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A novel approach — based upon vertex operator representation — is devised to study the AKNS
hierarchy. It is shown that this method reveals the remarkable properties of the AKNS hierarchy
in relatively simple, rather natural and particularly effective ways. In addition, the connection of
this vertex operator based approach with Lie-algebraic integrability schemes is analyzed and its
relationship with 7-function representations is briefly discussed.

Keywords: AKNS hierarchy; Lax integrability; Lie-algebraic approach; vertex operators.

Mathematics Subject Classification: 37K10, 17B69, 17B80

1. Introduction

The “miraculous” properties of the AKNS hierarchy related to calculations connected with
the integrability of nonlinear dynamical systems have, since the early work of their dis-
coverers [1, 20], been the focus of considerable research. These investigations, such as
in [8, 9, 11, 14, 15, 19, 21, 24, 26], have produced further insights into the nature of the
AKNS hierarchy and several additional methods of construction. In what follows, we devise
an alternative approach to exploring the properties of the AKNS hierarchy based upon
its generating vector field form and related vertex operator representation. It appears that
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our formulation offers several advantages over existing methods when it comes to simplic-
ity, effectiveness, flexibility and ease of extension, but more detailed confirmation of these
observations must await further investigations.

To set the stage for our approach, we begin with some fundamentals of the remarkable
sequence of Lax integrable dynamical systems that is the focus of this study. We shall
analyze the AKNS hierarchy of Lax integrable dynamical systems on a complex 2r-periodic
functional manifold M C C*(R/27Z;C?), which is well known [1, 14, 20, 21] to be related
to the following linear differential spectral problem of Lax type:

4 —L(z; N f =0, l(x;N) = (A/2 ! ) (1.1)
dx v —A/2

Here € R, f € L'(R;C?), the vector function (u,v)T C M, T denotes the transpose
and A € C is a spectral parameter. Assume that a vector function (u,v)T C M depends
parametrically on the infinite set ¢ := (t1,t2,t3,...) € CN in such a way that the generalized
Floquet spectrum o(¢) := {A € C : sup,eg || f(z; A)|l1 < oo} of the problem (1.1) persists
in being parametrically iso-spectral, that is do(¢)/dt = 0. The iso-spectral condition gives
rise to the AKNS hierarchy of nonlinear dynamical systems on the functional manifold M
in the general form

——(u(t), v(®)T = K;[u(t), v(t)], (1.2)

u(t u(x +t1,02,13, ...

(¥ = ( ) (1.3)
v(t) v(x +t1,ta, ts, .. .)

for t € CN. The corresponding vector fields K j M — T(M),j € N, can be constructed
[7, 14, 17, 20, 24, 26] via the following Lie-algebraic scheme.

where

We define the centrally extended affine current s/(2)- algebra G := G & C

Gi=qa= > dVeN:a?eC™(R/2rZ;s((2C)) (1.4)

JEZ, j<K o0

endowed with the Lie commutator
[(a1,c1), (ag,c2)] := ([a1, a2, (a1, das/dz)) (1.5)

with the scalar product
21
(a1,ag) := res)\_oo/ tr(ajag)dx (1.6)
0

for any two elements a1, as € G, where “res” and “tr” are the usual residue and trace maps,
respectively. As the spectrum o(¢) C C is supposed to be parametrically independent,
there is a natural association with flows. These flows are generated by the set [ (g**) of
Casimir invariants of the coadjoint action of the current algebra G on a given element
{(x;\) € G* = G, contained in the space D(G*) comprised of smooth functions of the form
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res)—ootl - Q* — C. Here we have denoted by g~ = Q~+ @ Q~_ the natural splitting into
two affine subalgebras of nonnegative and negative A\-expansions. In particular, a functional

v(A) € 1(G) if and only if
S (@: ), (s V)] + %S(x; ) =0, (1.7)

where the gradient S(x; \) := grad v(\)(¢) € G_ is defined with respect to the scalar product
(1.6) by means of the variation

0y(A) := (grad v(A)(4), 6¢). (1.8)

We note here that the determining matrix equation (1.7) in the case of the element ¢(x; \) €
G*, given by the spectral problem (1.1), can be easily solved recursively as A\ — oo in the
following asymptotic form as

Sh) ~ > SD @A, S(m)z< . 12>’

