

Advances in Biological Sciences Research, volume 14 Proceedings of the 3rd KOBI Congress, International and National Conferences (KOBICINC 2020)

The Manglid (*Manglietia glauca* Bl) Growth Variations at Age of 42 Months in Candiroto Temanggung Central Java

Sugeng Pudjiono^{1,*}, Mudji Susanto¹, Mashudi¹, Dedi Setiadi¹, Maman

Sulaeman¹, Ratna Adji Hartati², Taufik Rahmadi², Aris Wibowo³

¹Centre for Forest Biotechnology and Tree Improvement Jl. Palagan Tentara Pelajar Km 15 Purwobinangun, Pakem, Sleman, Yogyakarta

²Balai Pengelolaan Daerah Aliran Sungai dan Hutan Lindung Serayu Opak Progo Jl. Gedong Kuning No. 172 Yogyakarta

³Pusat Penelitian Pengembangan Pehutani Cepu Jl. Wonosari Tromol 6 Cepu. Desa Batokan, Kec. Kasiman, Kabupaten Bojonegoro Jawa Timur

Corresponding author: Email: <u>sgpudjiono@gmail.com</u>

ABSTRACT

Manglid (Manglietia glauca BI) is an indigenous tree species in the Indonesian forest whose existence began to be difficult to find. Wood is the part of the plant that can be used. The development of this plant which is the local genetic resources need to be done with the breeding program. In connection with this, the determination of the plant growth is necessary in order to obtain information of manglid ability in producing wood. The purpose of this research was to determine the growth variation of the manglid plants that planted at the Candiroto with an altitude between 457-464 meters above sea level, Candiroto District, Temanggung Regency, Central Java at the age of 42 months. The research method used was a Randomized Complete Block Design with the seedlings propagated from 100 parent trees, separated into 10 blocks, each block consisted of 4 tree plots, and the planting distance was 4 m x 3 m. The characteristics of plant measured were the height of the plant, stem diameter, and life percentage of manglid. The measurement results were analyzed for the variation and tested by employing a Duncan Multiple Range Test. The results showed that the height of plants was ranged between 106-1083 cm with an average of 577 cm. The stem diameter was ranged between 1,3-28,7cm with an average of 9,4 cm. The life percentage of plants was ranged between 17,5-80,0% with an average of 51,3%. The analysis results showed that the parent tree has significant effects on the total height and the stem diameter of plants. There were some variations of height characteristic from 100 parent trees, there were 23 groups, while for the stem diameter characteristic, there were 11 groups.

Keywords: growth, manglid, parent tree, tree age, variation

1. INTRODUCTION

Manglid (*Manglietia glauca* BL) is one of an indigenous tree species in the Indonesian forest whose existence began to be difficult to find. This plant is naturally found in Sumatra, Java, Bali, Lombok, and Sulawesi Island in the altitude of 900-1,700 meters above sea level in the mixed forest that is humid with fertile soil [1]. The natural habitat is in Sukabumi mostly in Situ Gunung. The Manglid itself has an abundance score of 1.2 which means that it is

categorized as rare [2]. Manglid is categorized as fast-growing tree species with a cycle under 10 years [3].

One of the functions of Manglid is wood utilization. The wood can be used as the raw material for bridge construction, household utensils, furniture (table, chair, cupboard), building, door material, wood coating, and plywood. The Manglid wood is categorized as the 3rd strong class and 2nd durable class with several characteristics including shiny, solid structure, smooth, light, and easy to be worked

on [4]. Since its prosperous characteristics, the local community is interested in planting Manglid in the form of community forests to meet the timber needs, especially in Priangan Timur, West Java [5].

The local community's interest in the Manglid cultivation is quite high. Meanwhile, the abundance of Manglid is rare. Therefore, it is needed to find which Manglid has the best growth. The plantation is needed in the form of nursery seedlings to obtain the superior Manglid seedling that will be developed for planting material. In forest plants, there are genetic variations between individuals. The selection of parent trees as individuals who compose the seedling plantation is important to obtain the superior Manglid seeds. For this reason, it is necessary to know the growth of plants planted from the parent trees that compose the seed garden. In connection with these problems, the selection of the best parent trees in terms of growth is an attempt to get the best plant growth information that going to be developed. The purpose of this research was to determine the variation of the plant height growth, stem diameter and the life percentage of Manglid that is planted as a source of seeds located in Candiroto, Central Java.

