies that have agreed to host such a program.

Once such a program is established, a tester can begin searching
for bugs within the bounds of the given BBP. When a bug is discov-
ered, the tester creates a report and submits it through the system

as described in the program. The report is evaluated, and the com-
pany decides if the submission is acceptable. If so, the tester is typ-
ically rewarded for their efforts.

There are two issues that bug bounty programs currently have.
First, organizations are not held accountable for poor reporting
of security issues. For example, Uber, the ride sharing service, was
breached in 2016, exposing the credentials of over 57 million users
[4]. However, the company did not disclose the breach until a year
after the incident. Breaches involving users’ privacy or personally
identifying information must not be withheld and must remain
transparent according to security breach notification law [5].

Second, testers are susceptible to nonrecognition. A successful BBP
relies on good faith and incentivization. Testers hope to receive
a recognition along with a reward for finding a vulnerability. In
return, an organization is made aware of a security flaw that might
cost much more than the bounty payout [6].

An implementation of a BBP on a public blockchain with a success-
ful token economy can guarantee a timely payout while maintain-
ing transparent and persistent records of bug submissions. Thus,
it would hold organizations accountable for security breaches and
ensure recognition of testers. Additionally, blockchain transactions
can prove that security issues were addressed and when they were
addressed to help mitigate against any potential investigations or
litigation from regulating authorities.

For those reasons we propose Bountychain, a security bounty
management program that utilizes Smart Contracts (SCs) on the
Ethereum blockchain and a decentralized storage system called
the Interplanetary File System (IPFS). Bountychain aims to be an
automated, third-party managed platform that provides testers the

A RT I C L E I N F O
Article History

Received 22 February 2021
Accepted 25 May 2021

Keywords

Bug bounty
blockchain
IPFS
decentralized apps
DApps

A B S T R AC T
Bug Bounty Programs (BBPs) play an important role in providing and maintaining security in software applications. These
programs allow testers to discover and resolve bugs before the general public is aware of them, preventing incidents of widespread
abuse. However, they have shown problems such as organizations providing accountability of reporting bugs and nonrecognition
of testers. In this paper, we discuss Bountychain, a decentralized application using Ethereum-based Smart Contracts (SCs) and
the Interplanetary File System (IPFS), a distributed file storage system. Blockchain and SCs provide a safe, secure and transparent
platform for a BBP. Testers can submit bug reports and organizations can accept or reject the defect via the SCs. Transactions on
the blockchain serve as a persistent and transparent record of software bugs, while IPFS serves as a long-term storage system for
bug details. Thus, Bountychain ensures organization accountability and allows testers to gain irrefutable recognition.

© 2021 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: alex.hoffman@unlv.edu
Data availability statement: The data that support the findings of this study are available
from the corresponding author, [AH] upon reasonable request

International Journal of Networked and Distributed Computing
Vol. 9(2-3); April–July (2021), pp. 86–93

DOI: https://doi.org/10.2991/ijndc.k.210527.001; ISSN 2211-7938; eISSN 2211-7946
https://www.atlantis-press.com/journals/ijndc

http://creativecommons.org/licenses/by-nc/4.0/
mailto:alex.hoffman%40unlv.edu?subject=
https://doi.org/10.2991/ijndc.k.210527.001
https://www.atlantis-press.com/journals/ijndc

	 A. Hoffman et al. / International Journal of Networked and Distributed Computing 9(2-3) 86–93	 87

ability to easily report security vulnerabilities and gives companies
an easy, guaranteed mechanism to send payouts to testers.

In our implementation, the tester chooses the reward value derived
from a matrix based on the bug’s severity, impact to users and like-
lihood of occurring [6]. Once the bug report is addressed, the com-
pany can accept the report as valid, reject the report as invalid or
duplicate, or edit the reward value. If the report is accepted, the
smart contract will automatically and immediately distribute pay-
ment to the tester. Lastly, any report accepted by the organization is
saved on IPFS for immutable storage.

The remainder of this paper is structured as follows. Section 2
presents related studies using blockchain for BBPs. Section 3 dis-
cusses background about BBPs, Ethereum, IPFS, and other web
technologies used to build Bountychain. In Section 4, we provide
a comprehensive overview of Bountychain’s architecture, accom-
panying SCs, and web framework. Section 5 presents some lim-
itations while Section 6 discusses some mitigations. We conclude
with Section 7.

2.  RELATED WORKS

Using blockchain for BBP is a new topic, and relatively few studies
have been published so far. Canidio et al. [7] proposed VeriOSS, a
blockchain-based platform for bug bounties. The authors address a
particular challenge in BBPs, which is that organizations lack com-
mitment with respect to the eligibility of the bugs. This leads testers
to look for other opportunities in other markets, such as gray and
black markets [8]. The goal of VeriOSS is to increase the reward for
testers to foster more bug hunting and consequently, decrease the
appeal of grey and black markets.

Another study proposed the Hydra Framework, a general, princi-
pled approach to modeling and administering bug bounties that
incentivizes bug disclosure [9]. The core idea behind the frame-
work is an exploit gap, a program transformation that enables
runtime detection and rewarding of critical bugs. The goals of
Hydra Framework are to solve issues in BBP such as pricing
bounties, due to lack of research giving principled guidance and
market inefficiency, caused by the uncertainty of a bug reward
being awarded.