JELy Sa1 S

- 1/2 0 - 0 u
50 ) = L 50 = , (1.9)
0 -1/2 v 0
N —UV Uy N Vg — Wy Ugy — 2020V
S@(z) = , SO(2) = e
—Vy VU Vpw — 20%U UV, — VU
and so on, based upon the differential relationships
ASi2 = Si2.2 4+ u(S11 — Sa2),
~A\Sa1 = a1 — v(S11 — Sa), (1.10)
gll,m = uSy —vS12 = —5'22,33,

following from (1.7).
Now we will take into account that the coadjoint orbits of elements ¢ € G* with respect
to the standard R-structure [14] on the Lie algebra G

[(a1,c1), (a2, c2)|r = ([Rai,as] + [a1, Rasg], (Rai,das/dx) — (day /dx, Rasz)) (1.11)

where, by definition, R := %(P+ — P_) and P4G := G, are Poissonian manifolds 2, 3,
7,14, 18, 24, 26]. Then the corresponding a priori iso-spectral AKNS flows (1.2) can be
constructed as the commuting Hamiltonian systems on G*

d

L om0 = (V18) 0+ L (415, (1.12)

a5~
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generated by the Casimir invariants v; € I(G*),j € N, with respect to the Lie-Poisson
structure on G* defined as

{7.£} := (¢, [grad y(£), grad £ (£)]r)

+ <Rgrady(£), %grad§(€)> — <%grad7(£),7€grad§(£)> (1.13)

for any smooth functionals v, & € D(G*). As a result of (1.12), Eq. (1.7) is casily augmented
by the commuting hierarchy of evolution equations

dsS -
L [(W15).., ) (1.14)
dt;
for j € N, including the determining Eq. (1.7) at j = 1.

The hierarchy (1.14) can be rewritten with respect to the unique A-parametric vector
field

d .
= > ATd/dtj (1.15)
JELy

on the manifold M as the generating flow on G*:

3

4 S = [S(:c;u), A S )+ AS(a)|. (1.16)

where Z, := {0} UN = {0,1,...}, and the parameters A\, — oo in such a way that
l/Al < 1. We note that the description of A\, — oo here and A — oo in what follows
can also prescribed in terms of formal series in pu/A and 1/A, respectively. However, we
have chosen to use the less elegant notation because we require actual convergence in our
approach, it is simpler, and turns out to be equivalent in the context in which it is employed
in the sequel. It should be mentioned that an operator similar to our vector field (1.15) was
introduced in [12] as an algebraic operator.

Since the flow (1.12) is, by construction, Hamiltonian on the adjoint space gi, it can be
represented also as a Hamiltonian flow on the functional manifold M in the form

d [u B )\251271 -+ u)\2(§11 — 522) (1 17)

dt \ v A2S510 — vA2(S11 — Sa2) ) '
which establishes a connection with the Eq. (1.2) and will be important for our further
analysis. The representation (1.17) will be derived in the next two sections with respect to

both the evolution vector field (1.15) and the related vertex vector field mapping X : M —
M defined as

Xy = (X;\FaX)T% X;\i_ = exp Dy, X)T = exp(=Dy),

1 d (1.18)
jeZy (] + 1) dtj+1
1250001-4
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and satisfying the determining relationship

d t-1d 4
— =X X 1.1
TN (1.19)

as A — o0o. These vertex vector field maps and their connections with integrability theory
have been studied extensively by a number of researchers, most notably in [11, 20].

2. Hamiltonian Analysis

Consider the Casimir functional y(\) € I (Q), A € C, and its gradient with respect to its
dependence on a point (u,v)T € M given by

grad y(A)[u,v] = (5’21(;16; A), gu(l‘;)\))T e T*(M), (2.1)

as follows easily from definition (1.8). By introducing on the manifold M the following two
skew-symmetric operators

b 0 1 - 2ud 0 — 2ud™ 1w (2.2)
S\=1 0/’ = 0 — 200 1u 200 1w ’ .

it follows directly [14, 24, 25] from (1.13) that the relationships (1.10) can be rewritten as

)

holding for all A\ € C. It is easy to verify that owing to (2.3) the Casimir invariant v(\) € 1(G)
simultaneously satisfies the two involutivity conditions

A grad y(\)[u, v] = ngrad y(A)[u, v], (2.

w

{yN),v(w)}e = 0= {v(N), (1) }5 (2.4)
for all A, 4 € C with respect to two Poissonian structures
{-}o == (grad(-),0 grad(-)), {-,-}y := (grad(:),ngrad(-)) (2.5)

on the manifold M, where (-, -) is the standard convolution on the product bundle 7 (M) x
T(M). As a direct consequence of (2.3) and (2.8), one can readily verify that the operators
O,n : T*(M) — T(M), defined by (2.2), are co-symplectic, Notherian and compatible
[7, 17, 24] on M. This, in particular, implies that the Lie derivatives [2, 3, 7, 24]

