

Advances in Economics, Business and Management Research, volume 192 Proceedings of the Seventh Padang International Conference On Economics Education, Economics, Business and Management, Accounting and Entrepreneurship (PICEEBA 2021)

The Dynamics of Exports, Imports, Labor and Indonesian Government Expenditure Period 1990 – 2019

Imam Mukhlis^{1*}, Andik Pratama²

¹Department of Development Economics, Faculty of Economics, Universitas Negeri Malang, Indonesia ²Master's Student, Master of Economics, Faculty of Economics, Universitas Negeri Malang, Indonesia *Corresponding author. Email: <u>imam.mukhlis.fe@um.ac.id</u>

ABSTRACT

This study analyzes the dynamic of exports, imports, labor, and government expenditure in Indonesia in 1990 - 2019. This study using time series data are analyzed using the *Vector Error Correction Model* (VECM) in *Eviews 10* software to estimate the relationship between variables. In the VECM test, export, import, government expenditure, and labor have long-term and short-term relationships. The IRF test on exports, imports, government expenditure, and labor shows positive and negative results and fluctuates in response to changes in other variables. The VD test indicates that the variation of imports and government expenditure is mostly influenced by exports, while changes in labor are influenced by imports.

Keywords: Exports-Imports, Labor, Government Expenditure, Vector Error Correction Model (*VECM*).

1. INTRODUCTION

An open economy is one of the impacts of the globalization era, where the country can easily establish cooperative relationships to carry out its economic activities. This happens because it is easy to find information and the development of technology. The activity of fulfilling services and goods from various cooperation between countries, in the end, creates a free market. It is believed that high economic openness can generate opportunities for a country to improve its economic growth.

Export and imports are economic activities that arise due to economic openness, export and import are cooperation between trading carried out between countries. Improving productivity allows a country to increase the number of labor, the large number of labor will be able to increase the amount of output in a country.

However, the existence of limitations in production factors has disrupted efforts to promote economic growth. In Indonesia, economic activity is often faced with problems with production factors, Indonesia has abundant natural resources, which is considered beneficial, but the inadequate infrastructure can hinder it.

The country of Indonesia has a fairly widespread territory, of course, has an impact on the process of mobilizing economic activity. It is hoped that the role of the government can encourage the acceleration of economic growth, through financing by the government, which is reflected in the fulfillment of infrastructure.

From the continuous activities positively on the variables of exports, imports, labor, and government expenditures, this research makes its justification for these variables is an important indicator in the process of economic growth.

Based on the background described, this research aims to analyze the relationship and the dynamics of export, import, labor, and government expenditure variables in Indonesia in the period 1990-2019.

2. METHOD

This study uses quantitative methods, where the method aims at explaining, observing, and measuring the relationships between the variables studied and the research data in the form of numbers. This data is a secondary data series for the period 1990 - 2019, which was obtained from the Indonesia Central Statistics Agency.

The variables studied in this study were *exports* (X1), *imports* (X2), *labor* (X3), and *government expenditure* (X4). Because in this study it is not known how the variables are related, these variables are assumed to be independent variables. Testing this research using Eviews software version 10, there are several stages in testing:

a. Stationary Test / ADF (Augmented Dickey-Fuller test). The ADF test can be formulated as follows:

> $\Delta Xt = \alpha + \phi^* Xt + \phi^* \Delta Xt + \phi^2$ $\Delta Xt + \phi^* r + \Delta Xt + ut$ (1)

> From this test, the data is said to be stationary / does not contain unit roots if the probability value of this test is smaller than the error tolerance value (0.05).

- *b.* Optimum *Lag* Test, determine the lag length of exports, imports, labor, and government expenditure
- c. Model Stability Test, to determine the Vector Autoregressions (VAR) or Vector Error Correction Model (VECM).
- *d.* Cointegration Test, the cointegration test of this research use the *Johansen Method* approach. This test can be formulated as follows:

 $\lambda \operatorname{Trace}(\mathbf{r}) = -T \sum_{i=r+1}^{g} \operatorname{in}(1 - \lambda i)$ (2)

 $\lambda Max (r, r + 1) = -T in (1 - \lambda r + 1)$ (3)

- *e*. Significance Test of Estimated Results, this test is carried out after getting the results of the cointegration test, the VAR test is carried out if there is no cointegration, but if there is cointegration, then the analysis used is VECM.
- *f. Granger Causality* test, This test is carried out to see the relationship between the variables being tested.
- g. Forecasting, this test is included Impulse Response Function (IRF) and Variance Decomposition (VD) analysis.

3. RESULTS AND DISCUSSION

The first stage in testing this data is the unit root test of the variables in this research. Time-series data will be said to be stationary if the data has a constant mean, variance, and covariance during observation (Thomas, 1996). Following are the results of the ADF test:

Ta	ble	1 . A	Augmented	Dick	key-F	Fuller	(ADF) Test
----	-----	--------------	-----------	------	-------	--------	------	--------

Variable	Result		
Exports	Stationer <i>difference</i>	at	first
Imports	Stationer <i>difference</i>	at	first
Labor	Stationer <i>difference</i>	at	first
Government Expenditure	Stationer <i>difference</i>	at	first

Source: processed by the author

Based on table 1, it can be seen that the results of the ADF test of all variables, namely, exports, imports, labor, and government expenditures are stationary at a level of 1% (*first difference*). From these results it can be concluded that all tested variables are constant in exports, imports, labor, and government expenditure, so the modified data is suitable for use in the analysis of Vector Autoregressions (VAR) and Vector Error Correction Model (VECM).

The next step is the cointegration test, cointegration testing in this study uses the *Johansen Methods*. The test aims to determine whether or not there is a long-term effect for the variables under study, if there is evidence of cointegration, the *Vector Error Correction Model* (VECM) test stage can be continued. The following are the results of the cointegration test with the *Johansen Method*

After doing Optimum Lag testing with *Vector Autoregressions* (VAR), then determining recommendations from the test results. Determination of the Optimum Lag can be seen from the information recommended by the smallest value of *Final Prediction Error* (FPE), *Akaike Information Criterion* (AIC), *Schwarz Criterion* (SC), and *Hannan-Quinn* (HQ) which is marked with an asterisk on the table.

Hypothesized		Trace	0.05	
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**
None *	0.795124	61.83119	47.85613	0.0014
At most 1	0.319501	20.61206	29.79707	0.3823
At most 2	0.213284	10.60389	15.49471	0.2371
At most 3 *	0.154607	4.366809	3.841466	0.0366
Hypothesized		Max-Eigen	0.05	
No. of CE(s)	Eigenvalue	Statistic	Critical Value	Prob.**
None *	0.795124	41.21912	27.58434	0.0005
At most 1	0.319501	10.00817	21.13162	0.7439
At most 2	0.213284	6.237086	14.26460	0.5830
At most 3 *	0.154607	4.366809	3.841466	0.0366

Source: processed by the author

Based on the results of the cointegration test using the Johansen Method, it can be seen that the value of the Trace Statistics from the Trace test is 61.83119 greater than the critical value at alpha (0.05) of 27.58434, which means that in this model there are co-integrated equations. Then it is known that the Trace Statistic value of 4.366809 is greater than the critical value at alpha (0.05) of 3.841466.

