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ABSTRACT 
The three-stage estimation technique that was designed to estimate the dynamic conditional correlation (DCC) model 
and its variants is computationally convenient but it may be less efficient than the quasi-maximum likelihood method 
for simultaneous estimation of all parameters, due to the inconsistent moment estimators used in the second stage. In 
this article, we have made an in-depth survey on the advantages and disadvantages of this technique, to facilitate readers 
to carry out relevant empirical research. We suggest that the consistent DCC (cDCC) model and its variants should be 
widely applied to typical financial series since this three-stage estimation is more feasible for them. 
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1. INTRODUCTION 

In the past 30 years, modeling the time-varying 
covariance of asset returns has become a part of financial 
econometrics. In risk management, it has been proved to 
be a useful tool to estimate the time-varying volatility and 
co-movement between financial series. The correlation 
between returns is related to the time-varying beta 
coefficient in the CAPM model, the hedge ratio and the 
Value-at-Risk of a portfolio. 

Alternative multivariate GARCH models, which aim 
to provide simple solutions to the problems described 
above, have become a widely discussed topic. Among 
them, the most famous one is the dynamic conditional 
correlation (DCC) model (Engle, 2002), which is one of 
the most cited works in parametric modeling of time-
varying correlations of multivariate portfolios. 

The DCC model is a generalization of the constant 
conditional correlation (CCC) model (Bollerslev, 1990) 
and its extended (ECCC) model (Jeantheau, 1998), where 
volatilities are time-varying, but conditional correlations 
are assumed to be constant. Nevertheless, it is generally 
believed that DCC model does not perform well for the 
high-dimension case. The reason is the assumption that 
the same parameters drive all the correlations (that is, the 
correlation evolve according to a process that has the 
same innovation impact and smoothing parameters for all 
pairs of variables) is very strong. To better capture the 
heterogeneity in conditional correlations, Cappiello et al. 
(2006) proposed the asymmetric generalized DCC (AG-

DCC) model by introducing two modifications: one is the 
asset-specific correlation evolution parameters, the other 
is the asymmetric parameters in conditional correlations. 
The asymmetric DCC (A-DCC), as a special case of the 
AG-DCC, has more flexibility and practicability. Li et al. 
(2002), Bauwens et al. (2006), and Silvennoinen and 
Teräsvirta (2008) reviewed a large number of univariate 
and multivariate GARCH-type models from different 
perspectives. 

Let , , , , ⋯ , , ′  be the vector of 
innovations or shocks from  financial asset returns at 
time  for 1, 2,⋯ ,  with | 0  and 

| Σ , where  is the innovation set up 
to time 1. The DCCs cited above, including the CCC 
and ECCC, use the fact that the conditional covariance 
matrix Σ  is decomposed as follows: 

Σ   (1) 
where  is the diagonal matrix of time-varying 
volatilities , , 1, 2,⋯ , ,  is a parameter vector, 
and  is the  (possibly) time-varying conditional 
correlation matrix. Since Engle’s DCC model was 
designed to consider a three-stage estimation of Σ , these 
variants of DCC have also adopted this estimation 
method. This three-stage process is roughly as follows. 
In the first stage, univariate volatility models that assume 
Gaussian distribution errors (regardless of the real error 
distribution) are used to model the variances ,  for each 
innovation, and estimates of ,  are obtained. In the 
second stage, residuals, transformed by their estimated 
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standard deviations from the first stage, are used to 
estimate the intercept parameters of the conditional 
correlation. The third stage is to estimate the coefficients 
controlling the correlation dynamics after the intercept 
parameters have been estimated. 

The three-stage estimation technique is much more 
convenient in computation, but it may be less efficient 
than the quasi-maximum likelihood method for all 
parameters estimated simultaneously. In this article, we 
shall make a comprehensive summary of the three-stage 
estimation technique and procedure, to facilitate readers 
to carry out relevant empirical research. The remainder 
of this article is organized as follows: Section 2 discusses 
the specification of univariate volatility models, Section 
3 discusses positive definiteness and estimation of the 
DCC-type models, Section 4 focuses on the two-
dimensional case regarding element versions, and 
Section 5 gives some comments.  