Wang et al. [10] proposed a new consensus protocol for a block-
chain platform in medical records that considered the capability
and credibility of software testers called Proof of Skill. The authors
set out to create a new protocol in response to weaknesses in BBPs
such as transparency and risk of rewards not being paid out by
organizations.

Sentinel protocol is a blockchain-based BBP that helps facilitate
decentralized detection and reporting of threat defects [11]. While
the operation is like that of other third-party BBPs, this program
focuses on the cryptocurrency security market. Sentinel Protocol
does not provide their BBP as a service to non-cryptocurrency-
based companies.

As far non-blockchain related BBP, several major software compa-
nies host their own program. Google, Facebook, and Microsoft run
private BBPs [12–14]. Alternatively, companies such as Netflix use
trusted third parties to issue bugs. The most notable third-party
platforms are HackerOne, Bugcrowd and Cobalt [15–17].

3.  BACKGROUND

In this section, we discuss how BBPs operate and the technolo-
gies used to develop Bountychain, such as blockchain and IPFS.
We specifically used the Ethereum blockchain due to its ability to
support SCs.

3.1.  Bug Bounty Programs

Bug Bounty Programs leverage crowd sourcing to discover and
report software vulnerabilities [18]. They are generally comprised
of the following:

•• Organization: an organization can be a company, university,
group of people etc., who allow their software to be tested to
uncover bugs.

•• Tester: a tester, also known as a bug hunter, bug bounty hunter,
security researcher, or white-hat hacker, searches for bugs found
in an organization’s software.

•• Platform: platform represents a third-party that hosts organiza-
tions bounty hunting directives and allows people to sign up to
become testers.

•• Bug: a bug is a security vulnerability or defect in an organization’s
software.

•• Bug Report: a report written and submitted by a tester describing
a bug in detail.

•• Rewards: compensation given by the organization to the tester
for discovering a bug in their software.

There are currently two types of BBPs: internally managed programs
and third-party managed programs [8]. Figure 1 shows how orga-
nizations and testers interact between the two types of programs.

Figure 1 | Bug Bounty Programs types.

88	 A. Hoffman et al. / International Journal of Networked and Distributed Computing 9(2-3) 86–93

Internally managed programs are hosted by an organization.
Technology giants such as Facebook, Google and Microsoft host
direct programs. Testers submit bug reports directly back to the
organization.

Third-party managed programs enable organizations and tes-
ters perform actions relative to each entity’s distinct needs [19].
Organizations subscribe to platforms and publicly list which of
their applications they want tested. Platforms normally charge
organizations a fee for the subscription. Testers sign up with the
platform and are given the freedom to submit a bug relating to an
organization of their choice. Unlike internally managed programs,
bug reports are submitted through the platform and forwarded to
the corresponding organization.

3.2.  Blockchain

Blockchain is a data structure invented by Nakamoto [20] and
serves as the public transaction ledger for the Bitcoin cryptocur-
rency. Blockchain functions as an immutable data store and is
comprised of cryptographically linked groups of transactions
called blocks. Blocks contain the following information: the pre-
vious block-hash, transactions, transaction timestamps, and the
current block-hash. The current block-hash is a hash of all the data
inside the block and serves as the block’s identifier.

Because the previous block-hash partially determines the current
block-hash, each block is cryptographically connected. The first
block, known as the Genesis Block, is the only block that does not
contain a previous block-hash. If any data is changed in a block, its
block-hash would change; consequently, every subsequent block’s
hash would also change. This mechanism provides an efficient
method to detect data mutation and enables the blockchain to be
tamper resistant.

There are two types of blockchains regarding access control; choos-
ing the correct type for an application’s purpose is important. The
first is a public blockchain, also known as a permissionless block-
chain. Anyone can join the network and participate within the
blockchain [21]. Bitcoin and Ethereum are examples of a public
blockchain.

The second type of blockchain is a permissioned blockchain, also
referred to as a private blockchain chain. These blockchains work
based on access controls, which restrict the people who can partic-
ipate in the network [22]. Participants in the network are known,
although transactions can remain hidden or anonymized from
other participants depending on the implementation of the block-
chain. Hyperledger Fabric, Corda and Quorum are examples of
permissioned blockchains [23–25].

Recent research discusses blockchains that have attributes of
both permissionless and permissioned access known as hybrid
blockchains [26–28]. We use the definition given in Freuden
[29] to describe a hybrid blockchain and its architecture.
A hybrid blockchain consists of a public blockchain and a pri-
vate network. The private network is comprised of participants
who have been invited by a centralized body and the transac-
tions generated by the network are stored and verified on the
public blockchain.

3.3.  Ethereum

Ethereum is a public, open source blockchain that natively supports
SCs. An aim of Ethereum is to provide developers with a tightly
integrated end-to-end system to build software on a novel system: a
trustful object messaging computer framework [30]. The combina-
tion of being a public blockchain chain and the ability of each node
to execute SCs makes Ethereum ideal for building Decentralized
Applications (DApps).

Smart contracts in Ethereum are defined as applications that run
exactly as programmed without any possibility of downtime,
censorship, fraud, or third-party interference [30]. Ethereum
created its own programming language for developers to write
smart contracts called Solidity [31]. Once compiled into byte-
code and uploaded to an Ethereum node, each participating node
then stores, validates, and executes the SC, which creates a true
decentralized application.

