ABSTRACT
Business intelligence is the most developed subject in strategic management research; however, the connection to startup performance has not been much conducted in research. This research examines the model for startups in Indonesia, considering that investment for startups in Indonesia is one of the largest in the region of Asia Pacific. The research used SEM-PLS to analyze the relationship between business intelligence, innovation, network learning, and startup performance. The unit of analysis used was the startup registered in the Indonesian startup database, published by the Indonesian Creative Economy Agency (Badan Ekonomi Kreatif). It was 992 startups registered, and there were sent to 885 emails to startups that included emails. Just 31 startups replied to the research questionnaire, resulting in a 3.5 percent response rate. The findings of this study show that while business intelligence does not appear to have an impact on startup success, it does have an impact on network learning. Innovativeness has been shown to have an effect on startup success in Indonesia. The paper helps to explain the position of business intelligence. Of these, only 31 startups filled out the research questionnaire or a response rate of 3.5%. Result of this study find that business intelligence is not proven to have an influence on startup performance, but it does affect network learning. Innovativeness has been shown to have an influence on startup performance in Indonesia is innovativeness. The paper allows a better understanding of how the mechanisms are going on in it.

Keywords: Business Intelligence, Network Learning, Innovativeness, Startup, Indonesia.

1. INTRODUCTION

Competitive intelligence, also known as business intelligence, market intelligence, customer intelligence, business intelligence & analytics, is the most developed subject in strategic management research (Wheelen, Thomas et al., 2017). But the connection to startup performance has not been much researched (Caseiro & Coelho, 2019; Hoppe et al., 2009).

From the perspective of resource-based view (RBV), knowledge is one of the assets, and even then it becomes the main asset to win the current competition, giving birth to knowledge-based view (KBV). In KBV, the main asset for a company is knowledge in formulating its competitive advantage (Villar et al., 2014). Knowledge enhancement can result from business intelligence, because the processes involved in knowledge production are search and recombination (Colombelli et al., 2013). Aside from business intelligence, the process of acquiring and utilizing knowledge can also be obtained from network learning, related to the condition that startups rely a lot on external sources to obtain their knowledge (Weerawardena et al., 2014). Moreover, related to performance, innovation is one of the keys to improving company performance in a rapidly changing era (R. Calantone et al., 2003; Vnoučková, 2018; Z. Wang & Wang, 2012).

From the perspective of dynamic capability (DC), corporate capability is important in competing. The factor that contributes the most to increasing competition in a tri-industry is the increase in competitor capabilities
(Wheelen, Thomas et al., 2017), so the role of intelligent business becomes very important for companies to be able to know the capabilities of competitors. Business intelligence is an important part of environmental scanning for most companies (Wheelen, Thomas et al., 2017).

Research indicates that business intelligence has a strong relationship with company performance (Wee & Leow, 1994; Wheelen, Thomas et al., 2017), however the mechanism of this relationship in the context of startup has not been much studied. In addition, startup is not a small version of the company. Startups are born in an uncertain environment with limited resources, so it is important for startups to do environmental scanning accurately in determining their business strategies, one of which uses business intelligence & analytics.

The mechanism of business intelligence relations to startup performance in startups in Europe occurs through innovation and network learning (Caseiro & Coelho, 2019). This study examines the model for startups in Indonesia, considering that investment for startups in Indonesia is one of the largest in the Asia Pacific Region (CB Insight, 2020).

Literature Review

Business Intelligence & Analytics

Competitive intelligence (CI) is a formal program of gathering information on a company’s competitors (Wheelen, Thomas et al., 2017). Often called business intelligence, it is one of the fastest growing fields within strategic management.

Business intelligence can be seen as a general term, which includes various activities, processes and technologies to collect, store, analyze and disseminate information to improve decision making (Wanda & Stan, 2015).

Business intelligence has three basic objectives, namely to provide a general understanding of the industry and competitors, identify weak areas of competitors, and predict potential actions from competitors that endanger the company's position in the market (David & David, 2017). Optimal business intelligence practice combines internal and external information so as to support business performance (Balzanz, 2020).

But all this, including the idea of data and information analysis, becomes managerial that is concise and useful for science (Al-Shubiri, 2012). In the field of management, the concept has been studied under a different title (Adidam et al., 2012). Some authors use the term business intelligence to convey the concept of “environmental scanning”, which focuses on how managers “scan” the environment of their organizations; others refer to intelligence or competitive analysis (Dishman & Calof, 2008; Gudfinnsson et al., 2015; Shollo & Kautz, 2010; Wright & Calof, 2006) focus more on competitors, strengths, weaknesses, and their behavior; while others mention technology intelligence which is oriented to technological dynamics (Adidam et al., 2012; Božić & Dimovski, 2019a; Hannula & Pirttimaki, 2003; Pellissier & Nenzhelele, 2013). This practice allows companies to turn data into useful knowledge (Hoppe et al., 2009), and then make better and faster decisions (Chang et al., 2015; Hannula & Pirttimaki, 2003) to improve business performance and support decision making at all levels of the organization, for example, strategic, tactical and operational levels (Gudfinnsson et al., 2015; Negash & Gray, 2008).