2. METHODS

2.1. Time and Research Place

Manglid seedling plantation was planted in April 2016. The seeds were originated from Tasikmalaya, Sumedang and Sukabumi, West Java [6]. The measurement of the plant growth is done in October 2019 with Manglid at the age of 42 months. The coordinate location of the research is 7° 06,687 S and 111° 06.267 E. The research is done in Candiroto with the altitude of 457-464 meters above the sea level, and latosol soil types [7], located in Candiroto, Temanggung, Central Java.

2.2. Procedure

2.2.1 Tools and Materials

The tools used are height measuring pole, digital caliper to measure diameter, tally sheet, map of

seedling seed orchard design, field notes, and stationery. The research material was in the form of plantation in seedling seed orchard with the age of 42 months.

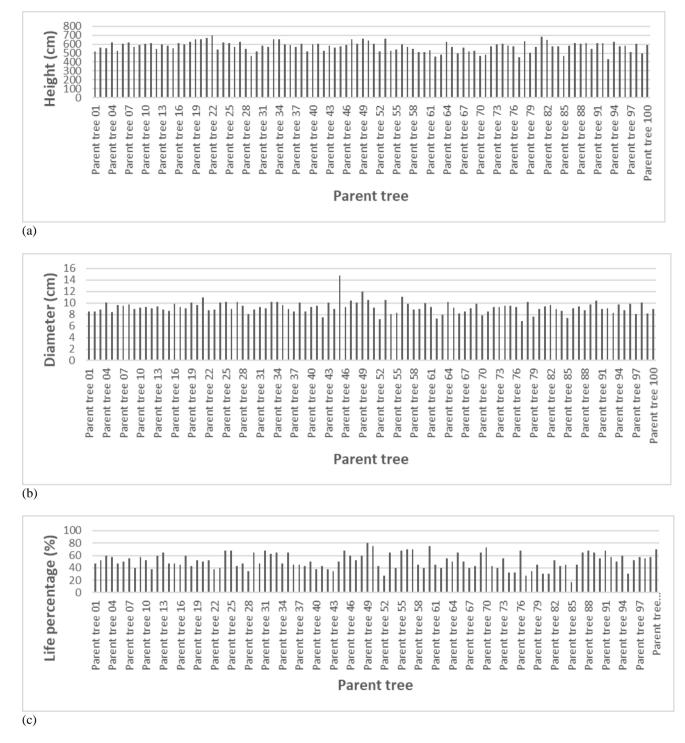
2.3. Research Design

The research design in the field uses Randomized Complete Block Design (RCBD) with 100 parent trees originated from Tasikmalaya (15), Sumedang (10) and Sukabumi (75) divided into 10 blocks which each block consists of 4 tree plots, planting distance 4m x 3m. The characteristics of the plant that is measured are the height, stem diameter and life percentage of Manglid. The plant height measurements are carried out from the soil surface to the tip of the plant. The diameter of the stem is the measured diameter at the height of the chest, which is 130cm above the soil surface. The life percentage is measured by counting the number of living plants divided by the initial number of plants planted from each tree plot.

2.4. Data Analysis

The measurement data of the height of the plant, stem diameter, and the life percentage were analyzed by using the variant analysis to understand the effect of treatment towards the characteristics that were observed. If the significant differences exist, the Duncan Multiple Range Test (DMRT) will be conducted.

3. RESULT AND DISCUSSION


3.1. Result

The results of measurements of plant height, stem diameter and life percentage of plant were analyzed for variance as shown in Table 1. The graphs of variation in plant height growth, stem diameter, and life percentage can be seen in Figure 1. Duncan Multiple Range Test was carried out because of the variant analysis results were very significantly different on plant height and stem diameter as shown in Table 2 below.

Table 1. Analysis of variance of the effect of parent trees on plant height, stem diameter and life percentage of manglid plants at 42 months in Candiroto, Central Java.

Source	of	df	Height	df	Diameter	df	Life Percentage	
variation			Mean Square		Mean Square		Mean Square	
Parent Tree		99	55984.307**	99	23.153077**	99	1635.7071**	
Replication		9	757094.855**	9	240.462402**	9	15665.0000**	
Error		1946	17299.67	1946	11.62810	891	849.203	
Corrected total		2054		2054		999		

Note: ** significantly different at 0.01

Figure 1. Graph of plant height (a), stem diameter (b) and life percentage (c) variation of Manglid at the age of 42 months in Candiroto, Central Java.