In the *Maximum Eigenvalue test*, when viewed from the highest value of the test, *Trace Statistic* is recorded as 41.2921, indicating that in this equation model there is one cointegrated equation. From the results of the *Johansen Method* cointegration test, it is known that the four variables, namely exports, imports, labor, and government expenditure in Indonesia in the 1990 - 2019 period have long-term cointegration, so the *Vector Error Correction Model* (VECM) can be applied in this study. Following are the results of the *Vector Error Correction Model* (VECM) modeling on the variables of exports, imports, labor, and government expenditure.

The results of the VECM estimation model can be rewritten as:

D(Impor)=2.62631 (ECT) + 0.053635 Expend (-1) -0.889377 Impor(-1) - 0.000913 Labor (-1) -1.198231 D(Ekspor (-1) -0.710779 D(Ekspor(-2) -0.269119 D(Expend(-1) -0.168283 D(Expend(-2) + 0.831776 D(Impor(-1) + 0.614266 D(Impor(-2) + 0.009025 D(Labor (-1) - 0.000774 D(Labor(-2) (4)

Based on the results and equations, it is known that the variable that is included is Import, it can be seen that the ECT coefficient is 2.62631. The t-test statistic of 2.62631 is greater than t - table. It means

that the specification model is positive and significant, which indicates a short-term and long-term relationship. In the long run, there are only significant government expenditure variables, while the import and labor variables are not significant. In the short term, it can be seen that the variables of imports, government expenditure, and labor have a significant value.

In the long run, there are only significant government expenditure variables, with a statistical t value of 5.10718, according to the estimation results, in the long run, the value of government expenditure shows a positive number of 0.053635, meaning that if there is an increase of 1 percent in government expenditure it will increase imports by 0.053635 percent.

In the short run, the results of Table 3 shows that 2 variables have a significant value to import, there is government expenditure and labor. In the short run in lag 1, government expenditure has a negative value of -0.269119, meaning that if there is an increase of 1 percent in government expenditure in the previous 1 period it will reduce imports by 0.269119 percent in the current year, then at lag 2, the government expenditure has a negative value of -0.168283, meaning that if there is an increase of 1 percent in expenditure in the previous 2 periods it will reduce imports by 0.168283 percent in the current period.

In the short run, labor shows a positive value of 0.009025 at lag 1, meaning that if there is an increase of 1 percent in the previous 1 year, it will increase imports by 0.009025 in the current year.