2. UNIVARIATE VOLATILITY 
SPECIFICATIONS 

Engle and Sheppard (2008) have asymptotically 
studied the efficiency of the three-stage estimation 
process, and Engle and Sheppard (2001) have simulated 
it. By comparing the estimated univariate model with the 
exact knowledge of univariate parameters, they found 
that the univariate estimations had almost no results. A 
similar test of conditional correlation process shows that, 
compared with the exact knowledge of the unconditional 
correlation matrix, the separate estimation of intercept 
and dynamic parameters leads to small finite sample bias. 
However, the existing empirical studies almost assume 
that the univariate models are correctly specified. If the 
univariate models are not well specified, the estimation 
of correlations will no more be consistent. The choice of 
univariate models does not affect the sign of standardized 
residuals, and many of them generate relatively similar 
volatility patterns, so this correlation may not be very 
sensitive to univariate models, at least in a reasonable 
range. Nevertheless, people should not just rely on this 
intuition, but should carry out a broader selection process 
for univariate models to minimize the risk of inconsistent 
correlation estimation caused by the univariate models. 
Cappiello et al. (2006) suggested using the BIC to select 
univariate volatility specifications from a class of models 
that can capture the common characteristics of asset 
return variances. They claimed that it was appropriate to 
use BIC, since it can make, as long as it is a member of 
the group, an asymptotical selection of the correct 
specification. 

We describe several widely used univariate GARCH 
specifications with 1-lag innovation and 1-lag volatility 
as empirical studies have shown that the (1, 1)-order 
GARCH specifications are sufficient for most financial 
asset return series, thereby effectively reducing the lag 
length in the ARCH model, which may induce 

cumbersome computation. 

GARCH (1, 1) model: 

, , , , , ω ,

, , 	 , 	~	 . . . 0, 1    (2) 
TGARCH (1, 1) model: 

, , , , , ω , ,

, , 	 , 	~	 . . . 0, 1    (3) 
where , , , 0 , , , , 0 . 

GJR-GARCH (1, 1) model: 

, , , , , ω

, , , , 	 , 	~	 . . . 0, 1    (4) 

where the indicator variable ,  takes on value1 if 

, 0, and 0 otherwise. 
EGARCH (1, 1) model: 

, , , , 	 , ω ,

	 , , 	 , 	~	 . . . 0, 1    (5) 
where , , , , . 

APARCH (1, 1) model: 

, , , , , ω ,

, , , 	 , 	~	 . . . 0, 1    (6) 
where 0, 1 1. 

FIGARCH (1, 1) model: 

, , , , , 1 1

, , 	 , 	~	 . . . 0, 1    (7) 

where 

1 1
! !

⋯
⋯

!
⋯ is the fractional difference,  is 

the lag operator, 0 1. 

HYGARCH (1, 1) model: 

, , , , , 1 1

1 , , 	 , 	~	 . . . 0, 1    (8) 

where 0. 

The simplest of the volatility models is GARCH, 
followed by TGARCH, GJR-GARCH and EGARCH (all 
of which considering threshold/leverage effects), and 
APARCH (encompassing both threshold/leverage effects 
and estimated power of variance evolution). FIGARCH 
and HYGARCH models are often used to describe 
volatility long memory, but we should be cautious due to 
the existence of covariance stationarity. 

If | ~ 0, , then the quasi-log-likelihood 
function of this vector estimator , composed of these 
parameters in the volatility models, can be expressed as  

∑ 2 2 | | ′    

(9) 
where . 
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3. ESTIMATION OF DCC-TYPE MODELS: 
MATRIX VERSION 

Once the univariate volatility models are estimated, 
the standardized residuals,	 ̂ , , / , , may be  used 
to estimate the correlation parameters of DCC-type 
models. 

3.1. Specification of DCCs 

The evolution of the correlation in Engle’s (2002) 
DCC model is given by 

/ /    (10) 
1 ′    (11) 

where  is the time-varying conditional correlation 
matrix with all diagonal elements 1,  and  are two 
nonnegative parameter such that 1 ,  is a 
positive definite matrix (see below), and  is a 
diagonal matrix composed of the diagonal elements of 
the matrix  . 

It is noted that the model described by Eqs. (10) and 
(11) does not allow for asset-specific innovations and 
smoothing parameters or asymmetries. Hence Cappiello 
et al. (2006) modified the correlation evolution to be an 
asymmetric generalized DCC 

′ ′ ′ ′ ′
′ ′ ′   (12) 

where ,  and  are  parameter matrices, 
⋈ ,  is a 1 indicator function as the case 

of one variable in Eq. (4), while “⋈ ” indicates the 
Hadamard product. They referred to the model in Eqs. 
(10) and (12) as the AG-DCC. The asymmetric diagonal 
DCC (AD-DCC) is obtained if ,  and  are replaced 
by diagonal matrices, the asymmetric DCC (A-DCC) is 
further obtained if ,  and  are replaced by scalar 
matrices. The symmetric DCC is a special case of A-
DCC when 0. The AG-DCC is at the cost of added 
parameters and complexity, so it is not very applicable. 
The AD-DCC is appropriate for applications to many 
financial assets as its parameters are easier to interpret. 
Of course, the scalar specifications (A-DCC and DCC) 
are preferred if the asset number is very large.  