Table 2. Duncan Multiple Rang	e Test from height of I	Manglid at the age of 4	2 months in Candiroto, Central Java
-------------------------------	-------------------------	-------------------------	-------------------------------------

x	Parent Tree	Mean - std dev	Duncan Grouping	No	Parent Tree	Mean – std dev	Duncan Grouping
1	81	683,17±177.92	a	51	14	$582.37{\pm}114.88$	abcdefghijklmnopq
2	21	$672.33{\pm}129.07$	ab	52	31	$582.12{\pm}160.61$	abcdefghijklmnopq
3	53	$665.81{\pm}142.84$	abc	53	43	580.43 ± 200.10	abcdefghijklmnopq
4	49	663.91±189.94	abcd	54	72	577.06 ± 101.71	abcdefghijklmnopqr
5	20	657.81±177.23	abcde	55	84	576.89 ± 139.35	abcdefghijklmnopqr
6	47	655.81±168.79	abcde	56	45	$575.96{\pm}107.59$	abcdefghijklmnopqrs
7	33	$653.84{\pm}141.28$	abcdef	57	83	575.78±132.64	abcdefghijklmnopqrs
8	34	653.46±121.44	abcdefg	58	95	575.42 ± 102.64	abcdefghijklmnopqrs
9	19	652.50±109.23	abcdefgh	59	76	573.93 ± 187.40	abcdefghijklmnopqrst
10	82	648.95 ± 165.07	abcdefgh	60	32	572.08 ± 206.90	bcdefghijklmnopqrst
11	50	637.60±129.87	abcdefghi	61	26	568.58 ± 89.84	bcdefghijklmnopqrstu
12	78	633.80±81.72	abcdefghij	62	80	567.92±193.50	bcdefghijklmnopqrstu
13	27	627.86±131.42	abcdefghijk	63	65	567.31±131.58	bcdefghijklmnopqrstu
14	94	627.00±144.12	abcdefghijk	64	37	566.00±154.55	bcdefghijklmnopqrstu
15	18	623.24±139.18	abcdefghijkl	65	57	565.57±160.25	bcdefghijklmnopqrstu
16	64	623.14±147.28	abcdefghijkl	66	44	563.80±148.63	bcdefghijklmnopqrstu
17	24	622.63±189.42	abcdefghijkl	67	02	563.76±135.06	bcdefghijklmnopqrstu
18	07	622.59±138.86	abcdefghijkl	68	67	560.50±105.02	cdefghijklmnopqrstuv
19	04	621.78±125.64	abcdefghijklm	69	03	554.63±132.65	defghijklmnopqrsstuv
20	87	615.23±147.63	abcdefghijklmn	70	15	552.78±105.63	efghijklmnopqrstuv
21	91	615.04±228.17	abcdefghijklmn	71	12	549.71±167.75	efghijklmnopqrstuv
22	25	614.59±69.27	abcdefghijklmn	72	28	549.35±188.09	efghijklmnopqrstuv
23	92	613.78±146.25	abcdefghijklmn	73	58	547.94±153.47	efghijklmnopqrstuv
24	11	612.13±125.72	abcdefghijklmn	74	90	544.91±103.11	fghijklmnopqrstuv
25	89	609.54±124.05	abcdefghijklmn	75	23	542.89±153.79	ghijklmnopqrstuv
26	16	609.08±203.71	abcdefghijklmn	76	55	542.30±132.99	hijklmnopqrstuv
27	98	608.05±95.13	abcdefghijklmno	77	61	534.00±73.21	ijklmnopqrstuvw
28	74	607.00±134.03	abcdefghijklmno	78	54	528.88±92.66	ghijklmnopqrstuv
29	06	606.60±84.66	abcdefghijklmno	79	05	528.63±118.80	ijklmnopqrstuvw
30	38	606.10±126.94	abcdefghijklmno	80	42	525.80±169.47	jklmnopqrstuvw
31	88	606.07±117.67	abcdefghijklmno	81	69	523.65±94.02	jklmnopqrstuvw
32	41	604.47±58.40	abcdefghijklmnop	82	30	520.15±130.97	klmnopqrstuvw
33	48	602.29±158.61	abcdefghijklmnop	83	01	518.68±132.44	klmnopqrstuvw
34	51	601.76±179.10	abcdefghijklmnop	84	52	518.55±101.76	klmnopqrstuvw
35	10	601.48±172.78	abcdefghijklmnop	85	32 39	517.73±134.29	klmnopqrstuvw
36	13	601.12±204.84	abcdefghijklmnop	86	68	517.59±156.95	klmnopqrstuvw
37	56	599.50±173.36	abcdefghijklmnop	87	97	513.43±112.64	lmnopqrstuvw
38	40	599.42±105.94	abcdefghijklmnop	88	59	511.38±154.76	mnopqrstuvw
38 39	40 22	598.50±177.76	abcdefghijklmnop	89	60	509.57±156.74	nopqrstuvw
40	35	595.39±126.12	abcdefghijklmnop	90	00 79	504.67±99.90	nopqrstuvw
40 41	35 17	595.18±98.31	abcdefghijklmnop	90 91	99	497.83±125.07	opqrstuvw
42	73	595.14±108.50	abcdefghijklmnop	92	66	494.80±149.81	pqrstuvw
+2 43	73 09	592.17±131.81	abcdefghijklmnop	92 93	63	494.80±149.81 481.95±120.80	grstuvw
43 44	09 100	588.89±152.62	abcdefghijklmnopq	95 94	03 71	481.93±120.80 479.47±122.28	1
	100 36		abcdefghijklmnopq	94 95	71 70		qrstuvw rstuvw
45 46	36 46	588.00±175.63	abcdefghijklmnopq			470.97±184.97 467.86±111.30	
46 47		587.96±128.72		96 07	85 20		stuvw
47 49	75	586.86±107.18	abcdefghijklmnopq	97 08	29	466.74±141.60	tuvw
48 40	08	585.69±208.34	abcdefghijklmnopq	98	62	463.56±118.22	uvw
49	86 96	584.67±116.28 583.62±172.72	abcdefghijklmnopq abcdefghijklmnopq	99 100	77 93	456.89±70.51 431.35±138.25	vw W