Table 3. VECM estimation

EXPEND(-1) 1.00000 EXPEND(-1) 0.053635 (0.01050) 1.001050) 1.001050 1.000059 1.000059 1.000059 1.001050 1.000059 1.001050 1.000059 1.000059 1.001050 1.000059 1.001050 1.000059 1.001050 1.000059 1.001050 1.000059 1.000059 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.000059 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.001050 1.005050 1.005050 1.005050 1.001564 1.002050 1.001564 1.002050 1.001564 1.002050 1.001564 1.002050 1.001564 1.002050 1.001564 1.002050 1.001564 1.002050 1.001564 1.002050 1.001564 1.000051 1.000051 1.001583 0.00771 0.023879 0.007521 0.007541 1.001510 0.023879 0.007541 0.00254 0.00771 0.032879 0.007541 0.00254 0.007251 0.001277 0.0028810 0.01217 0.0028810 0.00271 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.001217 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.00271 0.002891 0.001217 0.002891 0.00121	Cointegrating Eq:	CointEq1			
EKSPOR(-1) 10.0000 EXPEND(-1) 0.035635 0.01050)					
EPPEND(-1) 0.053635 0.01050) 0.01050) 0.01050) 0.01050 0.0105256) 0.0105256) 0.0105256) 0.0105256 0.0105256 0.0105256 0.0105256 0.01050 0.00059) 0.01050 0.00059 0.010 0.00059 0.010 0.01050 0.01050 0.0105 0.010 0.0105 0.010 0.0105 0.010 0.011 0.010 0.010 0.011 0.0011 0.001 0.0011 0.0011 0.0011 0.0011 0.001 0.0011	EKSPOR(-1)	1.000000			
EXPEND(-1) 0.035635 0.005363 0.005363 0.005363 0.005256) 0.005256) 0.005256) 0.005256) 0.005256) 0.005256) 0.005556 0.005576 0.005576 0.005576 0.005576 0.005576 0.005576 0.005576 0.005576 0.005576 0.005576 0.005576 0.005576 0.005577 0.005678 0.025757 0.05644 0.02466 0.02466 0.02466 0.02466 0.02466 0.02466 0.02466 0.023785 0.07242 2.66651 0.079595 0.025777 0.05836 0.156504 0.57377 0.05604 0.57377 0.05604 0.57377 0.05604 0.57377 0.05604 0.57377 0.05604 0.57377 0.05604 0.57377 0.05604 0.42565 0.07564 0.42565 0.07256 0.14565 0.042265 0.070564 0.42565 0.07564 0.42565 0.07564 0.42565 0.07564 0.42565 0.07564 0.42565 0.07564 0.42565 0.07564 0.42565 0.07564 0.42565 0.07564 0.42565 0.07564 0.42565 0.07564 0.42565 0.042565 0.042565 0.042565 0.042565 0.042565 0.042565 0.042565 0.042565 0.042565 0.042565 0.042565 0.042565 0.042565 0.042565 0.042565 0.045755 0.05781 0.06770 0.032879 0.07722 0.58836 0.15685 0.06770 0.032879 0.07722 0.019551 0.06770 0.032879 0.07722 0.019551 0.06770 0.032879 0.07722 0.019551 0.06770 0.032870 0.07712 0.058814 0.07712 0.01955 0.05816 0.44266 2.33170 0.35816 0.42666 2.33170 0.35816 0.42655 0.0525 0.05457 0.0568 0.45457 0.05685 0.045675 0.046857 0.0565					
(0.01050) [5.00718] (0.05256) [1.69212] LABOR(-1) (0.00059) (0.00059) [1.54613] C 3399.061 Error Correction: D(EXPEND) D(EKSPOR) D(EXPEND) CoinEq1 0.204652 (0.39820) (4.36190) CoinEq1 0.24652 (0.39820) (4.36190) (0.42785] (0.70242] 2.60611 0.79595] DEKSPOR(-1) -0.409904 0.32785] (0.70242] 2.606411 (58.3353) DEKSPOR(-1) -0.409904 0.42876] (1.75846) 0.710779 (3.23737) 0.64811) (2.99566) 0.43141) (2.99566) 0.43241 (2.99566) 0.43241 (2.99566) 0.432439 (0.08777) 0.432430 (0.43071) 0.432430 (0.43771) 0.432430 (2.29818) 0.43771 (0.33383) (0.08055) <	EXPEND(-1)	0.053635			
S.10718) Image: Signal System I_ABOR(-1) 0.000913 Image: Signal System I_ABOR(-1) 0.000039 Image: Signal System I_1.546131 Image: Signal System Image: Signal System C -3899.061 Image: Signal System Image: Signal System CointEq1 0.204652 3.063873 2.606547 62.17635 CointEq1 0.204652 3.063873 2.606547 62.17635 DCEXSPOR(-1) 0.409904 0.239282 1.198231 9.946480 DECESPOR(-1) 0.0409904 0.239282 1.198231 9.946480 DECESPOR(-2) 0.356477 -0.158466 +0.710779 32.37371 DECESPOR(-2) -0.356477 -0.158466 +0.710779 32.37371 DECESPEND(-1) -0.138654 +1.020900 -0.269119 2.68914 DECESPEND(-1) -0.138654 +1.020900 -0.269119 2.68914 D(EXPEND(-2) -0.115216 -0.26927 -0.168233 -0.046771 D(EXPEND(-2) -0.115216 -0.269279 <td></td> <td>(0.01050)</td> <td></td> <td></td> <td></td>		(0.01050)			
(16.9212)		[5.10718]			
I-16.9212] I I LABOR(-1) 0.0000913 I I-1.54613] I I C -3899.061 I I Correction: D(EKSPOR) D(EXPEND) D(IMPOR) D(LABOR) CointEq1 0.04652 3.063873 2.690547 62.17635 OcintEq1 0.04052 3.063873 2.690547 62.17635 D(EKSPOR(-1) -0.409904 0.939282 1.198231 -9.946480 D(EKSPOR(-1) -0.409904 0.939282 1.198231 -9.946480 D(EKSPOR(-2) -0.356477 -0.158466 -0.71079 -32.37371 D(EKSPOR(-2) -0.356477 -0.158466 -0.71079 -32.37371 D(EXPEND(-1) -0.138654 +1.020900 -2.68914 0.482841 D(EXPEND(-2) -0.115216 -0.26297 -0.168230 -0.115081 D(MPOR(-1) 0.035804 1.372578 0.831776 1.3.76686 D(MPOR(-1) 0.058116 0.2829616 0.614266 23.39170		(0.05256)			
LABOR(-1) 0.000913 Image: Constraint of the second secon		[-16.9212]			
[1.54613]	LABOR(-1)	-0.000913			
I-1.54613 I C		(0.00059)			
C = [3899.06] D(EXPEND) D(IMPOR) D(LABOR) CointEq1 0.204652 3.063873 2.690547 62.17635 (0.287820) (4.36190) (1.02446) (78.1158) (0.22785] 0.70242] 2.62631] (0.79595] D(EKSPOR(-1) 0.409904 0.939282 1.198231 0.9.946480 (0.67076) (3.25737) (0.76504) (58.3353) 1.0.61111] 0.28836] 1.156622] (4.17051] D(EKSPOR(-2) 0.356477 0.158466 0.710779 3.2.37371 (0.631341) (2.09506) (0.49206) (37.5197) 1.0.632630] 0.077564] [1.44450] (0.86284] D(EXPEND(-1) 0.138654 1.026090 (0.49206) (37.5197) 1.0.8654 1.026090 (0.49206) (37.5197) 1.0.96050] (0.49206) (37.5197) D(EXPEND(-1) 0.138654 1.026090 (0.49206) (37.5197) 1.0.96090] 2.98818] 1.333692] 0.436771 D(EXPEND(-2) 0.138546 1.026097 0.168283 0.014555) 1.196090] 2.98818] 1.333592] 0.0436771 D(EXPEND(-2) 0.15216 0.262979 0.168283 0.015981 (0.06770) (0.32879) (0.07722) (5.88820) 1.170175] 0.81905] [2.17922] (0.01954] D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 D(IMPOR(-1) 0.035795) (1.73828) (0.40826) (3.11303) D(IMPOR(-2) 0.129280 0.829610 0.614266 23.339170 (0.35795) (1.73828) (0.40826) (3.11303) D(LABOR(-1) 0.004498 0.013361 0.009025 0.271986 D(IMPOR(-2) 0.129280 0.829610 0.614266 23.339170 1.79051] 1.59003] 3.158221 1.248191 D(LABOR(-1) 0.004498 0.013361 0.009025 0.271986 D(0.0271) (0.01315) (0.02367] (0.21790) 1.79505] 1.59003] 3.158221 1.248191 D(LABOR(-2) 0.01813 0.001402 0.00074 0.504675 (0.00271) (0.01315) 0.003091 (0.23542) (0.44862] 0.70551] 0.908571 (0.045071 C.143741 C 1.399.632 106688 97 3233.039 1.2229.31 (3119.83) (15150.7) (3558.83) (271329.) (0.44862] 0.70551] 0.908571 (0.045071 C.214374] C 1.426692 2.01668] 0.425074] 2.214374] C 1.426692 2.01688 97 3233.039 1.2229.31 (3119.83) (15150.7) (3558.83) (271329.) (0.44862] 0.70551] 0.908571 (0.045071 A.44862] 0.70551] 0.908570 (0.31574) 1.420	~	[-1.54613]			