Additionally, SCs require a fee, known as gas, to be deployed, val-
idated, and executed. Gas, which is priced in subunits of ether,
is consumed in return for computation resources allocated from
nodes. Gas costs are directly correlated to the complexity of the SC,
internal SC functions, and the desired execution time. Paying more
gas will reduce the execution time [32].

3.4.  Web3.js

Interaction with Ethereum and a SC from within a DAapp, such
as a web application, requires a JavaScript library called Web3.js.
Web3.js is the Application Programming Interface (API) for the
Ethereum blockchain [33]. The library allows actions such as cre-
ating new contracts, deploying contracts, and interacting with
existing contracts. Web3.js provide applications the capability to
send data to and receive from the Ethereum blockchain. The most
common received data is transaction IDs to enable event tracking.

3.5.  Interplanetary File System

Interplanetary File System is a protocol that uses a peer-to-peer
network to create a distributed file system [34]. Machines running
IPFS, called nodes, hold a portion of the overall data, creating a
decentralized and resilient network. Similar to BitTorrent, IPFS
nodes can store, serve, and share files [35]. If a node goes offline
and was serving a file of interest, the file is still available for access
as long has one other online node has the file.

Unlike location-based addressing used in traditional file systems,
IPFS utilizes content-based addressing. When a node initially
serves a file, the file is partitioned into 256 KB pieces called blocks.
Files that are smaller than 256 KB are padded with filler bytes. Each
block is hashed using a variation of the SHA256 hashing algorithm,
then each pair is re-hashed from a Merkle Tree; the root of the tree
is the Content Identifier (CID), which is shown in Figure 2. The
CID additionally ensures security of the file because any changes
to a file’s content would change the hash of the file. Thus, changes
are readily apparent due to differing file hashes. Most importantly,
IPFS utilizes the CID as the file’s address on the network.

	 A. Hoffman et al. / International Journal of Networked and Distributed Computing 9(2-3) 86–93	 89

Interplanetary File System aims to solve the centralized model used
in most services today. When used with blockchain, large amounts
of data can be addressed and stored in a secure, decentralized and
persistent fashion.

3.6.  Metamask

Metamask is a browser add-on that acts as a bridge between the
internet browser, Ethereum, and DApps built on Ethereum [36].
In combination with Web3.js, Metamask enables direct Ethereum
interaction without needing to keep a local copy of the blockchain,
allowing for faster and lighter development environments. The
add-on provides wallet management, which makes it possible to
pay for gas costs when creating and interacting with SCs. These
features allow people to use Ethereum-based DApps as if they were
normal web applications.

4.  BOUNTYCHAIN ARCHITECTURE

4.1.  System Components and Workflow

The steps below and Figure 3 provide a high-level workflow of
how Bountychain works as well as why certain technical decisions
were made.

1.		 Register to be a Tester and Discover a Bug: A user signs up on
Bountychain to become a tester. A tester submits a bug report
through the Bountychain portal once a bug is discovered
within an organization’s software.

2.		 Instantiate the Smart Contract: After a bug report is submitted
by the tester, Bountychain writes the data into its local data-
base. The local database allows testers to retrieve and make
updates to bug reports. Additionally, only testers and organi-
zations can see bug reports. Bountychain then creates a Keccak
hash of the bug report. The SC factory is called, and the hash is
stored in the contract along with the tester’s Ethereum address,
the organization’s Ethereum address, and a proposed reward
value.

3.		 Organization Views the Bug: After the organization is notified
of a new bug, they log into Bountychain to review the report.
Additionally, the organization may view the proposed payout
value set by the tester.

4.		 Organization Rejects (4a) or Accepts/Modifies (4b) the Bug
Report: An organization can reject a submission if they deter-
mine the bug and its report invalid. This action immediately
closes the submission, and the smart contract locks in the
rejected state. If the organization decides the bug is valid, they
can then apply a patch and deploy it into production. Once
deployed, the organization can accept the bug in Bountychain.
Organizations may also choose to modify the reward value.
If so, the reward value changes, and the bug is automatically
accepted. In either case, the smart contract switches to the
accepted state.

5.		 Accepted and Payout: The bug submission and its report are
written to IPFS once accepted. The Keccak hash from step 2 is
used as the IPFS file name; files shared on IPFS are available
to the public, regardless if they have access to the Bountychain
platform. In addition, the SC automatically pays out the
reward to the tester who discovered the bug.

4.2. � Ethereum Smart Contract
Implementation

Bountychain utilizes the Ethereum blockchain because of its
prominence and native support of SCs. In the platform’s primary
SC, there exist two contracts for Bountychain to utilize, the con-
tractFactory and the BugSubmission contract. The contractFactory
(Algorithm 1) deploys BugSubmission contracts (Algorithm 2).
A page exists in the front end where testers can fill out a form

Figure 2 | File partitioned and hashed into a Merkle Tree to form an IPFS file CID.

Figure 3 | Bountychain workflow.

90	 A. Hoffman et al. / International Journal of Networked and Distributed Computing 9(2-3) 86–93

to submit a bug report. After a tester submits the report, a new
instance of the BugSubmission contract is created. The following
values are collected and saved in the contract: the hashed summary
of the report, the tester’s public Ethereum address, the organiza-
tion’s public Ethereum address, and the expected compensation.
The values are immutable once saved.