It can be clearly seen from Eq. (12) that a sufficient 
condition for  to be positive definite is the initial 
matrix  is positive definite and the intercept matrix 

′ ′  is positive semi-
definite (see Bauwens et al. (2016) for further details). In 
the DCC, the condition is only 0, 0, 1. 
In the A-DCC,  

1 ′
′    (13) 

The sufficient condition for  to be positive definite is 
1 , 0 , 0, 0 , where  is the 

maximum eigenvalue of matrix / ( ′ S / . 

It is not very difficult to further extend the models to 

allow for exogenous variables in dynamics. For example, 
the ADCCE and ADCCX models proposed by Li (2011, 
2015). The AG-DCCX generalization is as follows: 

′ ′ ′ ′ ′
′ ′ ′   (14) 

where  measures the impact of an exogenous variable 
 on the DCC,  is the matrix that all elements are 1. 

3.2. Estimation of DCCs 

If Σ , | ~ 0, Σ , then the joint 
quasi-log-likelihood function can be written as 

∑ 2 |Σ | Σ   

∑ 2 | |

  

∑ 2 2 | | | |

  

∑ 2 2 | | ′
| |   

∑ 2 2 | | ′

∑ | |   

≜ , , ,   (15) 
where , , , , ′ . 

Hence, the joint quasi-log-likelihood function is split 
into two parts and maximized sequentially. First, the 
parameters of the univariate volatility process are 
estimated by Eq. (9), and the estimate of θ is given by 

max   (16) 

Once　  is obtained,  and  are replaced with 

sample analogues, = ∑ ̂ ̂′  and = ∑ ̂ ̂ ′ , 
respectively, where 	 ̂ . Finally, the 
parameters of the correlation process are estimated by  

, , , ∑ | |

   (17) 
and the estimate of  is given by 

max , , ,   (18) 

The three-stage estimation technique was called 
‘‘correlation targeting’’ in Engle et al. (2009) rather than 
its revised version (Pakel et al., 2020), since neither  
(which is assumed to be the second moment of , i.e., 

′ ) nor  is estimated by the quasi-maximum-
likelihood method but are replaced respectively by the 
moment estimators  and , which aim to match the 
sample covariance matrix of  with the unconditional 
expectation of . In the DCC, however, Aielli (2013) 
showed that  is both biased and inconsistent for , due 
to the fact that . The DCC driving 
process, , is usually regarded as a linear process (e.g., 
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Eqs. (11) and (13)), and the roles of the parameters ,  
and  are then explained accordingly. In fact, the 
conditional covariance matrix of  is not  but , so 

 is not a linear process. A serious consequence is that 
the traditional interpretation of ,  and  may lead to 
misleading conclusions. 

4. ESTIMATION OF DCC-TYPE MODELS: 
ELEMENT VERSION 

In order to understand the dynamic process at a 
glance, we expand the matrices in these DCCs into the 
elements. At the same time, for concision, we only 
investigate the two-dimensional case. 

Let , , , ′  for 1, 2,⋯ ,  with 

| 0  and | , ,

, ,
, 

and let , , / ,  for 1, 2 with the conditional 
correlation 

 , , / , ,    (19) 
between ,  and , . Clearly, ,

, , , | , . 

4.1. Specification of DCCs 

Let's first describe the element versions of these 
DCC-type models, including scale and diagonal cases.  

DCC model: 

, , / , ,   

, 1 , , ,   (20) 
where  is often assumed to be the unconditional 
correlation between ,  and ,  ( 1 .  

The positivity constraints: 1, 0 and 
0. 

A-DCC model: 

, , / , ,   

 , 1 , , ,

, , , ,    (21) 
where , , , .  

The positivity constraints: 1 , 0 , 
0, 0,  is the maximum eigenvalue of matrix 

, , ,
. 

In these diagonal cases below, let 
0

0 , 

0
0

 and 
0

0 . 

D-DCC model:  

, , / , ,   

, 1 , ,

,    (22) 
The positivity constraints: 

1 1 1 , 
1 0 and 1 0. 