 Solo
 Solo

No	Parent Tree	Mean - std dev	Duncan Grouping	No	Parent Tree	Mean- std dev	Duncan Grouping
	45	14.785 ± 2.085	a	51	100	9.246±2.463	bcdefghijk
	49	11.984 ± 3.652	b	52	51	9.194 ± 2.652	bcdefghijk
	56	11.089 ± 3.204	bc	53	65	9.162 ± 2.488	bcdefghijk
	21	10.980 ± 2.018	bcd	54	92	9.109 ± 2.872	cdefghijk
	50	10.560 ± 4.174	bcde	55	12	9.096±3.293	cdefghijk
	53	10.473 ± 3.251	bcdef	56	68	9.088 ± 3.353	cdefghijk
7	90	10.455 ± 1.968	bcdefg	57	32	9.042±3.313	cdefghijk
;	47	10.400 ± 2.861	bcdefg	58	18	9.033±2.145	cdefghijk
)	34	10.223 ± 2.150	bcdefgh	59	86	9.028 ± 1.972	cdefghijk
0	27	10.214 ± 2.028	bcdefgh	60	38	9.013±2.496	cdefghijk
1	33	10.195 ± 2.844	bcdefgh	61	44	9.000 ± 2.474	cdefghijk
2	64	10.181 ± 2.257	bcdefgh	62	10	8.995 ± 2.932	cdefghijk
3	78	10.173±1.533	bcdefghi	63	09	8.991±1.936	cdefghijk
4	25	10.141 ± 2.327	bcdefghi	64	91	8.974±3.032	cdefghijk
5	98	10.132 ± 1.853	bcdefghi	65	80	8.942±3.172	cdefghijk
6	04	10.122 ± 2.258	bcdefghi	66	83	8.917±1.981	cdefghijk
7	19	10.120 ± 2.643	bcdefghi	67	26	8.916±2.116	cdefghijk
8	24	10.119 ± 2.109	bcdefghi	68	59	8.913±2.817	cdefghijk
9	43	10.114 ± 1.695	bcdefghi	69	14	8.879 ± 2.214	cdefghijk
20	48	10.054 ± 2.331	bcdefghi	70	23	8.878±2.177	cdefghijk
21	38	10.030 ± 2.496	bcdefghij	71	58	8.872±3.139	cdefghijk
22	60	9.990 ± 4.526	bcdefghij	72	03	8.838 ± 2.424	cdefghijk
23	16	9.913±3.480	bcdefghij	73	30	8.804 ± 2.595	cdefghijk
24	57	9.896±3.823	bcdefghij	74	95	8.792 ± 2.615	cdefghijk
25	69	9.865 ± 2.162	bcdefghij	75	88	8.789 ± 2.014	cdefghijk
26	96	9.862±1.926	bcdefghij	76	22	8.706±2.393	cdefghijk
27	94	9.733±1.751	bcdefghij	77	15	8.650±1.843	cdefghijk
28	08	9.713±3.844	bcdefghijk	78	84	8.622±2.347	cdefghijk
29	89	9.704±1.994	bcdefghijk	79	02	8.576 ± 2.697	cdefghijk
30	06	9.675±2.051	bcdefghijk	80	01	8.568 ± 2.061	cdefghijk
31	20	9.633±2.468	bcdefghijk	81	67	8.544 ± 2.184	cdefghijk
32	35	9.633±2.951	bcdefghijk	82	37	8.529±2.615	cdefghijk
33	82	9.590±2.387	bcdefghijk	83	39	8.527±1.773	cdefghijk
34	41	9.559±1.736	bcdefghijk	84	71	8.506±2.176	cdefghijk
35	07	9.541±2.592	bcdefghijk	85	05	8.447±2.669	cdefghijk
36	74	9.538 ± 2.620	bcdefghijk	86	55	8.344±3.253	cdefghijk
37	75	9.500±1.406	bcdefghijk	87	93	8.260±3.044	cdefghijk
88	28	9.492 ± 2.849	bcdefghijk	88	66	8.235±3.348	cdefghijk
9	13	9.458±3.860	bcdefghijk	89	99	8.200±2.262	cdefghijk
40	81	9.442±2.839	bcdefghijk	90	29	8.126±2.679	defghijk
1	87	9.385±2.069	bcdefghijk	91	54	8.119±1.719	defghijk
2	40	9.353±2.041	bcdefghijk	92	97	8.043±2.235	efghijk
3	72	9.344±2.577	bcdefghijk	93	63	7.955 ± 2.860	efghijk
4	31	9.296±2.828	bcdefghijk	94	70	7.879±2.681	efghijk
5	61	9.924±2.578	bcdefghijk	95	79	7.650±1.917	fghijk
46	11	9.293±2.845	bcdefghijk	96	42	7.550±2.648	ghijk
17	17	9.282±1.921	bcdefghijk	97	85	7.371±2.135	hijk
18	73	9.282±2.132	bcdefghijk	98	62	7.281±2.305	ijk
.9	46	9.271±2.137	bcdefghijk	99	52	7.145±2.083	jk
50	76	9.259±2.778	bcdefghijk	100	77	6.833±1.774	K