The web interface for the Dapp provides organizations the ability
to read bug submissions and the ability to accept, modify, or reject
unresolved contracts. A contract can be modified when the com-
pany perceives the report is valid but the severity and/or frequency
which it occurs was not accurately assessed by the tester who
reported it. Thus, the organization can give a reason for modifi-
cation and change the payout value. A modified contract is treated
the same as an accepted contract.

Denying a bug submission is simplistic because it does not trans-
fer funds. It sets the summary reason to the reason the organi-
zation denied the bug and sets the status to contract denied.
A contract is no longer active once in the accepted state or the
denied state, which prevents tampering or nefarious actions by
malicious actors.

4.3.  Web Front End

Bountychain’s web front end was developed using a popular
JavaScript library called React. Additionally, the Axios library
was used for interacting with the API server. The front end was
deployed on an AWS micro instance running Ubuntu 18.04 LTS.

4.4.  API Server

The prototype was built in Python 3.6. The Tornado Web Server
[37] and Tornado-JSON package [38] were used to serve RESTful
APIs and interact with IPFS. A PostgreSQL database was used to
store structured data. These choices enabled a permissioned system
that help protect user privacy and provide high throughput. Both
the API server and PostgreSQL database were deployed in an AWS
micro instance running Ubuntu 18.04 LTS.

5.  LIMITATIONS AND SOLUTIONS

Although the first working blockchain was created in 2008 by the
person or group named Nakamoto [20], it has been theorized since
the early 1990s, it continues to have limitations and drawbacks.
Blockchain is ideal for creating immutable records, but there is a
cost to perpetually archiving these records. In most implementa-
tions on a public blockchain, the entire blockchain is stored locally
on every mining node. The constant growth of a blockchain and
the requirement to perpetually expend energy to mine to verify
new transactions limits the potential to store data on the block-
chain. Effectively, it adds a cost burden for every transaction on the
blockchain.

In this implementation or any such future work, a tester would pref-
erably not have to pay to submit a bug to an organization. Due to
the fundamental rules of Ethereum as well as our desire to prevent
this implementation from requiring our involvement, testers must
pay for a BugSubmission SC to be put on the blockchain. Gas cost to
deploy the BugSubmission SC was reduced via optimization of the
SC, but costs could not be fully eliminated. We were also not able
to shoulder the burden of the gas costs due to the inherent security
properties of the Ethereum blockchain because only the originator
of an SC, in this case a tester, can pay for the SC to be deployed [39].
While there are workarounds for this, it would mean putting more
burden and management overhead on the Bountychain solution.
This would also have the ramification of increasing gas costs due
to additional computations. At the same time, the DApp operator
would need additional security overhead as well as turn an other-
wise transparent process opaque. Thus, outside of using a different
blockchain than Ethereum, the gas cost must be paid by the users of
the system rather than the system itself, which is why we emphasize
the gas cost reduction at this stage. While Ethereum is not the only
blockchain with the advantages of having SC interaction, advan-
tages and disadvantages of using alternate blockchains is reserved
for a future work.

Another limitation of the Ethereum blockchain is that it is not
directly human-readable. One must be able to work with bytecode
[30]. It is a different experience to try to interpret and interact with
an address on the Ethereum chain relative to the ease of invoking

Algorithm 2 | BugSubmission contract.

Algorithm 1 | contractFactory.

	 A. Hoffman et al. / International Journal of Networked and Distributed Computing 9(2-3) 86–93	 91

a web URL and interacting with a website. The storage mechanism
was not designed for readability, so the Ethereum bytecode must be
somehow translated to human-readable text to see what is stored
in any given transaction. A layer must be added between the con-
sumer, e.g. tester or organization, and the blockchain to facilitate it.
Web3.js library and the Metamask browser add-on were utilized in
our implementation. These two technologies enable simple, highly
readable interaction with the Ethereum blockchain, but there are
inherent security risks with using additional technologies. That
subject is also saved for a future work.

The property of the Ethereum blockchain that is the most limiting
as well as the most useful is immutability. For example, all infor-
mation about reported bugs would be stored on the blockchain in
perpetuity, even if the Bountychain system was terminated. The pri-
mary issue is the cost of this storage, even though it is this inherent
property that makes using blockchain so compelling. Additionally,
even though the records are not directly human-readable, the fact
that the records are transparent to the public and can be interpreted
with software assistance is beneficial. By only storing the hash of
the bug on the chain, we were able to take full advantage of these
properties while mitigating the cost factor. Conversely, this means
we cannot rely solely on blockchain. While it would be ideal to have
a system that could exist entirely on the chain, the factors of cost,
security, and privacy makes such a solution impractical.

6.  DISCUSSION

6.1.  Gas Cost Limitations

The primary limitation of Ethereum is gas cost. Interacting with
SCs requires paying gas fees and contracts with greater complexity
use more gas. Table 1 shows the cost to deploy an SC with spe-
cific variables. To collect the gas costs, we deployed a SC that only
contained the variable as specified in each row along with a single
setter function. We recorded the gas cost to deploy the SC with
that single variable, and the gas cost to call the setter function
to set the variable. While optimized and non-optimized contracts
produce the same results, non-optimized contracts are more
costly. Non-optimized SCs are a primary source of unnecessary
gas costs [40].