However, the large streams of data in different formats generated through high-velocity communication technologies, referred to as “big data”, led to one of the biggest technological disruptions in the field of business intelligence (Agarwal & Dhar, 2014).

Although different definitions of BI&A appear in the literature, we understand BI&A as referring to the technologies, techniques, systems, processes and applications used to acquire, store, analyze and transform business and market data and information into relevant knowledge for use in making better business decisions (Božić & Dimovski, 2019b)

Innovativeness

Innovation refers to the tendency of companies to engage in and support new ideas, experiments, and creative processes that can produce new products, services, or technological processes (Lumpkin & Dess, 1996; Shan et al., 2016).

Competition is a process driven by innovation (Hill et al., 2017). Innovative performance is also seen in the literature as one of the most important drivers of other aspects of organizational performance and encourages the formation of organizational learning dynamics (Gunday et al., 2011). Firms innovativeness is conceptualized from two perspectives. The first sees it as a behavioral variable, i.e., the rate of innovation adopted by firms. The second sees it as a willingness to change (R. J. Calantone et al., 2004).

The ability to innovate is recognized as one of the determining factors for an organization to survive and succeed (C. L. Wang & Ahmed, 2004). More innovation can be a significant driving factor for creating value and will help respond to customer needs, develop new capabilities that enable to achieve and maintain better performance or increasingly complex superior profitability, competitive environment and fast-changing (R. J. Calantone et al., 2004; Cepeda-Carrion et al., 2012; Z. Wang & Wang, 2012). The literature conveys that the ability of innovation as one of the most important determinants in company performance is supported by many people in empirical studies (R. J. Calantone et al.,
Innovative companies, creating and introducing new products and technologies, can produce better economic performance and are a source of economic growth (Wiklund & Shepherd, 2003).

Network Learning

Network learning capability is defined as the company's capacity to build, integrate, and reconfigure technical and non-technical knowledge generated through external links and institutions (Weerawardena et al., 2014).

Collective learning is the core competency of a company which is the root of its competitiveness (Furrer, 2016). External networks influence the ability of companies to mobilize environmental resources, attract customers, and identify entrepreneurial opportunities (Lee et al., 2001). Learning occurs when people share data, information, and knowledge. Knowledge can be felt as meaningful information obtained by understanding, awareness, and familiarity through study, investigation, observation or experience over a certain period of time. Knowledge generated through learning and learning new abilities helps companies to compete effectively, be resilient, and grow (Hitt et al., 2001) The ability of organizations to identify, capture, create, share, or gather knowledge has become the spotlight and therefore has become the most important element in the production and competitive advantage. (Z. Wang & Wang, 2012)

Startup Performance

Performance is the ability to achieve goals with expectations or superior. The performance is multidimensional and that the comparison of performance with competitors reveals important information (Birley & Westhead, 1990). The concept of organizational performance involves a variety of perspectives, time periods, and criteria (Gerschewski & Xiao, 2015). In research of (Caseiro & Coelho, 2019) three different types of approaches are used to measure organizational performance. The first relates to financial performance, which is a performance-based indicator of performance and is considered the narrowest conception of business performance. The second conceptualization includes dimensions of financial and operational performance, combining non-financial results actions (for example, product markets), such as market share, introduction of new products, and marketing effectiveness and internal process results. These operational factors can ultimately contribute to financial performance. The broadest conceptualization of performance is related to organizational effectiveness.

In research of (Wiklund & Shepherd, 2003), performance appraisal is done by asking a re-sponsor to compare the development of their own company over the past 3 years relative to their two most important competitors for 10 different performance dimensions: sales, growth, revenue growth, employee growth, net profit margins, product/service innovation, process innovation, adoption of new technology, product/service quality.

Conceptual Framework and Hypotheses

The research model that will be tested follows the model proven by the research of (Caseiro & Coelho, 2019) as follow:

Figure 1. Conceptual framework

H1: Business intelligence & analytics have positive influence on startup performance
H2: Business intelligence & analytics have positive influence on innovativeness
H3: Business intelligence & analytics have positive influence on network learning
H4: Innovativeness have positive influence on startup performance
H5: Network learning have positive influence on startup performance
H6: Network learning have positive influence on innovativeness

2. METHODS

This research use quantitative method to analyze the relationship between business intelligence, innovation, net-work learning, and startup performance. The unit of analysis used is the startup registered in the Indonesian startup database, published by Badan Ekonomi Kreatif. Of the 992 startups registered, e-mails were sent to 885 startups that included e-mails. Of these, only 31 startups filled out the research questionnaire or a response rate of 3.5%.

The data obtained were then analyzed using PLS analysis, given the small sample size. The analysis in this study uses SmartPLS 3.0 software.
3. RESULTS AND DISCUSSION

3.1 Result

3.1.1 Assessment of Measurement Models

After an analysis using SmartPLS, we found that some indicators had an outer loading value of less than 0.7 so that the indicators were removed and the model was retested. After retesting, it was found that all indicators had an outer loading value of more than 0.7 so that further analysis was performed.