Table 3. Duncan Multiple Range Test from stem diameter of Manglid at the age of 42 months in Candiroto, Central Java

Note: - The number that is followed by the same alphabet in the same column are not significantly different at 0.01. - Family number 1-15 comes from Tasikmalaya population; family number 16-25 comes from Sumedang population and family number 26 - 100 comes from Sukabumi population.

No	Parent Tree	Mean - std dev	Duncan Grouping	No	Parent Tree	Mean -std dev	Duncan Grouping
1	49	80.00 ± 22.97	а	51	38	50.00 ± 33.33	abcdefghij
2	50	75.00 ± 28.87	ab	52	06	50.00 ± 26.35	abcdefghij
3	60	75.00 ± 23.57	ab	53	66	50.00 ± 33.33	abcdefghij
4	70	72.50 ± 32.17	abc	54	64	50.00 ± 39.09	abcdefghij
5	57	70.00 ± 25.82	abcd	55	44	$50.00\pm\!31.18$	abcdefghij
6	56	70.00 ± 20.58	abcd	56	05	47.50 ± 39.88	abcdefghij
7	100	70.00 ± 22.97	abcd	57	29	$47.50 \pm \! 39.88$	abcdefghij
8	91	67.50 ± 28.99	abcde	58	01	47.50 ± 29.93	abcdefghij
9	23	67.50 ± 31.29	abcde	59	33	47.50 ± 32.17	abcdefghij
10	45	67.50 ± 16.87	abcde	60	14	47.50 ± 21.89	abcdefghij
11	55	67.50 ± 20.58	abcde	61	26	47.50 ± 36.23	abcdefghij
12	30	67.50 ± 20.58	abcde	62	40	47.50 ± 32.11	abcdefghij
13	24	67.50 ± 28.99	abcde	63	35	45.00 ± 34.96	bcdefghij
14	76	67.50 ± 26.48	abcde	64	15	45.00 ± 34.96	bcdefghij
15	88	67.50 ± 36.89	abcde	65	79	45.00 ± 36.89	bcdefghij
16	69	65.00 ± 35.75	abcdef	66	61	45.00 ±32.91	bcdefghij
17	87	65.00 ±26.87	abcdef	67	86	45.00 ±36.89	bcdefghij
18	65	65.00 ±35.74	abcdef	68	58	45.00 ±32.91	bcdefghij
19	53	65.00 ±33.75	abcdef	69	84	45.00 ±32.91	bcdefghij
20	34	65.00 ±33.75	abcdef	70	36	45.00 ±25.82	bcdefghij
21	89	65.00 ±35.75	abcdef	71	51	42.50 ± 26.48	bcdefghij
22	28	65.00 ±39.44	abcdef	72	83	42.50 ± 39.18	bcdefghij
23	13	65.00 ± 24.15	abcdef	73	71	42.50 ± 39.18 42.50 ± 39.18	bcdefghij
23	32	65.00 ± 24.15 65.00 ± 33.75	abcdef	73 74	37	42.50 ± 28.99	bcdefghij
24 25	31	62.50 ± 37.73	abcdefg	75	41	42.50 ± 28.99 42.50 ± 35.45	bcdefghij
25 26	46	60.00 ± 26.87	abcdefgh	75 76	41 17	42.50 ± 33.43 42.50 ± 31.29	bcdefghij