Storing a bug submission hash is a useful demonstration of SC
optimization. We opted to store the hash as two byte32 variables
rather than a string of 80 characters; this saved approximately
21,164 gas units, a 19.6% reduction. Setting a variable as type
uint costs approximately twice that of setting an enum variable.
Interestingly, smaller data types are not necessarily cheaper in gas.

Continuing with the previous example, if the bug submission hash
is stored as eight byte8 variables, equivalent in storage space to
the two byte32 variables, the gas cost would have been 339,232, a
1503% increase.

An optimized SC saved significant gas both to deploy and update
itself. Using Table 1, we optimized our SC to be as efficient as
possible, especially with regard to utilizing enums and minimiz-
ing functions. Double-spending on deploying SCs and initial-
izing data were avoided by having a contract factory. The cost of
deploying the contractFactory, paid by Bountychain, was reduced
by 6.87% through contract optimization. Deploying individual
BugSubmission contracts, paid by testers, was reduced by 5.94%
(Figure 4). This is significant for development because of the goal
to maintain a hands-off approach. The contractFactory is only
deployed once and costs a small amount of gas to create a template
that generates as many bug submissions as needed. The gas reduc-
tion to deploy BugSubmission contracts is also important. Over
time, the optimized contract saves testers a significant amount of
gas costs.

6.2.  Storage Limitations

Managing the cost of storage is a key component in our implemen-
tation. In Table 1, string has a high deployment cost, and the gas
to set increases as length of the string increases. Storing a short
bug report summary on the Ethereum blockchain costs 1,443,697
in gas. Today, one gas is about 42 gwei and at $3.4E-7/gwei; the cost
to store such report is estimated at $20.1 This cost is large compared
to traditional server storage, where one can buy several gigabytes of
storage for the same price. Additionally, there is also no bytecode-to-
human-readable translation required in traditional datastores,
which is another advantage such datastores have over storing data
in a SC. High storage costs and the need for bytecode translation
make medium-to-large file storage in the Ethereum impractical.

For that reason, IPFS was chosen to work in conjunction with the
Ethereum SCs. IPFS allows us to host plain-text bug summaries for
a fraction of the cost of storing it in the chain itself, and this cost is
not required to be incurred by the platform, tester, nor organiza-
tion. IPFS helps solve most public blockchains’ storage issues.

1https://www.cryps.info/en/Gwei_to_USD.

Table 1 | Gas cost comparisons

Data type Gas to deploy Gas to set

string (2000 chars) 268,328 1,443,697
string (280 chars) 268,328 242,592
string (180 chars) 268,328 175,516
string (100 chars) 268,328 129,988
string (80 chars) 268,328 108,510
byte32 113,355 43,673
byte8 157,381 42,404
uint 113,355 42,009
enum 95,919 26,686

Figure 4 | Contract and contractFactory deploy gas costs.

92	 A. Hoffman et al. / International Journal of Networked and Distributed Computing 9(2-3) 86–93

6.3.  Incentives in a Token Economy

The Token Economy is a cryptocurrency-based system of incentives
that builds and supports beneficial conduct from actors in a block-
chain ecosystem [22]. In such a system, all parties are incentivized
to perform and promote ethical behavior to produce and maintain
mutually beneficial outcomes, which why we chose Ethereum for
this project. Because Ethereum is widely supported, the chances of
a sudden loss of the entire ecosystem is unlikely, whereas a newly
created blockchain built specifically for this project would have a
lesser chance of surviving. Hence, building upon Ethereum pro-
vides more trust and reliability than a newly developed system.

While the incentives for individuals have been discussed, testers
can also be paid automatically, quickly, and reliably. Blockchain
systems like Ethereum are also excellent options for the unbanked.
People are shielded from wire transfer and international currency
conversion fees. Finally, APIs could allow third parties to publish
accepted bugs to the Bountychain system. The intent would be to
provide a single aggregated, cross-platform system for testers to
receive recognition, rather than functioning as a payment process-
ing system. Furthermore, the reports could be stored on IPFS to
ensure availability in an immutable and reliable manner.

There are multiple potential incentives for organizations to par-
ticipate. As mentioned earlier, organizations can use bug reports
as evidence in an investigation. Financially, Bountychain provides
several cost-saving incentives. Most organizations pay for third-
party organizations to manage their BBP. Bountychain reduces that
financial burden. In addition, organizations that perform internal
bounty management programs will have a lower cost of manage-
ment overhead both in reducing platform management and in
financial management for processing payments.

There are several incentives for organizations to act fairly. The
purpose of organizations joining BBPs is to incentivize testers to
help ethically discover vulnerabilities. Testers help to find bugs that
could otherwise be exploited; hence, organizations have a strong
reason to keep such skilled people happy and acting ethically. An
organization that does not follow through with paying the reward
is unlikely to engender good will with testers. Testers who are not
treated fairly may seek alternate markets for any bugs they find,
which, as noted earlier, could lead to bugs being sold on the black
market. Additionally, organizations want to attract the best tes-
ters they can to find security flaws. Recording an organization’s
blockchain address and reward amount in each report allows the
public to see how often and how much each organization pays out.
The organizations that pay testers most frequently and lucratively
will gain more testing support, and those organizations that try to
cheat or regularly depreciate its tester’s report values will likely lose
support and credibility.