La0=0=Lan, Lagrady(A)[|u,v]=0 (2.6)
dt dt dt

vanish identically on the manifold M.
Taking now into account (1.12) and (2.2), one finds easily that

u u A2S19 0 4+ ur2(S1 — S
K oY) — Nopgrady (o] = (202 N T )
dt v v n )\2521@ — U)\Q(SH — 522)
(2.7)

asymptotically as A — oo, proving the representation (1.17) mentioned in the Introduction.
Making use of the expansion (1.9) one easily obtains from (2.7) the first flows of the AKNS
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hierarchy:

d [u Uy K] d [u Upy + 202V Kol o] (2.8)
- = = u, v, —_— = = U, Vfy.nny .
dty \ v Vg ! dte \ v — Vg + 20%u ?

and so on. Below we will construct this infinite hierarchy of AKNS flows (1.2) by means of
a very effective completely algebraic approach based on the vertex operator representation
of the solution to the generating flow (2.7).

3. Vertex Operator Structure Analysis

It is well known [14, 17, 21, 24] that the Casimir invariants determining Eq. (1.7) allow
general solution representations in the following two important forms:

G(w: 0) = k(V)S(@: 2) — "“(QA) Sz \) (3.1)
and
S(x;\) = F(x,20; \)C(20; N F Y (x, x0; \). (3.2)

Here S(z; ) := F(xz + 2m,2; ), and F(y,z;\) and F(y,:c; A) belong to the space of linear
endomorphisms of C?, End C?, for all z, 29,y € R, and are matrix solutions to the spectral
Eq. (1.1) satisfying, respectively, the Cauchy problems

0
8—yF(y,x; A) =LUy; NF(y, 2 ),  F(y,z;\)|y= =1, (3.3)

and

9 - 5
(F(y,:c; Mly=2 =T #0)
for all A € C and = € R, where I € End C? is the identity matrix. The parameters k(\) € C

and C(z0; \) € End C? are invariant with respect to the generating vector field (1.15), and
chosen in such a way that the asymptotic condition

(3.4)

S(z;\) € G (3.5)

holds as A — oo for all z € R.
To construct the solution (3.1) satisfying condition (3.5), we find a preliminary partial
solution F(y,z;\) € EndC?, z,y € R, to Eq. (3.4) satisfying the asymptotic Cauchy data

F(y, 250 |[y=e = I+ O(1/X) (3.6)

as A — oo. It is easy to check that

. é1(y,z; \) —a(y; A ea(y, 73 \)
F(y,z;\) = (3.7)
o(y; AT te(y, 23 \) éa(y, 25 \)
1250001-6
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is an exact functional solution to (3.4) satisfying condition (3.6). Here we have defined

é1(y, x; \) = exp{(y—:c)A/erA‘l /j“’jd‘g}’ (3.8)

y
éa(y,x; ) := exp{(x —y)A/2 =171 / ﬁvds},
x
where the vector-function (@, )T € M satisfies the determining functional relationships
G=u—+a N —a2oN2, v=v— oA = PPN (3.9)

as A — 0o, which were discovered earlier in a very interesting article [22]. There it was also
shown that exact asymptotic (as A — oo) functional solutions of these relationships can be
easily constructed by means of the standard iteration procedure.

The fundamental matrix F(y,x;\) € End C? is represented for all 2,y € R in the form

Fly,z;)) = F(y,z; \)F (2, 2; ). (3.10)
Consequently, if one sets y = = + 27 in this formula and defines
E(\) == AUe(x + 2m, 25 \) — éo(w + 2m, a3 M) 7, (3.11)
it follows from (3.10) that the exact matrix representation
A% — b i
2A(A2 4 av) A2 4 av

0] D — N2
A2 + v 2M(\2 + D)

S(z;\) = (3.12)

satisfies the necessary condition (3.5) as A — oo.

Remark 3.1. The invariance of the functional (3.11) with respect to the generating vector
field (1.15) on the manifold M derives from the representation (3.7), the evolution equations
(3.4) and

P ~ N
/\S(a:; A) + )\Sg(a:)> F(y,x;n), (3.13)

d -~

~F ) =

e D) <
which follows naturally from the determining matrix flows (1.12) upon applying the trans-
lation y — y + 27.