20 27	40 03	65.00 ± 29.34	abcdefgh	70	25	42.50 ± 31.29 42.50 ± 39.18	bcdefghij
27	03 94		-		23 68		
		65.00 ±44.41	abcdefgh	78 70		42.50 ±26.48	bcdefghij
29	12	65.00 ±29.34	abcdefgh	79	59	40.00 ±37.64	cdefghij
30	16	65.00 ±-	abcdefgh	80	67	40.00 ±35.75	cdefghij
31	48	65.00 ±31.62	abcdefgh	81	54	40.00 ±29.34	cdefghij
32	99	57.50 ±23.72	abcdefgh	82	62	40.00 ±26.87	cdefghij
33	97	57.50 ±33.44	abcdefgh	83	22	40.00 ±29.34	cdefghij
34	09	57.50 ±31.29	abcdefgh	84	08	40.00 ± 37.64	cdefghij
35	04	57.50 ±33.44	abcdefgh	85	72	40.00 ± 29.34	cdefghij
36	92	57.50 ± 28.99	abcdefgh	86	11	37.50 ± 27.00	defghij
37	63	55.00 ± 40.48	abcdefghi	87	39	37.50 ± 41.25	dcfghij
38	07	55.00 ± 38.73	abcdefghi	88	21	37.50 ± 31.73	defghij
39	73	55.00 ± 22.97	abcdefghi	89	42	37.50 ± 31.73	defghij
40	90	55.00 ± 38.73	abcdefghi	90	43	35.00 ± 31.62	efghij
41	98	55.00 ± 25.82	abcdefghi	91	27	35.00 ± 31.62	efghij
42	47	52.50 ± 32.17	abcdefghi	92	78	35.00 ± 29.34	efghij
43	10	52.50 ± 36.23	abcdefghi	93	75	32.50 ± 23.72	fghij
44	18	52.50 ± 29.93	abcdefghi	94	74	32.50 ± 35.45	fghij
45	02	52.50 ± 34.26	abcdefghi	95	81	30.00 ± 30.73	ghij
46	82	52.50 ± 29.98	abcdefghi	96	95	30.00 ± 28.38	ghij
47	96	52.50 ± 24.86	abcdefghi	97	80	30.00 ± 19.72	ghij
48	20	52.50 ±38.10	abcdefghi	98	52	27.50 ±27.51	hij
49	19	50.00 ±26.35	abcdefghij	99	77	22.50 ± 24.86	ij
50	93	50.00 ± 28.87	abcdefghij	100	85	17.50 ±23.72	i

Table 4. Duncan Multiple Range Test from life percentage of Manglid at the age of 42 months in Candiroto, Central Java

The measurement result of total plant height showed that plant height ranged between 106 to 1083cm with an average of 577cm. The highest plants come from the parent tree number 81 from Sukabumi. The stem diameters ranged between 1.3cm to 28.7cm with an average of 9.4cm, the largest diameter comes from the parent tree number 45 from Sukabumi. The life percentage ranged between 17.5% to 80% with an average of 51.3%. The highest life percentage is indicated by the parent tree number 49 from Sukabumi.