AD-DCC model:  

, , / , ,   

, 1 , ,

, , , , ,    (23) 
The positivity constraints:  

1 , 1 , and 

1 1 1
, , . 

Moreover, the one-lag variable 	  can be 
embedded into Eqs. (20)-(23) to investigate the effect of 
an exogenous variable ( ) on these conditional 
correlations. 

4.2. Estimation of DCCs 

Next, we describe the element versions of the three-
stage estimation for DCCs. 

If , , / , 	~	 . . . 0, 1  for 1, 2 , then 
the volatility part ) in the joint quasi-log-
likelihood function, Eq. (15), is obviously the sum of 
individual GARCH-likelihood functions  

, ∑ ∑ 2 ,

,

,
  (24) 

which is jointly maximized by separately maximizing 
each term 

, ∑ 2 ,
,

,
   (25) 

where  is composed of these parameters in the 
volatility model followed by ,  for 1, 2. 

Once ,  is obtained, 

, ,  and , ,  are replaced with the 

moment estimators, ∑ ̂ , ̂ ,  and 

∑ ̂ , ̂ , , respectively. Thus, these parameters  

(e.g., , ,	 ) of the correlation process are estimated 
by  

, ; ; , ∑ 1 ,

,

,

,

,

,

,

, ,

, ,

,

,

,

,
  (26) 

All the above quasi-log-likelihood functions are 
usually solved by the BHHH algorithm, which uses the 
gradient information of the objective function to iterate 
and optimize. However, the gradient calculation is very 
complex and does not necessarily exist, due to more 
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parameters. At the same time, there may be some 
oscillations in the search, leading to convergence to the 
local optimal solution, and the results are sensitive to the 
selection of the initial value. Some statistical software 
packages, such as OxMetrics and R, contain the programs 
for DCC and A-DCC. So far, these programs for D-DCC 
and AD-DCC have not been discovered, and thus we 
need to program them ourselves. 

5. CONCLUSIONS AND COMMENTS 

In the above DCCs, the conditional variances follow 
univariate GARCH models. The conditional correlation 
is then modeled as a special function of the past GARCH 
standardized residuals. In its original intention, such a 
modeling should be able to provide two advantages. 
Firstly, due to the modular structure of conditional 
covariance matrix Σ , a consistent three-stage estimator 
for large systems should be easily obtained. Secondly, 
due to the explicit parameterization of conditional 
correlation process, the examination of some correlation 
hypotheses, such as whether the correlation process is 
integrated or not, should be more direct than with other 
data-driven volatility models.  

The DCCs, however, are less tractable than expected. 
First of all, it is generally believed that they do not 
perform well in high-dimensional cases (there exists the 
dimension curse), as the parameter estimates encounter 
serious negative biases, resulting in the correlation 
trajectories being smoother and smoother, and eventually 
becoming almost flat and constant. Pakel et al. (2020) 
suggested a composite likelihood (CL) estimator based 
on the summation of the quasi-likelihood functions of 
innovation subsets and thus to avoid the operation of 
high-dimensional matrix. This method, worth trying in 
the future, allows people to estimate the model even 
when the cross-section size is larger than the sample one. 
Secondly, the conjecture on the consistency of the second 
stage estimator, in which the correlation intercept are 
estimated, has been proved to be untenable. As a result, 
the third stage estimator, where the dynamic correlation 
parameters are estimated, may be inconsistent in turn. 
This issue motivated Aielli (2013) to correct the DCC, 
and introduce a consistent DCC (cDCC) model, in which 
the  process is a slightly different form that in Eq. (11): 

1

  (27) 
where  is a correlation parameter matrix. Note that the 

corrected standardized residual   does not 

depend on  since  is only associated with the 
diagonal elements of  , which are all equal to 1. The 
three-stage estimation technique, the same quasi-log-
likelihood function as the DCC, is feasible for the cDCC 
with large systems since  can be estimated consistently 

by the sample covariance matrix of , i.e., 

∑ ̂ ̂′  . In fact, 

,  

| .  

Regarding the performance of the three-stage 
estimators, Aielli (2013) revealed that the cDCC 
correlation forecasts perform equally or significantly 
better than the DCC correlation forecasts for typical 
financial series. Accordingly, it is worth exploring to 
extend the correction in the cDCC to other DCC-type 
models. 

This summary is not only of great significance to 
promote “teaching and learning”, but also very helpful to 
investors in asset allocation and risk management. 
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