The matrix expression (3.12) coincides as A — oo with the asymptotic expansion (1.9),
whose matrix elements satisfy the following important functional relationships:
1-— )\(gn — SQQ)
259

1-— )\(5111 — S’Qg)
2519

=7, (3.14)

= u,
allowing the introduction in a natural way of the vertex vector field (1.18). To show this,
we need to take the preliminary step of deriving the corresponding evolution equation for

the vector function (@,0)T € M with respect to the generating vector field (1.15) in the
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asymptotic form (1.16) as A — oo. Before doing this we shall find the form of the evolution
Eq. (1.17) as pu, A — oo:

%S’(:c;u) = [/\3%5(1’ W) — )\gg(:c),g(:c;/\)] , (3.15)

which entails the following differential relationships:

dt B

dSi )3 S51dS12  S12dSa;
N d\ d\ ’

dt B

dSa 3 S12dSa1  S21dSiz
d\ d\ ’

(3.16)

dsS = d - . - .dS -
712 =3 (5125(511 — Sg9) — (511 — Sa2) d;2> — AS12,
dS , d . - .dS -
721 =3 (521 d)\(522 — S11) — (S22 — Si1) d§1> + ASo1.

Using the relationships (3.16), one can easily obtain by means of simple, but rather cum-
bersome, calculations the evolution equations for the vector function (@,7)T € M expressed
in the form (3.14)

=

1— )\(511 — 5'22) _ _)\ d 1-— )\(511 — §22)
2521 /\ 2521 7

(3.17)

Sl

1— )\(511 — 522 _ i Sll - 522)
25’12 d 2512 ’

which hold as A — oco. As a direct consequence of the differential relationships (3.17), the
following vertex operator representation for the vector function (u, )T € M

u(t; A) :
O(t; A) :

ut(t;A) = X u(t),

3.18
v () = X, u(t), ( )

holds. Here we took into account that, owing to the determining functional representations
(3.9), the limits

lim a(t;\) = u(t), lim 9(tN) = o(t), (3.19)

A—00 A—00

exist and the vertex operator X, : M — M acts on the functional manifold M via the
corresponding shift operators defined above by means of the differential relationships (1.18)
and (1.19). Moreover, from (3.9) one obtains that

um=u4uf AT = (wh)?oA2 v =v v A — (v7)2ua?, (3.20)

1250001-8
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The vertex representation (3.20) allows, in particular, to readily construct infinite hier-
archies of the conservation laws for the generating AKNS integrable vector field (1.15) as

2T 2T
Ho(\) = /0 wH N de,  Ho(\) = /0 v (& Nu(t)de, (3.21)

which follow from (3.7), (3.8) and reasoning from Remark (3.1). Since the fundamental
matrix (3.10) at y = x + 27 defines via relationship (3.1) the solution

S(x; ) i= F(x +2m, 2 N E w2 \) (3.22)

to the determining Egs. (1.7) and (1.10), its determinant detS(x;\) is invariant with
respect to the generating vector field (1.15) and equals det S(a;\) = det F(z +
om, 2 A) det F~ (2, 2; 1) =1 for all z € R and A € C owing to the condition tr £(z; \) = 0.
Accordingly, based on the matrix representation (3.7), one finds that the relationships

é1(z + 2m, 5 \) := exp[mA + AT H L (N)],
Ea(x + 2m, ;) == exp[—7A — ATLH_())],

é1(x 4 2m,x; N)ég(x + 2m, 23 \) = 1, (3.23)
d d .
Eel(:c +2m,2;0) =0 = Eeg(:c + 271,23 M)
hold for all x € R and X\ € C. As a consequence of (3.23), we obtain
Hi(\)=H_(\) (3.24)

for all A € C; that is, the two hierarchies of conservation laws (3.21) coincide. Concerning
the AKNS hierarchy vector fields (1.15) and the related Hamiltonian flows on the manifold
M, we can easily derive them from the canonical vertex representations (3.18), taking into
account the recursive functional Eq. (3.9). We obtain from that (3.9) and (3.21) that

X;\ru =ut =u+ A" ug + A2 [uf, + (uh)20] F A3 ()] = - -,
(3.25)
Xyv=v"=v— A"t = A2 g, + (7)) u] + AP0 2ufe = -

which immediately yield the whole AKNS hierarchy of nonlinear Lax integrable dynamical
systems on the functional manifold M. For instance, we obtain from (3.25) the AKNS flows

d [u Uy d [u Uy + 202
— = . — = s (3.26)
dir \ v Vg dtg \ v —Vgr + 200
and so on, which coincide with those constructed before in (2.8).