3.2. Discussion

Table 1 shows that the parent tree has a very significant effect on height growth, stem diameter and life percentage of Manglid plant at the age of 42 months in Candiroto, Central Java. According to [8], the tropical plant species generally have a wide distribution with different genetic characters between populations in which the individuals tend to differentiate each other. The existing diversity among parent trees is caused by geographical conditions such as the height of the growth place including soil type, rainfall, and the associations with other plants from each parent tree in different populations [6],[9]. This is because the Manglid parent trees were originated from 3 populations in West Java (Tasikmalaya, Sumedang and, Sukabumi). The effect of the parent tree on the height growth, stem diameter, and life percentage characteristics can be differentiated based on the results of Duncan Multiple Range Test (DMRT) as shown in Table 2, Table 3, and Table 4 above. The results show that there are some different groups on each characteristic.

Table 2 shows that the height of the Manglid plant at the age of 42 months in Candiroto has 23 groups. In Table 3 the stem diameter is separated into 11 groups. Meanwhile, the life percentage is divided into 10 groups. The results of the group show that height growth is the character with the highest diversity compared to other characteristics. This is in accordance with the result of [10] on the wide leaf Mahogany type (Swietenia macrophylla), [11] blackboard tree (Alstonia scholaris), and [12] Meranti Tembaga (Shorea leprosula). The high diversity of measured characteristics which are height and stem diameter shows that each parent tree has some characteristics that can be selected for breeding activities. In forest plant breeding activities with high diversity, it is possible to choose certain characteristics that are desired to obtain a maximum result. High diversity is the fundamental thing in the experiments in order to get the expected product.

The significantly different of the stem diameter characteristics which differentiated into 11 groups makes it possible to select the trees that are expected to have large diameters. Diameter is interpreted as the best predictor of life percentage and seedling growth in the field [13]. The larger diameter indicates that the root system and stem volume are larger [14]. Finally, it will increase the number of nutrients and water transported by the xylem as it is getting bigger [15].

The genetic variation between parent trees in Manglid populations is significantly different for plant height, stem diameter, and life percentage. Research on Manglid seedlings in the nursery at the age of 7 months showed the same result [16]. This result shows the existing diversity. Most forest tree characters are quantitatively controlled by the environment and many gene loci which only contribute slightly to the phenotype. This quantitative phenotype character expression involves many genes. Therefore, the inheritance is very complex [17].

The genetic diversity of Manglid growth from 100 parent trees is significantly different. The plant height characteristic is differentiated into 23 groups, the stem diameter into 11 groups, and the life percentage into 10 groups. The parent tree number 81 is best for the total plant height characteristic, the best stem diameter is the parent tree number 45, and the best parent tree for life percentage is number 49. This existing significant difference gives an opportunity to obtain a superior plant in accordance with the required characteristics.

4. CONCLUSION

There are some variations of the height of the plant, stem diameter, and life percentage of Manglid at the age of 42 months in Candiroto. From 100 parent trees there were some different groups, there were 23 groups in plant height, 11 groups in the stem diameter, and 10 groups in life percentage.

ACKNOWLEDGMENT

The researcher would like to thank the head of Centre for Forest Biotechnology and Tree Improvement, the head of Balai Pengelolaan Daerah Aliran Sungai Dan Hutan Lindung Serayu Opak Progo and the head of Pusat Penelitian Pengembangan Perhutani Cepu that gave the permission for the location of the seedling plantation and the grants.