Error Correction: DELXPEND DELXPEND DELXPEND DELXPEND DELXPEND CointEq1 0.204652 3.063873 2.600547 62.17655 (0.89820) (4.36190) (1.02446) (78.1158) (0.22785] 0.70242] 2.656311 (0.79595] D(EKSPOR(-1) -0.409904 0.939282 +1.198231 -9.946480 (0.67076) (3.23737) (0.75604) (58.3353) D(EKSPOR(-2) -0.356477 -0.158466 -0.710779 -32.37371 (0.43141) (2.09506) (0.44450) -0.862841 D(EXPEND(-1) -0.138654 +1.026090 -2.98118 -3.36921 (0.436771 D(EXPEND(-2) -0.15216 -0.269297 0.018283 -0.15081 D(CMPOR(-1) 0.035804 1.372578 0.831776 13.76685 D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 D(IMPOR(-1) 0.035795) (1.73828) 0.40826) (31.1303) D(IMPOR(-2) 0.12790 0.217905		-3899.061			D(LADOD)
Control 0.24652 3.06.5873 2.690347 62.176.53 (0.89820) (4.36190) (1.02446) (78.1158) 10.22785] 0.70242] 2.62631] 0.79595] D(EKSPOR(-1) -0.409904 0.939282 1.198231 9.946480 (0.67076) (3.25737) (0.76504) (58.3353) 10.061011 0.28836] -1.56622] -0.17051] D(EKSPOR(-2) -0.356477 -0.158466 -0.710779 3.237371 (0.43141) (2.09506) (0.49206) (37.5197) (0.43141) (2.09506) (0.49206) (37.5197) (0.43141) (2.09506) (0.49206) (37.5197) 10.83654 -1.026090 -0.269119 2.685914 (0.07071) (0.34338) (0.08065) (6.14955) D(EXPEND(-1) -0.138654 -1.026090 -0.269119 2.685914 (0.07071) (0.34338) (0.08065) (6.14955) D(EXPEND(-2) -0.115216 -0.269297 -0.168283 -0.115081 (0.00770) (0.32879) (0.07722) (5.88820) 1-1.76090] -2.98818] -3.33692] (0.43677] D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 (0.58116) (2.28226) (0.66285) (50.5429) (0.06161] 0.48634] (1.25485] (0.27238] D(IMPOR(-2) 0.129280 0.829616 0.614266 23.39170 (0.33795) (1.73828) (0.048266) (31.1303) D(LABOR(-1) 0.004498 0.018361 0.009025 -0.271986 (0.00251) (0.01217) (0.00286) (0.21790) (1.79505] (1.5903] 3.15822] (-1.24819] D(LABOR(-1) 0.004498 0.018361 0.009025 -0.271986 (0.00271) (0.01315) (0.00374 -0.504575 (0.00271) (0.01315) (0.00379 -1.224819] D(LABOR(-2) -0.01813 -0.001402 -0.000774 -0.504675 (0.00271) (0.01315) (0.00379 -1.224819] D(LABOR(-2) -0.01813 -0.001402 -0.000774 -0.504675 (0.00271) (0.01315) (0.00379 -1.224819] D(LABOR(-2) -0.01813 -0.001402 -0.000774 -0.504675 (0.00271) (0.01315) (0.00379 -1.224374] C -1399.632 10688.97 -3233.039 -12229.31 (3119.83) (15150.7) (3558.38) (271329.3 (319.95281 -0.61688 -0.250741 -2.14374] C -1399.632 10688.97 -3233.039 -12229.31 (319.632 10688.97 -32	Error Correction:	D(EKSPOR)	D(EXPEND)	D(IMPOR)	D(LABOR)
(0.89820) (4.30190) (1.02440) (7.8.1188) (0.27785) 0.70242) 2.62631] (0.79595] D(EKSPOR(-1)) 0.409904 0.39282 +1.198231 9.946480 (0.67076) (3.25737) (0.76504) (58.3353) [-0.61111] 0.28836] -1.56622] [-0.17051] D(EKSPOR(-2) 0.356477 -0.158466 -0.710779 -32.37371 (0.43141) (2.09506) (0.49206) (37.5197) (-0.86501] -0.0138654 +1.026090 -0.269119 2.685914 (0.07071) (0.34338) (0.08065) (6.14955) (-1.96090] (-2.98818] -3.33692] (0.43677) D(EXPEND(-2) -0.115216 -0.269279 -0.168283 -0.115081 (0.06770) (0.33879) (0.07722) (5.88820) -0.115081 D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 D(IMPOR(-2) 0.122280 0.829616 0.614266 23.39170 (0.35795) (1.73828)	CointEq1	0.204652	3.063873	2.690547	62.1/635
DEKSPOR(-1) 0.702421 2.62631 0.795951 DEKSPOR(-1) 0.040904 0.939282 1.198231 -9.946480 1.0.67076) (3.25737) (0.76504) (58.3353) 1.0.61111] 10.288361 -1.566221 (-0.71511) DEKSPOR(-2) -0.356477 -0.158466 -0.710779 -32.37371 I.0.43141) (2.09506) (0.49206) (37.5197) I.0.82630] -0.075641 -1.1444501 -0.862841 D(EXPEND(-1) -0.138654 -1.026090 -0.269119 2.685914 I.0.90001 -2.98181 -5.3336921 0.045671 0.45677 D(EXPEND(-2) -0.115216 -0.269297 0.168283 -0.115081 I.0.00770 (0.32879) (0.07722) (-5.88820) -1.707251 -0.810951 -2.179221 -0.019541 D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 (0.52429) 0.0466341 1.254851 0.272381 D(IMPOR(-2) 0.129280 0.829616 0.614266 23.39170 <td></td> <td>(0.89820)</td> <td>(4.36190)</td> <td>(1.02446)</td> <td>(/8.1158)</td>		(0.89820)	(4.36190)	(1.02446)	(/8.1158)
D(EXPOR(-1) -0.409904 0.9328.2 -1.19231 -5.940400 (0.67076) (3.25737) (0.76504) (58.3353) (D.41111) 1.028836] (-1.56622) (-0.17051] D(EKSPOR(-2) -0.356477 -0.158466 -0.710779 32.37371 (D.43141) (2.09506) (0.4206) (37.5197) (D.48630) -0.075641 (-1.44450) (-0.86284] D(EXPEND(-1) -0.138654 -1.026090 -0.269119 2.685914 (D.07071) (0.34338) (0.08065) (6.14955) (DEXPEND(-2) -0.115216 -0.269297 -0.168233 -0.115081 (D.06770) (0.32879) (0.07722) (5.88820) -1.701751 -0.819051 -2.17922] -0.019541 D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 (D(MPOR(-2) 0.129280 0.829616 0.614266 23.39170 (D.05116) 0.486341 1.234851 0.027128 (0.514486) 0.271286 D(IMPOR(-2) 0.129280	D/EKSDOD(1)	0.400004	0.70242	[2.02031]	0.79595
(0.07070) (3.25757) (0.7034) (3.8333) (0.41111) (0.28836) (-1.56622) (0.17051) D(EKSPOR(-2) (0.356477) (0.158466 (0.71077) -32.37371 (0.43141) (2.09566) (0.49206) (37.5197) (0.43141) (2.09566) (0.49206) (37.5197) (0.82853) (-0.07564] 1.44450] (-0.86284] D(EXPEND(-1) (0.138654 +1.026090 (0.29818] -333692] (0.43577) D(EXPEND(-2) (-1.15216 (0.269297) +0.168283 (0.115081 (0.06770) (0.32879) (0.07722) (5.88820) (0.06770) (0.32879) (0.07722) (5.88820) (0.06161) (0.48634) 1.25485) (0.27238] D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 (0.58116) (2.82226) (0.66283) (50.5429) (0.06161) 0.48634] 1.25485] 0.7238] D(IMPOR(-2) 0.129280 0.829616 0.614266	D(EKSPOR(-1)	-0.409904	0.939282	-1.198231	-9.940480
D(EKSPOR(-2) -0.356477 -0.158466 -0.710779 -32.37371 D(EKSPOR(-2) -0.356477 -0.158466 -0.710779 -32.37371 D(EXPEND(-1) -0.138654 -1.026090 -0.269119 2.6885914 D(EXPEND(-1) -0.138654 -1.026090 -2.685914 -0.434338 (0.03065) (6.14955) D(EXPEND(-2) -0.115216 -0.269297 -0.168283 -0.115081 D(EXPEND(-2) -0.115216 -0.269297 -0.168283 -0.01954] D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 D(IMPOR(-2) 0.129280 0.829616 0.614266 23.39170 D(MOR(-2) 0.129280 0.829616 0.614266 23.39170 D(LABOR(-1) 0.04498 0.018361 0.00925 -0.271886 D(LABOR(-1) 0.004498 0.018361 0.00925 -0.271986 D(LABOR(-2) -0.01813 -0.001402 -0.009771 -0.504675		(0.07070)	(3.23737)	(0.70304)	(38.3333)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D(EKSPOP(2))	0.356477	0.158466	0.710779	[-0.17031]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D(LKSFOR(-2))	(0.43141)	(2 09506)	(0.49206)	(37 5197)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(0.43141)	(2.09500)	[-1, 44450]	(37.3197)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	D(FXPFND(-1)	-0.138654	1 026090	10.269119	2 685914
(1.96090) (-2.98818) (-3.33692) (0.43677) D(EXPEND(-2) (0.115216) (-0.269297) (-0.168283) (-0.15081) (0.06770) (0.32879) (0.07722) (-0.01541) D(IMPOR(-1) (-0.035804) 1.372578 (-0.831776) (-1.760722) D(IMPOR(-1) (-0.035804) 1.372578 (-0.831776) (-1.76072) D(IMPOR(-2) (-0.129280) (-0.82961) (-0.66285) (-0.7238) D(IMPOR(-2) (-0.25920) (-0.82961) (-0.66285) (-0.7238) D(IMPOR(-2) (-0.129280) (-0.82961) (-0.6161) (-0.48634) 1.25485] (-0.27238) D(IMPOR(-2) (-0.129280) (-0.82961) (-0.1170) (-0.012170) (-0.012170) (-0.012170) (-0.01286) (-0.21790) D(LABOR(-1) (-0.004498) (-0.01313) (-0.000774) (-2.14374) D(LABOR(-2) (-0.001813) (-0.010402) (-0.000774) (-2.14374) C 1399.632 10688.97 3233.039 +12229.31 (0.49		(0.07071)	(0 34338)	(0.08065)	(6 14955)