Internal reliability was analyzed using the composite reliability reference and values obtained from all variables were more than 0.6 so that all variables were stated to be reliable.

Discriminant validity was evaluated using crossloading values (for indicator levels) and Fornell-Larcker Criteria (for variable levels). The results obtained for cross loading and AVE values met the criteria so that all variables were declared valid based on fig. 2.

Figure 1 PLS test result
3.1.2 Asesmen Model Struktural

The coefficient of determination of the model can be seen from adjusted R² so that the evaluation was more accurate, and found overall the three variables were able to explain the variable startup performance of 62.7%, based on table 1.

Table 1. Determination Coefficient

<table>
<thead>
<tr>
<th>Variable</th>
<th>Adjusted R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Intelligence &amp; Analytics</td>
<td>-</td>
</tr>
<tr>
<td>Innovativeness</td>
<td>0.473</td>
</tr>
<tr>
<td>Network Learning</td>
<td>0.741</td>
</tr>
<tr>
<td>Startup Performance</td>
<td>0.627</td>
</tr>
</tbody>
</table>

To test the hypothesis analyzed using the rule of thumb, viz (1) if the coefficient or direction of the variable relationship (indicated by the original sample value) matched what was hypothesized, and (2) if the statistical t-value was greater than 1.703 (one-tailed) and (3) the probability value (p-value) was less than 5%. The results of testing the complete hypothesis can be seen in the following table. From the above hypotheses, the research model, based on table 2.

Table 2. Hypotheses Test Result

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Path Coefficient</th>
<th>T statistics</th>
<th>P value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>-0.450</td>
<td>0.850</td>
<td>0.198</td>
<td>Not supported</td>
</tr>
<tr>
<td>H2</td>
<td>0.667</td>
<td>1.554</td>
<td>0.060</td>
<td>Not supported</td>
</tr>
<tr>
<td>H3</td>
<td>0.866</td>
<td>11.131</td>
<td>0.000</td>
<td>Supported</td>
</tr>
<tr>
<td>H4</td>
<td>0.706</td>
<td>11.392</td>
<td>0.009</td>
<td>Supported</td>
</tr>
<tr>
<td>H5</td>
<td>0.593</td>
<td>1.309</td>
<td>0.096</td>
<td>Not supported</td>
</tr>
<tr>
<td>H6</td>
<td>0.053</td>
<td>0.122</td>
<td>0.451</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

3.2 Discussion

Business intelligence & analytics are basically the capabilities of the company. In the context of startups, they need to use and analyze big data to improve their business decisions. The results obtained from this study found that business intelligent & analytics did not have a significant effect on startup performance. Whereas in other literature found that business intelligence & analytics have an influence on startup performance [2,27,42]. This might be due to the fact that most of the samples (68%) are startups that have never received funding from outsiders, so that in terms of performance they have not been effective and their business intelligence & analytics activities have not been optimal. In addition, the variables used may need to be replaced in future studies, not focusing on characteristics, but on the use of business intelligent & analytics.

Business intelligent & analytics have a significant influence on network learning, reinforcing findings [2,6] while the effect of business intelligence on innovativeness was found to have an insignificant effect. It is different from what was found by reference [2]. The relationship between intelligent business & analytics with innovation can occur indirectly, so it needs to be further investigated for mediating variable, for example absorptive capacity. While the business intelligence & analytics relationship to network learning needs to be a concern for practitioners because of startups as a company rely on innovation, the main resource is knowledge. Thus, it is necessary to increase the knowledge generated from the network, one of them is by utilizing business intelligent & analytics which is more effective.

Innovativeness is proven to have a significant influence on startup performance. The reinforces the results of reference [36], but differs from the findings of reference [2]. The relationship is relevant to the context of startups as companies that rely or are based on innovation. Network learning has no significant effect on startup performance or on innovation. These two relationships differ from what was discovered by reference [2]. The influence of network learning on startup performance and innovation may not be a direct influence, so it is necessary to examine the mediation variables such as membership of the business hub, incubator, or business accelerator.

4. CONCLUSIONS

In general, the three variables studied were able to explain well to startup performance, so it is worth further investigation, especially considering that research in the context of startup is still not much done.

The research has several limitations. The first is a small sample size. To overcome this problem, the cooperation with various business hubs, incubators or business accelerators, especially those owned by universities. The second is the characteristics of startups studied, most of them are startups that have never received external funding so that the scale is still small. Therefore, it is suspected that their business intelligence & analytics activities are still not effective. Future studies need to consider researching largesized startups, for example startups that have received at least a title of centaur (have received funding of more than 500 million USD). Third, the model tested is the same model from reference [2] research. For further research, it can add several other variables such as absorption capacity, entrepreneurial orientation to organizational culture.

ACKNOWLEDGMENT

We would like to express our gratitude to STIE Inaba, Kolaborasi Business Incubator, and all startup participants who have facilitated the research to its completion.
REFERENCES