4. The 7-function Representation

The vertex operator representations (3.7), (3.12) and (3.18) can also be naturally associ-
ated with the results in [11, 20], based on the generating 7-function approach. This makes
extensive use of the versatile dual representation (3.2) for the generating current algebra

1250001-9 9
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element S(z;\) € G* (as A — oo) for the AKNS flows with the specially chosen invariant
matrix

~ 1 0 9
C(zo; A\) = 0 1 € EndC~. (4.1)

In the context of our approach, the relation with the 7-function representation devised
in [11, 20] can be based on the matrix solution (3.7) and the simple vertex operator mapping

properties
él(x7y7)\) ég(y,l‘,)\)
X\ ( ) = ( , (4.2)
eQ(xay;)\) 61(y,l’;)\)
which follow directly from the definitions (3.8) and (3.18). From the functional relationships
(3.8) and (3.20), one easily obtains the following differential expressions:

i ey, z; \) —ut (y; A ex(y, 43 \)
F(y,az;A) = ( ~ L ) (4.3)
v (y; AT e (y, w3 ) ea(y,z; A)
and
+, 4 - 9., 4 -
AuT™v" —u v )= —(uTv+ww), (4.4)
Jy
where
_ y
é1(y,x; \) :exp{(y 21:)/\+/\_1/ uv ds},
v (4.5)

Moreover, it follows directly from (4.5) that

0% ey, ;N 0, _
Aa—ﬁlnm = @(U v+ uv ), (46)

which together with (4.2) leads to the important functional relationship

0? e P A
——In M = (uTvt —u"v7), (4.7)
9y?  éa(y, m; \)
which allows a natural introduction of a 7-function representation
ey, z: ) _ 1 (y, 43 0)
ey, z;A) - TH(y, 230

expla(z; A) + yB(z; \)] (4.8)

for some functions a(-; A), 3(-;A) : R — C, where we have defined 7 by
82

~ o InT:=uwv, (4.9)

1250001-10
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which coincides with that in [19, 20]. Taking now into account the relationships (4.2), one
easily obtains that

7 (y,z;A)

T(y, 3 A)
Ty, x5 \)
7(y, x5 \)

(4.10)

for all z,y € R and X\ € C.
As a result of (3.7) and (4.10), it is straightforward to obtain the crucial expression for
the normalized matrix

F(y,z;\) = (det F(z,2;\) Y2 F(y, z;\)

Ay (z,9;0) L uT (g NE ()
B A2 4+ ut (25 Mo~ (z; \)]L/2 A2 + ut (z; N)v— (a5 \)]L/2
- v (y; Néy (2,43 0) At (z,y; M)
A2 +ut(z; Mo (2 N)]Y2 0 [A2 4+ ut(z; Mo (a5 \)] /2
7 (y,7; \) A u (y; N7 (y, 25 0) A
- ) {E(y B @} R [5(”” B y)]
ey ey Ty ) A ’
e a0 e ae )
(4.11)
where
7 (y,z;A) A - Aéy (7, y; M)
Tz A) L [5@ N x)] B u+(if; A~ (s A2 (4.12)
T (y, 25 \) At (z, ;M) '

o) F [E(x - y)] TR u (@ A ()]
together with the compatibility relationship
expl—a(z; N)] == [N+ b (25 N~ (25 0)] V2,

The vertex operator expression (4.11), as is easily checked, can be employed to derive
the representation (3.2), where the exact result (3.12) entails the additional application of
the useful [20] vertex representation

% exp B(y - f'f)} —% P B(x a y)]

%exp[%(y—x)} %em[%(:ﬁ _y)] ,

F(y,x;\) = (4.13)

which holds as A — oo if p(y, z;A) = v(y)T(y, x; ), 0(y, x; \) := u(y)r(y,x; A\), z,y € R,
and the mappings p~ and o are defined in the obvious fashion. In this regard, it should

1250001-11 11
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be noted that the vertex operator representation (4.13) for the matrix (4.11) was obtained
in [20] as a special normalized solution to the determining Eq. (3.4). Taking into account
these dual vertex representations of the AKNS hierarchy of integrable flows on the functional
manifold M, one can see that the first one — presented in this work — is both technically
simpler and more effective in obtaining exact descriptions of such important functional
ingredients as conservation laws, symplectic structures and related commuting vector fields.