D(EXPEND(-2) -0.115216 -0.26927 -0.168283 -0.115081 (0.06770) (0.32879) (0.07722) (5.88820) [-1.70175] [-0.81905] -2.17922 [-0.01954] D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 (0.58116) (2.82226) (0.66285) (50.5429) D(IMPOR(-2) 0.129280 0.829616 0.614266 23.39170 (0.35795) (1.73828) (0.40826) (31.1303) D(LABOR(-1) 0.04498 0.018361 0.009025 -0.21986 (0.00251) (0.01217) (0.00286) (0.21790) L.79505] L.50903] 1.318321 -1.24819 D(LABOR(-2) -0.001813 -0.001402 -0.000774 -0.504675 (0.00271) (0.01315) (0.03030) (0.23242) -1.24819 D(LABOR(-2) -0.001813 -0.001402 -0.000774 -0.504675 (0.00271) (0.01315) (0.03030) (0.23242) -1.14374 C 1399.632 <td></td> <td>[-1 96090]</td> <td>[-2 98818]</td> <td>[-3 33692]</td> <td>[0.43677]</td>		[-1 96090]	[-2 98818]	[-3 33692]	[0.43677]
(0.06770) (0.3287) (0.07722) (5.88820) [-1.70175] [-0.81905] [-2.17922] [-0.01954] D(IMPOR(-1) 0.035804 1.372578 0.831776 13.76686 (0.58116) (2.82226) (0.66285) (50.5429) [0.06161] 0.48634] [1.25485] 0.27238] D(IMPOR(-2) 0.129280 0.829616 0.614266 23.39170 (0.35795) (1.73828) (0.40826) (31.1303) D(LABOR(-1) 0.004498 0.018361 0.009025 -0.271986 (0.00251) (0.01217) (0.00286) (0.21790) LABOR(-1) 0.004498 0.018361 0.009025 -0.271986 (0.00271) (0.01217) (0.00309) (0.23542) [0.46675 (0.00271) (0.01315) (0.00309) (0.23542) [0.25074] [-2.14374] C 1399.632 10688.97 3233.039 -1229.31 [3119.83) (15150.7) (3558.38) (271329.) [0.44862] [0.70551] [0.90857] <td>D(EXPEND(-2)</td> <td>-0.115216</td> <td>-0.269297</td> <td>-0.168283</td> <td>-0.115081</td>	D(EXPEND(-2)	-0.115216	-0.269297	-0.168283	-0.115081
i-1.70175] i-0.81905] i-2.17922] i-0.01954] D(IMPOR(-1) 0.035804 1.372578 0.831776 i3.76686 (0.58116) (2.82226) (0.66285) (50.5429) [0.06161] [0.48634] I.25485] (0.27238] D(IMPOR(-2) 0.129280 0.829616 0.614266 23.39170 (0.35795) (1.73828) (0.40826) (31.1303) (0.36117] [0.47726] 1.50459] [0.75141] D(LABOR(-1) 0.004498 0.018361 0.009025 -0.211986 (0.00251) (0.01217) (0.00286) (0.21790) (0.21790) LABOR(-2) -0.001813 -0.001402 -0.000774 -0.504675 (0.00271) (0.01315) (0.003309) (0.23542) C 1399.632 10688.97 3233.039 -12229.31 (3119.83) (15150.7) (3558.38) (271329.) (0.44862] (0.70551] (0.90857] -0.04507] R-squared 0.510356 0.394501 0.61887		(0.06770)	(0.32879)	(0.07722)	(5.88820)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		[-1.70175]	[-0.81905]	[-2.17922]	[-0.01954]
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	D(IMPOR(-1)	0.035804	1.372578	0.831776	13.76686
[0.06161] [0.48634] [1.25485] [0.27238] D(IMPOR(-2) 0.129280 0.829616 0.614266 23.39170 (0.35795) (1.73828) (0.40826) (31.1303) [0.36117] [0.47726] [1.50459] [0.75141] D(LABOR(-1) 0.004498 0.018361 0.009025 -0.271986 (0.00251) (0.01217) (0.00286) (0.21790) [1.79505] [1.50903] 3.15822] [-1.24819] D(LABOR(-2) -0.001813 -0.001402 -0.000774 -0.504675 (0.00271) (0.01315) (0.00309) (0.23542) [-2.66975] [-1.10668] [-0.25074] [-2.14374] C 1399.632 106688.97 3233.039 -12229.31 (3119.83) (15150.7) (3558.38) (271329.) R-squared 0.66628 0.612481 0.777208 0.444179 Adj. R-squared 0.510356 0.394501 0.651887 0.131529 Sum sq. resids 3.93E+09 9.26E+10 5.11E+09 2		(0.58116)	(2.82226)	(0.66285)	(50.5429)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[0.06161]	[0.48634]	[1.25485]	[0.27238]
(0.35795) (1.73828) (0.40826) (31.1303) [0.36117] [0.47726] [1.50459] [0.75141] D(LABOR(-1) 0.004498 0.018361 0.009025 -0.271986 (0.00251) (0.01217) (0.00286) (0.21790) [1.79505] [1.50903] [3.15822] [-1.24819] D(LABOR(-2) -0.001813 -0.001402 -0.000774 -0.504675 (0.00271) (0.01315) (0.00309) (0.23542) (-0.66975] [-0.10668] [-0.25074] [-2.14374] C 1399.632 10688.97 3233.039 +12229.31 (3119.83) (15150.7) (3558.38) (271329.) [0.44862] [0.70551] [0.90857] [-0.04507] R-squared 0.510356 0.394501 0.51187 0.131529 Sum sq. resids 3.93E+09 9.26E+10 5.11E+09 2.97E+13 S.E. equation 15669.66 76095.89 17872.30 1362777. F-statistic 3.895281 2.809806 6.201754 </th <td>D(IMPOR(-2)</td> <td>0.129280</td> <td>0.829616</td> <td>0.614266</td> <td>23.39170</td>	D(IMPOR(-2)	0.129280	0.829616	0.614266	23.39170
[0.36117] [0.47726] [1.50459] [0.75141] D(LABOR(-1) 0.004498 0.018361 0.009025 -0.271986 (0.00251) (0.01217) (0.00286) (0.21790) [1.79505] [1.50903] 3.15822] [-1.24819] D(LABOR(-2) -0.001813 -0.001402 -0.000774 -0.504675 (0.00271) (0.01315) (0.00309) (0.23542) [-2.14374] C 1399.632 106688.97 3233.039 -12229.31 (3119.83) (15150.7) (3558.38) (271329.) (-0.44862] (0.70551] (0.90857] [-0.04507] R-squared 0.686628 0.612481 0.777208 0.444179 Adj. R-squared 0.510356 0.394501 0.651887 0.131529 Sum sq. resids 3.93E+09 9.26E+10 5.11E+09 2.97E+13 S.E. equation 15669.66 76095.89 17872.30 1362777. F-statistic 3.895281 2.809806 6.201754 1.420692 Log likeli		(0.35795)	(1.73828)	(0.40826)	(31.1303)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[0.36117]	[0.47726]	[1.50459]	[0.75141]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D(LABOR(-1)	0.004498	0.018361	0.009025	-0.271986
[1.79505] [1.50903] [3.15822] [-1.24819] D(LABOR(-2) -0.001813 -0.001402 -0.000774 -0.504675 (0.00271) (0.01315) (0.00309) (0.23542) [-0.66975] [-0.10668] [-0.25074] [-2.14374] C 1399.632 10688.97 3233.039 -12229.31 (3119.83) (15150.7) (3558.38) (271329.) [0.44862] [0.70551] [0.90857] [-0.04507] R-squared 0.686628 0.612481 0.777208 0.444179 Adj. R-squared 0.510356 0.394501 0.651887 0.131529 Sum sq. resids 3.93E+09 9.26E+10 5.11E+09 2.97E+13 S.E. equation 15669.66 76095.89 17872.30 1362777. F-statistic 3.895281 2.809806 6.201754 1.420692 Log likelihood -281.7273 -322.8143 -285.1470 -397.8317 Akaike AIC 22.44056 25.60110 22.70362 31.37167 Schwarz SC 22.92445 26.08498 23.18750 31.85555 <tr< th=""><td></td><td>(0.00251)</td><td>(0.01217)</td><td>(0.00286)</td><td>(0.21790)</td></tr<>		(0.00251)	(0.01217)	(0.00286)	(0.21790)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[1.79505]	[1.50903]	[3.15822]	[-1.24819]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D(LABOR(-2)	-0.001813	-0.001402	-0.000774	-0.504675
$ \begin{bmatrix} -0.66975 \end{bmatrix} \begin{bmatrix} -0.10668 \end{bmatrix} \begin{bmatrix} -0.25074 \end{bmatrix} \begin{bmatrix} -2.14374 \end{bmatrix} \\ \begin{bmatrix} -2.14374 \end{bmatrix} \\ \hline C \\ 1399.632 \\ 10688.97 \\ 3233.039 \\ -12229.31 \\ \hline (3119.83) \\ (15150.7) \\ \hline (3558.38) \\ (271329.) \\ \hline (0.44862] \\ \hline (0.70551] \\ \hline (0.90857] \\ \hline (-0.04507] \\ \hline $		(0.00271)	(0.01315)	(0.00309)	(0.23542)