7.  CONCLUSION

In this paper we propose Bountychain, a decentralized BBP built
on the Ethereum blockchain and IPFS. We discuss Bountychain’s
implementation and addressed the motivation for choosing
Ethereum and IPFS. Ethereum SCs allows organizations and testers
to make automated agreements, while IPFS stores data in a distrib-
uted and highly available manner. Additionally, we highlight how
Bountychain solves two issues faced by current BBPs: inadequate

security vulnerability reporting by organizations and insufficient
compensation and recognition given to testers. Transparency is
inherent to the public Ethereum blockchain, and once a defect is
submitted to the system, Ethereum SCs ensure tester recognition
and rewards.

High gas costs and low storage on the Ethereum blockchain was
an initial issue for Bountychain. Efficient programming and pru-
dent data types resolves high gas costs. Moreover, IPFS allowes for
mass storage which is not offered by Ethereum. Overall, our model
solves the current underlying issues of traditional BBPs. However,
additional research on blockchain and IPFS is needed to ensure
Bountychain is capable of becoming a model that modern BBPs
can follow.

7.1.  Future Works

For comparison, we could implement the same system on Hyper
Ledger Fabric instead of Ethereum blockchain. There are pos-
itives and negatives to using Hyper Ledger Fabric. As a posi-
tive, Hyper Ledger Fabric can perform more transactions per
second. It can perform than 3500 transactions per second, while
Ethereum can only perform nine transaction per second. As a
negative, Hyper Ledger is private. While it might be for conve-
nient for an organization to make all bug bounties private, this
goes against the philosophy of the BBPs in general. Additionally,
Ethereum can be made public or private. Hyper Ledger does
not have a cryptocurrency system. Therefore, if we build same
system with Hyper Ledger, we need to find the way to pay tes-
ters. Such an implementation would be for comparative results
rather than demonstrating Hyper Ledger Fabric to be a better
solution.

CONFLICTS OF INTEREST

The authors declare they have no conflicts of interest.

AUTHORS’ CONTRIBUTION

AH and PA contributed in study conceptualization and writing
(review & editing) the manuscript, formal analysis and writing
(original draft). AH and CHP contributed in data curation. YK
supervised the project. AH contributed in final editing.

REFERENCES

  [1]	 A. Hoffman, E. Becerril-Blas, K. Moreno, Y. Kim, Decentralized
security bounty management on blockchain and IPFS, 2020 10th
Annual Computing and Communication Workshop and Conference
(CCWC), IEEE, Las Vegas, NV, USA, 2020, pp. 241–247.

  [2]	 E. Friis-Jensen, The history of bug bounty programs, Medium, 2014.
Available from: https://blog.cobalt.io/the-history-of-bug-bounty-
programs-50def4dcaab3 (accessed October 22, 2019).

  [3]	 M.A. Davidson, No, you really can’t, Oracle, 2015. Available from:
https://web.archive.org/web/20150811052336/https://blogs.
oracle.com/maryanndavidson/entry/no_you_really_can_t
(accessed October 22, 2019).

https://doi.org/10.1109/CCWC47524.2020.9031109
https://doi.org/10.1109/CCWC47524.2020.9031109
https://doi.org/10.1109/CCWC47524.2020.9031109
https://doi.org/10.1109/CCWC47524.2020.9031109
https://blog.cobalt.io/the-history-of-bug-bounty-programs-50def4dcaab3
https://blog.cobalt.io/the-history-of-bug-bounty-programs-50def4dcaab3
https://web.archive.org/web/20150811052336/https://blogs.oracle.com/maryanndavidson/entry/no_you_really_can_t
https://web.archive.org/web/20150811052336/https://blogs.oracle.com/maryanndavidson/entry/no_you_really_can_t

	 A. Hoffman et al. / International Journal of Networked and Distributed Computing 9(2-3) 86–93	 93

  [4]	 B. Chappell, Uber pays $148 million over yearlong cover-up
of data breach, NPR, 2018. Available from: https://www.npr.
org/2018/09/27/652119109/uber-pays-148-million-over-year-
long-cover-up-of-data-breach (accessed October 22, 2019).

  [5]	 National Conference of State Legislatures, Security breach notifi-
cation laws, 2020. Available from: https://www.ncsl.org/research/
telecommunications-and-information-technology/security-
breach-notification-laws.aspx (accessed September 18, 2020).

  [6]	 B. Zhou, I. Neamtiu, R. Gupta, Experience report: how do bug
characteristics differ across severity classes: a multi-platform
study, 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), IEEE, Gaithersbury, MD, USA,
2015, pp. 507–517.

  [7]	 A. Canidio, G. Costa, L. Galletta, VeriOSS: using the blockchain
to foster bug bounty programs, 2nd International Conference on
Blockchain Economics, Security and Protocols, Schloss Dagstuhl,
Germany, 2021, pp. 1–14.

  [8]	 A. Hoffman, H. Berghel, Moral hazards in cyber vulnerability
markets, Computer 52 (2019), 83–88.

  [9]	 L. Breidenbach, P. Daian, F. Tramèr, A. Juels, Enter the hydra:
towards principled bug bounties and exploit-resistant smart con-
tracts, Proceedings of the 27th USENIX Conference on Security
Symposium, 2018, pp. 1335–1352.