5. Concluding Remarks

We have developed a new, essentially analytic approach for clarifying and simplifying many
fundamental calculations associated to the AKNS hierarchy. The linchpin of our approach
is the AKNS hierarchy generating vector field (1.15) on the functional manifold M and
its intrinsic Lie-algebraic structure (1.12). The hub of our method, which is derived from
(1.15) and its associated structure, is comprised of the vertex operator functional represen-
tations of the matrix solutions (3.7) and (3.12) for the determining Egs. (3.3) and (1.7),
respectively. This leads to the crucial vertex operator relationships (3.18) and (3.21) (which
are fundamentally based on the representations (3.14) and Egs. (3.16)); they provide —
as we have shown — a very straightforward and transparent explanation of many of the
“miraculous” calculations in [11, 19, 20], including the construction of conserved quantities
and the AKNS hierarchy of nonlinear integrable dynamical systems.

The results for the AKNS hierarchy in the above and earlier papers [4, 10, 13, 19, 20,
28, 30] were obtained in a distinctly different manner — making use of direct asymptotic
power series expansions of solutions to the determining matrix Egs. (3.3) and (3.7) and their
deep algebraic properties. It is therefore fitting that we present at least a brief historical
survey of the more algebraically oriented research on the AKNS hierarchy, which can also
be viewed as a system of partial differential equations in functions v and v of £ comprising
the compatibility conditions for

0 wu
Adiag(1,—1) + ( )
v 0

where ¥ is an invertible matrix function of £ := (t1,t2,ts,...), and the spectral variable
A is called the Baker (wave) function. Whence, one may define the resolvents R(j) :=
U~ tdiag(M\, A\77)¥, which in turn complete the above system via V; := R(j)4, where the
subscript denotes the projection on the positive power expansions in .

Two fundamental aspects of the Baker function for a general integrable hierarchy are the
following: It is intimately related to 7-functions as clearly demonstrated by Sato’s school
[10, 19, 27], deftly elucidated in [28], and explicitly formulated for the AKNS hierarchy
in [20]. Precise algebraic definitions of 7-functions in terms of group and representation

OV = U := v, 9,V =V;0,

theory are given, respectively, in [30] and [4], which are interesting to compare with our
analytic formulation in Sec. 4. The Baker function also possesses a factorization of the form

I+ (; ;)] diag(h, g),

where e, f, g, h are series in positive integral powers of A~! and e and f can be shown to

UV=G_D:=

be differential polynomials in the field u and v, which implies that the same is true of the
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resolvents R(j) = G~'diag(\M,\™7)G_ and leads to the conclusion that AKNS hierarchy is
a collection of nonlinear dynamical systems of the form (1.2). The coefficients g and h, on
the other hand, are not differential polynomials in u,v — they are integrals of differential
polynomials, and their derivatives are densities of AKNS invariants as shown in [13].

We now return to our work here, which follows the analytical style pioneered by Novikov.
It should be noted that, in a certain sense, the effectiveness of our approach to studying the
vertex operator representation of the AKNS hierarchy owes a great deal to the important
exact representation (3.1) for the solution of the determining Eq. (1.7) for the Casimir
invariants. Equation (1.7) is based on the well-known monodromy matrix approach devised
by Novikov [21], and it entails the extremely effective AKNS hierarchy representation in
the simple recursive form (3.25), which explains several other very interesting results in the
literature, such as in [22, 29]. On the other hand, the dual solution representation to (1.7)
in the form (3.1), used extensively in [20], led naturally to the introduction of the well-
known 7-function that made it possible to present the whole AKNS hierarchy in terms of
partial derivatives. In spite of some of the fundamental differences, both our vertex operator
approach and the more algebraic T-function method are intimately related, as was briefly
demonstrated.

We should note the following caveat concerning our vertex operator approach: Although
we have demonstrated the versatility and simplicity of our approach for several AKNS
computations, we make no particular claims that it is superior to other methods such as
the r-matrix formalism or pseudo-differentiable algebra in all respects. For example, it may
turn out that these other methods are actually more effective for deriving various important
tensor invariants of the AKNS and other integrable hierarchies. Naturally, these questions
require further investigation, which we hope to undertake in our future work.

Our results in this paper suggest several possible directions for future research. For
example, it naturally would be interesting to apply the vertex operator approach to other
linear spectral problems such as those related to the generalized Riemann hydrodynamical
systems and BSR systems studied recently in [5, 6, 16, 23]. There is also the possibility of
simplifying the derivations of the key equations in our approach, which seems well within
the realm of possibility given the simplicity of the vertex vector fields.
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