C 1399.632 10688.97 3233.039 -12229.31 (3119.83) (15150.7) (3558.38) (271329.) [0.44862] [0.70551] [0.90857] [-0.04507] R-squared 0.686628 0.612481 0.777208 0.444179 Adj. R-squared 0.510356 0.394501 0.651887 0.131529 Sum sq. resids 3.93E+09 9.26E+10 5.11E+09 2.97E+13 S.E. equation 15669.66 76095.89 17872.30 1362777. F-statistic 3.895281 2.809806 6.201754 1.420692 Log likelihood -281.7273 -322.8143 -285.1470 -397.8317 Akaike AIC 22.44056 25.60110 22.70362 31.37167 Schwarz SC 22.92445 26.08498 23.18750 31.85555 Mean dependent -584.0654 3476.308 653.2500 -6514.731 S.D. dependent 22393.37 97792.24 30291.48 1462336. Determinant resid covariance 9.85E+36 100 1254.920 1254.920 1254.920 1254.920 1254.920 <		[-0.66975]	[-0.10668]	[-0.25074]	[-2.14374]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C	1399.632	10688.97	3233.039	-12229.31
R-squared 0.686628 0.612481 0.777208 0.444179 Adj. R-squared 0.510356 0.394501 0.651887 0.131529 Sum sq. resids $3.93E+09$ $9.26E+10$ $5.11E+09$ $2.97E+13$ S.E. equation 15669.66 76095.89 17872.30 $1362777.$ F-statistic 3.895281 2.809806 6.201754 1.420692 Log likelihood -281.7273 -322.8143 -285.1470 -397.8317 Akaike AIC 22.92445 26.08498 23.18750 31.85555 Mean dependent -584.0654 3476.308 653.2500 -6514.731 S.D. dependent 22393.37 97792.24 30291.48 $1462336.$ Determinant resid covariance $9.85E+36$ -1254.920 -1254.920 Akaike information criterion 99.91692 -102.0460 -102.0460		(3119.83)	(15150.7)	(3558.38)	(271329.)
R-squared 0.686628 0.612481 0.777208 0.444179 Adj. R-squared 0.510356 0.394501 0.651887 0.131529 Sum sq. resids $3.93E+09$ $9.26E+10$ $5.11E+09$ $2.97E+13$ S.E. equation 15669.66 76095.89 17872.30 $1362777.$ F-statistic 3.895281 2.809806 6.201754 1.420692 Log likelihood -281.7273 -322.8143 -285.1470 -397.8317 Akaike AIC 22.92445 26.08498 23.18750 31.85555 Mean dependent -584.0654 3476.308 653.2500 -6514.731 S.D. dependent 22393.37 97792.24 30291.48 $1462336.$ Determinant resid covariance $9.85E+36$ Image: Covariance and the set of the set		[0.44862]	[0.70551]	[0.90857]	[-0.04507]
Adj. R-squared 0.510356 0.394501 0.651887 0.131529 Sum sq. resids 3.93E+09 9.26E+10 5.11E+09 2.97E+13 S.E. equation 15669.66 76095.89 17872.30 1362777. F-statistic 3.895281 2.809806 6.201754 1.420692 Log likelihood -281.7273 -322.8143 -285.1470 -397.8317 Akaike AIC 22.44056 25.60110 22.70362 31.37167 Schwarz SC 22.92445 26.08498 23.18750 31.85555 Mean dependent -584.0654 3476.308 653.2500 -6514.731 S.D. dependent 22393.37 97792.24 30291.48 1462336. Determinant resid covariance 9.85E+36	R-squared	0.686628	0.612481	0.777208	0.444179
Sum sq. resids 3.93E+09 9.26E+10 5.11E+09 2.97E+13 S.E. equation 15669.66 76095.89 17872.30 1362777. F-statistic 3.895281 2.809806 6.201754 1.420692 Log likelihood -281.7273 -322.8143 -285.1470 -397.8317 Akaike AIC 22.44056 25.60110 22.70362 31.37167 Schwarz SC 22.92445 26.08498 23.18750 31.85555 Mean dependent -584.0654 3476.308 653.2500 -6514.731 S.D. dependent 22393.37 97792.24 30291.48 1462336. Determinant resid covariance 0f adj.) 6.87E+37 Image: covariance 1254.920 Akaike information criterion 99.91692 Image: covariance 102.0460 Image: covariance	Adj. R-squared	0.510356	0.394501	0.651887	0.131529
S.E. equation 15669.66 76095.89 17872.30 1362777. F-statistic 3.895281 2.809806 6.201754 1.420692 Log likelihood -281.7273 -322.8143 -285.1470 -397.8317 Akaike AIC 22.44056 25.60110 22.70362 31.37167 Schwarz SC 22.92445 26.08498 23.18750 31.85555 Mean dependent -584.0654 3476.308 653.2500 -6514.731 S.D. dependent 22393.37 97792.24 30291.48 1462336. Determinant resid covariance (of adj.) 6.87E+37 Image: contained state information criterion 9.85E+36 Log-likelihood -1254.920 Image: contained state information criterion 99.91692 Image: contained state information criterion	Sum sq. resids	3.93E+09	9.26E+10	5.11E+09	2.9/E+13
F-statistic 3.895281 2.809806 6.201754 1.420692 Log likelihood -281.7273 -322.8143 -285.1470 -397.8317 Akaike AIC 22.44056 25.60110 22.70362 31.37167 Schwarz SC 22.92445 26.08498 23.18750 31.85555 Mean dependent -584.0654 3476.308 653.2500 -6514.731 S.D. dependent 22393.37 97792.24 30291.48 1462336. Determinant resid covariance (of adj.) 6.87E+37 Image: Covariance (of adj.) Image: Covariance (of adj.) Determinant resid covariance 9.85E+36 Image: Covariance (of adj.) Image: Covariance (of adj.) Cop-likelihood -1254.920 Image: Covariance (of adj.) Image: Covariance (of adj.) Image: Covariance (of adj.) Schwarz criterion 99.91692 Image: Covariance (of adj.) Image: Covariance (of adj.) Image: Covariance (of adj.) Schwarz criterion 99.91692 Image: Covariance (of adj.) Image: Covariance (of adj.) Image: Covariance (of adj.)	S.E. equation	15669.66	76095.89	1/8/2.30	1362///.
Log interniood -281.7273 -322.8143 -283.1470 -397.8317 Akaike AIC 22.44056 25.60110 22.70362 31.37167 Schwarz SC 22.92445 26.08498 23.18750 31.85555 Mean dependent -584.0654 3476.308 653.2500 -6514.731 S.D. dependent 22393.37 97792.24 30291.48 1462336. Determinant resid covariance (of adj.) 6.87E+37	F-statistic	3.895281	2.809806	6.201/54	1.420692
Akake Alc 22.44056 25.00110 22.70502 51.57167 Schwarz SC 22.92445 26.08498 23.18750 31.85555 Mean dependent -584.0654 3476.308 653.2500 -6514.731 S.D. dependent 22393.37 97792.24 30291.48 1462336. Determinant resid covariance 9.85E+36		-281.7275	-322.8143	-285.1470	-397.8317
Determinant resid covariance 9.85E+36 - Log-likelihood -1254.920 - Akaike information criterion 99.91692 -	Schwarz SC	22.44030	25.00110	22.70302	31.3/10/
S.D. dependent 22393.37 97792.24 30291.48 1462336. Determinant resid covariance (of adj.) 6.87E+37	Mean dependent	-584.0654	20.00490	23.10730 653.2500	-651/ 721
Determinant resid covariance225553771722450251.461402530.Determinant resid covariance9.85E+37Log-likelihood-1254.920Akaike information criterion99.91692Schwarz criterion102.0460	S D dependent	22393 37	97792.24	30291 48	1462336
Determinant resid covariance 9.85E+36 Log-likelihood -1254.920 Akaike information criterion 99.91692 Schwarz criterion 102.0460	Determinant resid covariance (of adj)	6 87F+37	30271.40	1402330.
Log-likelihood -1254.920 Akaike information criterion 99.91692 Schwarz criterion 102.0460	Determinant resid covariance	9.85F+36			
Akaike information criterion 99.91692 Schwarz criterion 102.0460	Log-likelihood	-1254 920			
Schwarz criterion 102 0460	Akaike information criterion	99 91692			
	Schwarz criterion	102.0460	1	1	
Number of coefficients 44	Number of coefficients		44	1	1