REFERENCES

- S. Pudjiono, Eksplorasi Bahan Genetik Untuk Pemuliaan Manglid (*Manglietia glauca* Bl.). Prosiding Seminar Nasional. Pemanfaatan Sumber Daya Genetik Lokal Dalam Mendukung Keberhasilan Program Pemuliaan 1 2016 433-444. [In Bahasa Indonesia]
- [2] T. Kalima, M. Wardani, Potensi Jenis Dipterocarpus retusus Blume di kawasan hutan Situ Gunung Sukabumi. Bulletin Plasma Nutfah 3(2) (2013) 102-112. [In Bahasa Indonesia]
- [3] A. Sudomo, E. Rachman, dan N. Mindawati, Mutu bibit Manglid (*Manglietia glauca* Bl.) pada tujuh jenis media sapih. Jurnal Penelitian Hutan Tanaman 7(5) (2010) 265-272. [In Bahasa Indonesia]
- [4] D.F. Djam'an, Mengenal Manglid Baros (Manglietia glauca Bl.) manfaat dan permasalahan. Majalah Kehutanan Indonesia, Edisi VI, 2006. Available from: <u>http://www.dephut.go.id</u>. [In Bahasa Indonesia]
- [5] A. Rohandi, D. Swestiana, Gunawan, Y. Nadiharto, B. Rahmawan, I. Setiawan, Identifikasi sebaran populasi dan potensi lahan jenis manglid untuk mendukung pengembangan sumber benih dan hutan rakyat di wilayah Priangan Timur. Laporan Hasil Penelitian, Balai Penelitian Kehutanan Ciamis, Ciamis, 2010. [In Bahasa Indonesia]
- [6] S. Pudjiono, Eksplorasi dan penanganan benih Manglid (*Manglietia glauca* Bl.) sebagai materi genetik untuk membangun sumber benih. Informasi Teknis 14(1) (2016) 21-28. [In Bahasa Indonesia]
- [7] Rencana Kerja Pemerintah Daerah. Kabupaten Temanggung. Gambaran Umum dan Kondisi Daerah. Accessed on: www.temanggungkab.go.id, 2015. [In Bahasa Indonesia]
- [8] D. Hartati, A. Rimbawanto, Taryono, E. Sulistyaningsih, A.Y.P.B.C. Widyatmoko, Pendugaan keragaman genetik di dalam dan antar provenan pulai (*Alstonia scholaris* (L.) R.Br.) menggunakan penanda RAPD. Jurnal Pemuliaan Tanaman Hutan 1(2) (2007) 89-98. [In Bahasa Indonesia]
- [9] T.P. Yudohartono, P.R. Herdiyanti, Variasi pertumbuhan bibit jabon berbagai pohon induk dari provenan Lombok Barat dan Ogan Ilir. Wana Benih 13(2) (2012) 77-88. [In Bahasa Indonesia]

- [10] Mashudi. Keragaman pertumbuhan bibit mahoni daun lebar (*Swietenia macrophylla* King) dari dua populasi di Yogyakarta, In: Prosiding Nasional Biodiversitas VI Departemen Biologi Fakultas Sains dan Teknologi. A Hayati, D. Winarni, H. Purnobasuki, Ni'matuzahroh, T. Soedarti, & E.P. Kuncoro (Eds.), Universitas Airlangga, 2016, pp.121-129. [In Bahasa Indonesia]
- [11] Mashudi. Keragaman Pertumbuhan beberapa sumber populasi Alstonia scholaris (l.) R.Br. (pulai gading) pada umur 3 tahun di Gunung Kidul. Widyariset 3(2) (2017) 161-172. [In Bahasa Indonesia]
- [12] Mashudi, M. Susanto, S. Pudjiono, Pertumbuhan bibit meranti tembaga (*Shorea leprosula*) umur 6 bulan dari tiga populasi di Kalimantan Timur, In: Seminar Nasional XV Pendidikan Biologi FKIP UNS. Program Studi Pendidikan Biologi Fakultas Keguruan dan Ilmu Pendidikan. Universitas Sebelas Maret. Surakarta, Indonesia, 15(1) (2018) 801-806. [In Bahasa Indonesia]
- [13] E. Windyarini, T.M. Hasnah, Identifikasi dan evaluasi pertumbuhan semai jenis-jenis Shorea penghasil tengkawang. Jurnal Wasian 2(1) (2015) 32-40. [In Bahasa Indonesia]
- [14] D.L. Hasse, Morphological and physiological evaluations of seedling quality in forest and conservation nursery (National Proceedings, 2006). In: Riley, L.E., Dumroese, R.K., Landis, T. D., tech. cords (ed). Proc. RMRS-P-50. Fort Collins, CO: U.S. Departement of Agriculture, Forest Service. Rocky Mountain Research Station, 2007.
- [15] I. Winarni, E.S. Sumadiwangsa, D. Setyawan, Pengaruh tempat tumbuh, species dan diameter batang terhadap produktivitas pohon penghasil biji tengkawang. Jurnal Penelitian Hasil Hutan 22(1) (2004) 23-33. [In Bahasa Indonesia]
- [16] S. Pudjiono, Variasi pertumbuhan bibit manglid (*Manglietia glauca* Bl.) pada beberapa pohon induk dari tiga provenan. Prosiding Seminar nasional Biodiversitas 5(1) (2017) 57-62. [In Bahasa Indonesia]
- [17] M. Na'iem, Keuntungan dan pembatas kegiatan pemuliaan pohon, Bahan kuliah Program Pasca Sarjana, Universitas Gadjah Mada Yogyakarta, 2003. [In Bahasa Indonesia]