[10]	 Y. Wang, R. Samavi, N. Sood, Blockchain-based marketplace for
software testing, 2019 17th International Conference on Privacy,
Security and Trust (PST), IEEE, Fredericton, NB, Canada, 2019,
pp. 1–3.

[11]	 Uppsala Security, Protect Your Cryptocurrencies with Advanced
Software Solutions from Uppsala Security! Available from:
https://uppsalasecurity.com/ (accessed October 22, 2019).

[12]	 Google Application Security, Google Security Reward Programs.
Available from: https://www.google.com/about/appsecurity/
programs-home/ (accessed October 22, 2019).

[13]	 Facebook, Whitehat program. Available from: https://www.
facebook.com/whitehat (accessed October 22, 2019).

[14]	 Microsoft, Microsoft bug bounty program. Available from: https://
www.microsoft.com/en-us/msrc/bounty (accessed October 22,
2019).

[15]	 Hackerone, Hacker-powered security testing & bug bounty.
Available from: https://www.hackerone.com/ (accessed September
20, 2020).

[16]	 Bugcrowd, Crowdsourced cybersecurity platform. Available from:
https://www.bugcrowd.com/ (accessed September 20, 2020).

[17]	 Cobalt, Pentest as a service. Available from: https://cobalt.io/
(accessed September 20, 2020).

[18]	 S.S. Malladi, H.C. Subramanian, Bug bounty programs for cyber-
security: practices, issues, and recommendations, IEEE Softw. 37
(2020), 31–39.

[19]	 H. Fryer, E. Simperl. Web Science Challenges in Researching
Bug Bounties, Proceedings of the 2017 ACM on Web Science
Conference (WebSci ’17), Association for Computing Machinery,
New York, NY, USA, 2017, pp. 273–277.

[20]	 S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system,
Bitcoin.org, Oct. 2008. Available from: https://bitcoin.org/bitcoin.
pdf (accessed October 21, 2019).

[21]	 T.K. Sharma, Public vs. private blockchain : a comprehensive
comparison, Blockchain Council. Available from: https://www.
blockchain-council.org/blockchain/public-vs-private-block-
chain-a-comprehensive-comparison/ (accessed October 5, 2020).

[22]	 K. Liu, Token economics #2: comparison review of token econ-
omy, Hackernoon, 2019. Available from: https://hackernoon.

com/token-economics-2-comparison-review-of-token-
economy-8759dd70783 (accessed October 4, 2020).

[23]	 The Linux Foundation, Hyperledger fabric. Available from: https://
www.hyperledger.org/use/fabric (accessed September 27, 2020).

[24]	 Corda, Open source blockchain platform for business. Available
from: https://www.corda.net/ (accessed September 27, 2020).

[25]	 ConsenSys, ConsenSys quorum. Available from: https://consensys.
net/quorum/ (accessed September 27, 2020).

[26]	 G. Sagirlar, B. Carminati, E. Ferrari, J.D. Sheehan, E. Ragnoli,
Hybrid-IoT: hybrid blockchain architecture for internet of things
- PoW sub-blockchains, 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData),
IEEE, Halifax, NS, Canada, 2018, pp. 1007–1016.

[27]	 Z. Liu, S. Tang, S.S.M. Chow, Z. Liu, Y. Long, Fork-free hybrid
consensus with flexible proof-of-activity, Futur. Gener. Comput.
Syst. 96 (2019), 515–524.

[28]	 S. Zhu, Z. Cai, H. Hu, Y. Li, W. Li, zkCrowd: a hybrid block-
chain-based crowdsourcing platform, IEEE Trans. Ind. Inform.
16 (2020), 4196–4205.

[29]	 D. Freuden, Hybrid blockchain: the best of both chains,
Hackernoon, 2018. Available from: https://hackernoon.com/
hybrid-blockchain-the-best-of-both-chains-78518507449a
(accessed September 25, 2020).

[30]	 G. Wood, Ethereum: a secure decentralised generalised transac-
tion ledger, Ethereum Proj. Yellow Pap., 2014, pp. 1–39.

[31]	 Ethereum Foundation, ethereum/solidity: solidity, the contract-
oriented programming language, Github. Available from: https://
github.com/ethereum/solidity (accessed October 5, 2020).

[32]	 V.P. Ranganthan, R. Dantu, A. Paul, P. Mears, K. Morozov, A
decentralized marketplace application on the ethereum block-
chain, 2018 IEEE 4th International Conference on Collaboration
and Internet Computing (CIC), IEEE, Philadelphia, PA, USA,
2018, pp. 90–97.

[33]	 Ethereum, “ethereum/web3.js: Ethereum JavaScript API,” Github,
2014. Available from: https://github.com/ethereum/web3.js/
(accessed October 4, 2020).

[34]	 J. Benet, IPFS-content addressed, Versioned, P2P File System,
[Online], 2014. Available from: https://arxiv.org/abs/1407.3561
(accessed September 21, 2020).

[35]	 Q. Zheng, Y. Li, P. Chen, X. Dong, An innovative IPFS-based stor-
age model for blockchain, 2018 IEEE/WIC/ACM International
Conference on Web Intelligence (WI), IEEE, Santiago, Chile,
2018, pp. 704–708.

[36]	 A. Davis, D. Finlay, MetaMask, ConsenSys, 2016. Available from:
https://metamask.io/index.html (accessed October 4, 2020).