Source: processed by the author

After getting the modeling in table 6, the next step is to test the feasibility of the model:

Table 4. Model Eligibility Test

Lags	Q-Stat	Prob.*	Adj Q-Stat	Prob.*	df
1	7.312223		7.604712		
2	18.34668		19.55870		
3	29.57579	0.3838	32.25249	0.2644	28
4	48.02448	0.3131	54.05548	0.1424	44
5	66.13859	0.2733	76.48248	0.0742	60
6	82.69180	0.2805	98.00164	0.0456	76
7	94.03369	0.4216	113.5221	0.0635	92
8	106.4301	0.5247	131.4281	0.0623	108
9	122.7430	0.5150	156.3772	0.0261	124
10	129.5662	0.7256	167.4650	0.0566	140
11	144.6823	0.7320	193.6662	0.0218	156
12	156.7775	0.7910	216.1286	0.0126	172
13	163.6320	0.8999	229.8377	0.0202	188
14	166.4440	0.9746	235.9303	0.0621	204
15	173.6808	0.9907	253.0355	0.0625	220
16	177.8082	0.9982	263.7668	0.1036	236
17	187.2975	0.9992	291.1802	0.0454	252
18	190.3054	0.9999	300.9558	0.0811	268
19	193.1416	1.0000	311.4902	0.1259	284
20	193.9585	1.0000	315.0301	0.2641	300
*Test is v	alid only for lags large	er than the VAR	lag order.		
df is degre	ees of freedom for (ap	proximate) chi-so	quare distribution aft	er	
adjustmen	t for VEC estimation	(Bruggemann, et	al. 2005)		

Source: processed by the author

From the results of the model eligibility test shown in Table 4, it can be seen that most of the lags obtained have met the model feasibility test and do not contain residual autocorrelation because the probability value is greater than the critical alpha value of 0.05.

The next test is the causality test using the *Granger Causality* method. This test aims to determine the relationship between the variables studied, namely exports, imports, labor, and government expenditure. Below are the results of the *Granger Causality Test*:

Table 5. Granger Causality Result

Variable	Prob.	Result
G. Expenditure	0.0229	Have relation
-Ekspor		
Import - Export	0.1351	Haven't
		relation
Labor - Eksport	0.2878	Haven't
		relation
Import- G.	0.2948	Haven't
Expenditure		relation
Labor - G.	0.0381	Have relation
Expenditure		
Labor -Import	0.0221	Have relation

Source: processed by the author

Based on the test with the Granger Causality method, a variable has a relationship with other variables if the probability value of the variable is less than the critical alpha value of 0.05. From table 5 above, it can be seen that the results of the causality test, in the import and export relationship in this study, it is stated that there is no import-export relationship, this is in line with Bakari and Mabroki's (2016) research which states that there is no relationship between import and export variables in their study in Morocco and also research conducted by Batubara and Saskara (2015) which states that there is only a one-way relationship between exports and imports, which means that there is no import-export relationship, in contrast to Sari (2019) which states that there is a causal relationship between exports and imports as well as research by Yüksel and Zengin (2016), which states that there is a relationship between exports and imports in China and Turkey, as well as Bakari and Krit (2017) also mention that there is a relationship between export and import variables in Mauritania and contrast to Babatunde (2014) which explained the relationship between export and import in Nigeria.

In this study, the variables namely labor and exports are don't have a relationship, this result is not following the theory put forward by Salvatore (1997) which states that a large number of existing workers will help export activities. Lembang (2019) explain, that government expenditure through capital expenditure has a positive and significant effect on labor, Sukirno (2000) also explains in his theory that government expenditure can stabilize job opportunities, in this case, it is reflected in the results of a causality analysis which explains that at least there is a one-way relationship between labor and government expenditure. After knowing the relationship between variables through the causality test, the next step is the Impulse Responses test, the purpose of this test is to determine the impact of *shocks* from one variable to another, this test is not only for short-term analysis but also for long-term analysis. Below is the result of the *Impulse Responses Function*.

The results of impulse response illustrate how to estimate the impact of a variable's shock on other, because import is the best variable to be used as a model according to the VECM estimation results, so that only need to be considered is the results of imports.

IRF analysis with imports as a response shows the first period is at 6,000, but in the second period it drops to -9,000, then the 3rd period increases to a positive value of 1,000. Period 4 to period 10 tends to fluctuate but not too much

Figure 1. Impulse Response Function

After obtaining the results from the Impulse Responses Function test, the next test is to perform the Variance Decomposition test, this test is intended to strengthen the results of the previous test and provides an estimate of the magnitude of a variable. Following are the test results of the Variance Decomposition

Table 6.	Variance Decomposition Test	
----------	-----------------------------	--

Variance						
Decompositio						
n of D(IMPOR):						
Period	S.E.	D(EKSPOR)	D(EXPEND)		D(IMPOR)	D(LABOR)
1	17872.30	83.73175	1.769525		14.49873	0.000000
2	25912.00	58.37962	15.25301		18.12554	8.241820
3	27239.60	58.21102	13.82379		16.87120	11.09400
4	28411.84	56.73161	14.34084		16.44647	12.48109
5	30240.71	60.18698	13.00641		14.51739	12.28922
6	32414.17	62.64545	12.44362		13.34723	11.56370
7	33647.61	63.75697	12.30897		12.59348	11.34057
8	34545.99	64.31814	12.78154		11.97257	10.92775
9	35732.51	66.26031	12.25015		11.19458	10.29496
10	37042.45	67.79774	12.10449		10.45005	9.647722
Cholesky Ord	ering: D(EKSP()R)D(EXPEND)	D(IMPOR) D(L	ABOR)		

Source: processed by the author

Because import is the best variable to be used as a model according to the VECM estimation results, so that only need to be considered is the results of imports. The results of VD import variables that are predicted to have the largest contribution value in the next 10 years are exports, in the first period until the end of the export period it has the largest and most dominant effect, this is indicated by a value of 60% - 80% in the first period until the end of the period. Starting from the second period, there is an effect of all variables, but the biggest influence is dominated by exports until the end of the period.

4. CONCLUSIONS

Based on the results of data analysis and discussion that has been carried out, the following conclusions are obtained:

- In the VECM test, export, import, government expenditure, and labor have long-term and shortterm relationships
- 2) Based on the Granger Causality test, it can be seen that the variables that have a relationship, namely, government expenditure on exports, labor to government expenditure, labor and imports, meanwhile the variables that have no relationship are imports with exports, labor, and exports, imports with government expenditure.

Based on the IRF test, it can be seen that each variable causes positive and negative responses to other variables, and in the VD test, variations in variable changes are caused by variations in other variables and also the variables themselves. Based on the results of the conclusions that have been made, the following suggestions are obtained:

- 1) The government must be able to regulate its export-import activities, while still increasing the intensity of exports to stimulate economic growth in every region in Indonesia, and slightly limit the intensity of imports to maximize domestic potential.
- 2) The private sector must play a role in absorbing the available labor, in addition to reducing the unemployment rate as well as increasing the number of goods produced, the increase in the number of goods produced may affect increasing exports.
- 3) The government must be able to regulate a budget, especially in the field of consumptive spending, and fully support the economy by providing infrastructure for the mobility of the use of economic activities.

5. RECOMMENDATION

Based on the results of the conclusions that have been made, the following suggestions are obtained:

- 1) The government must be able to regulate its export-import activities, while still increasing the intensity of exports to stimulate economic growth in every region in Indonesia.
- 2) The private sector must play a role in absorbing the available labor, in addition to reducing the unemployment rate as well as increasing the number of goods produced.

3) The government must be able to regulate a budget, especially in the field of consumptive spending, and fully support the economy by providing infrastructure for the mobility of the use of economic activities.

AUTHOR'S CONTRIBUTION

Imam Mukhlis, Andik Pratama

I.M.; Designed experiment, analyzed data, and supervised research

A.P.;Wrote the paper, designed experiment, analyzed data, and performed an experiment

ACKNOWLEDGMENTS

Our gratitude goes to the entire editorial board of PICEEBA, reviewers who have contributed to the review process of these manuscripts issue. The professional support and assistance of all respected reviewers have created this journal eligible for publication.

REFERENCES

- Adetunji Babatunde, M. (2014). Are Exports and Imports Cointegrated? Evidence from Nigeria. *Journal of International and Global Economic Studies*,7(2),45–67. http://www2.southeastern.edu/orgs/econjournal/i ndex_files/JIGES DEC 2014 BABATUNDE 1-31-2015.pdf
- [2] Bakari, S., & Mabroki, M. (2016). The Relationship between Economic Growth, Exports and Imports in Morocco: An Empirical Validation Based on VAR Modeling Techniques and Causality in the Meaning of Granger. Munich Personal RePEc Archive, 94488, 0–12.
- [3] Bakari, S. & Krit, M. (2017). The Nexus Between Exports, Imports, and Economic Growth: Evidence from Mauritania. International Journal of Economics and Empirical Research. 5(1), pp. 10-17.
- [4] BPS Indonesia,https://www.bps.go.id/indicator/8/175 4/1/nilai-import-Migas-nonmigas.html
- [5] BPS Indonesia,https://www.bps.go.id/indicator/8/175 3/1/nilai-ekspor-Migas-nonmigas.html

- [6] Dedi Supiyadi dan Lia Puspa Anggita. 2020. Peran Ekspor dan Impor Terhadap Pertumbuhan Ekonomi di Indonesia (2007-2017). Jurnal Indonesia Membangun, Vol. 19, No. 2
- [7] Dison M.H. Batubara dan I.A. Nyoman Saskara.
 2015. Analisis Hubungan Ekspor, Impor, PDB dan Utang Luar Negeri Indonesia Periode 1970-2013. Jurnal Ekonomi Kuantitatif Terapan, Vol. 8, No. 1
- [8] Lembang, H. (2019). Effect of Government Expenditures and Banking Loan Distribution on the Performance of Human Resource Development in Papua Province. International Journal of Social Science and Business,3(2),86. https://doi.org/10.23887/ijssb.v3i2.17581
- [9] Mukhlis, I., & Qodri, L. H. (2019). Relationship between Export, Import, Foreign Direct Investment and Economic Growth in Indonesia.97(Piceeba),100–108. https://doi.org/10.2991/piceeba-19.2019.12
- [10] Intan Sari Arfiani. 2019. Analisis Empiris Hubungan antara Ekspor, Impor,Nilai Tukar dan Pertumbuhan Ekonomi di Indonesia. Jurnal Ekonomi Pembangunan, Vol.17, No.81-98
- [11] Mankiw N, Gregory, et al. 2012. *Pengantar Ekonomi Makro, Edisi Asia*. Salemba Empat: Jakarta
- [12] Murni, Asfia . 2009. *Ekonomika Makro*. Bandung: PT Refika Aditama.
- [13] Salvatore, Dominick. 1997. Ekonomi Internasional. Edisi Kelima, Jilid 1. Haris Munandar [Penerjemah]. Erlangga: Jakarta
- [14] Sukirno, Sadono. 2000. Makroekonomi Modern: Perkembangan Pemikiran Dari Klasik Hingga Keynesian Baru. Raja Grafindo Pustaka
- [15] Tandjung, M. 2011. Aspek dan Prosedur Ekspor – Impor. Salemba Empat : Jakarta
- [16] Thomas, R.L. 1997. *Modern Econometrics an Introduction*. Addison – Wesley
- [17] Todaro M.P dan Stephen C. S. 2002. *Pembangunan Ekonomi di Dunia Ketiga*. Erlangga: Jakarta.
- [18] Undang Undang Republik Indonesia Nomor 13 Tahun 2013, Tentang Ketenagakerjaan.
- [19] Yüksel, S., & Zengin, S. (2016). Causality Relationship Between Import, Export and Growth Rate in Developing Countries. International Journal of Commerce and Finance, 2(1), 147–156