[37]	 B. Darnell, Facebook, B. Taylor, Tornado Web Server, 2009.
Available from: https://www.tornadoweb.org/en/stable/ (accessed
October 4, 2020).

[38]	 Hfaran, Tornado-JSON: a simple JSON API framework based
on Tornado, Github, 2013. Available from: https://github.com/
hfaran/Tornado-JSON (accessed October 4, 2020).

[39]	 V. Buterin, A next generation smart contract & decentralized
application platform, [Online], 2015. Available from: https://
ethereum.org/en/whitepaper/ (accessed September 21, 2020).

[40]	 T. Chen, Z. Li, H. Zhou, J. Chen, X. Luo, X. Li, et al., Towards
saving money in using smart contracts, 2018 IEEE/ACM
40th International Conference on Software Engineering: New
Ideas and Emerging Technologies Results (ICSE-NIER), IEEE,
Gothenburg, Sweden, 2018, pp. 81–84.

https://www.npr.org/2018/09/27/652119109/uber-pays-148-million-over-year-long-cover-up-of-data-breach
https://www.npr.org/2018/09/27/652119109/uber-pays-148-million-over-year-long-cover-up-of-data-breach
https://www.npr.org/2018/09/27/652119109/uber-pays-148-million-over-year-long-cover-up-of-data-breach
https://www.ncsl.org/research/telecommunications-and-information-technology/security-breach-notification-laws.aspx
https://www.ncsl.org/research/telecommunications-and-information-technology/security-breach-notification-laws.aspx
https://www.ncsl.org/research/telecommunications-and-information-technology/security-breach-notification-laws.aspx
https://doi.org/10.1109/ISSRE.2015.7381843
https://doi.org/10.1109/ISSRE.2015.7381843
https://doi.org/10.1109/ISSRE.2015.7381843
https://doi.org/10.1109/ISSRE.2015.7381843
https://doi.org/10.1109/ISSRE.2015.7381843
https://doi.org/10.1109/MC.2019.2936635
https://doi.org/10.1109/MC.2019.2936635
https://doi.org/10.1109/PST47121.2019.8949025
https://doi.org/10.1109/PST47121.2019.8949025
https://doi.org/10.1109/PST47121.2019.8949025
https://doi.org/10.1109/PST47121.2019.8949025
https://uppsalasecurity.com/
https://www.google.com/about/appsecurity/programs-home/
https://www.google.com/about/appsecurity/programs-home/
https://www.facebook.com/whitehat
https://www.facebook.com/whitehat
https://www.microsoft.com/en-us/msrc/bounty
https://www.microsoft.com/en-us/msrc/bounty
https://www.hackerone.com/
https://doi.org/10.1109/MS.2018.2880508
https://doi.org/10.1109/MS.2018.2880508
https://doi.org/10.1109/MS.2018.2880508
https://doi.org/10.1145/3091478.3091517
https://doi.org/10.1145/3091478.3091517
https://doi.org/10.1145/3091478.3091517
https://doi.org/10.1145/3091478.3091517
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.blockchain-council.org/blockchain/public-vs-private-blockchain-a-comprehensive-comparison/
https://www.blockchain-council.org/blockchain/public-vs-private-blockchain-a-comprehensive-comparison/
https://www.blockchain-council.org/blockchain/public-vs-private-blockchain-a-comprehensive-comparison/
https://hackernoon.com/token-economics-2-comparison-review-of-token-economy-8759dd70783
https://hackernoon.com/token-economics-2-comparison-review-of-token-economy-8759dd70783
https://hackernoon.com/token-economics-2-comparison-review-of-token-economy-8759dd70783
https://consensys.net/quorum/
https://consensys.net/quorum/
https://doi.org/10.1109/Cybermatics_2018.2018.00189
https://doi.org/10.1109/Cybermatics_2018.2018.00189
https://doi.org/10.1109/Cybermatics_2018.2018.00189
https://doi.org/10.1109/Cybermatics_2018.2018.00189
https://doi.org/10.1109/Cybermatics_2018.2018.00189
https://doi.org/10.1109/Cybermatics_2018.2018.00189
https://doi.org/10.1109/Cybermatics_2018.2018.00189
https://doi.org/10.1016/j.future.2019.02.059
https://doi.org/10.1016/j.future.2019.02.059
https://doi.org/10.1016/j.future.2019.02.059
https://doi.org/10.1109/TII.2019.2941735
https://doi.org/10.1109/TII.2019.2941735
https://doi.org/10.1109/TII.2019.2941735
https://doi.org/10.1109/CIC.2018.00023
https://doi.org/10.1109/CIC.2018.00023
https://doi.org/10.1109/CIC.2018.00023
https://doi.org/10.1109/CIC.2018.00023
https://doi.org/10.1109/CIC.2018.00023
https://doi.org/10.1109/WI.2018.000-8
https://doi.org/10.1109/WI.2018.000-8
https://doi.org/10.1109/WI.2018.000-8
https://doi.org/10.1109/WI.2018.000-8
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://doi.org/10.1145/3183399.3183420
https://doi.org/10.1145/3183399.3183420
https://doi.org/10.1145/3183399.3183420
https://doi.org/10.1145/3183399.3183420
https://doi.org/10.1145/3183399.3183420

