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ABSTRACT 

The landscape is continuously changing due to natural disturbances and anthropogenic activities. The alteration can   

and simulated using models continuously being developed with different approaches, such as Machine learning and 

Cellular. This paper explores the use of Multi-layer perceptron (MLP) integrated with the Cellular Automata-Markov 

(CA-Markov) model to simulate the future land cover change based on development planning scenarios. An example 

of model applications and the potential elaboration using free online spatial datasets in Jakarta is also presented. The 

paper shows how different spatial policies and guidelines can be incorporated into the modeling process, allowing 

users to assign areas where new developments can occur in the future. It is argued that the generation of spatial plan 

alternatives and the possibility of including sketching as a tool in the activity is similar to design cognition. 

Keywords: Land change modeling, Machine learning, Design cognition. 

1. INTRODUCTION 

Modeling is developed to assess the land cover 

change and project the alteration based on scenarios. Six 

categories of land change modeling approaches include 

the machine-learning and statistical, cellular, agent-

based, sector-based economic, spatially disaggregated 

economic, and hybrid methods [1]. Land change is a 

complex process; thus, the integration of different 

models, which combines each modeling technique's 

strength, is required to simulate the alteration [2] 

successfully. Examples of the hybrid approaches include 

the integration of Multi-layer perceptron (MLP) with 

other models, such as Cellular Automata (CA) [3] and 

Cellular Automata-Markov (CA-Markov) [4]. 

MLP is one of the Artificial Neural Networks 

(ANNs) used in machine learning [5]. According to 

Brown et al. [1], machine learning imitates natural 

learning systems using artificial intelligence tools. The 

algorithms can be used to detect the patterns in a 

dataset, connect the input and output data, and map their 

interactions to other datasets. Land change models have 

been widely used, including models that apply a 

combined MLP with CA [3,6] and MLP with CA-

Markov [7-8]. One of the MLP-CA-Markov models 

(i.e., the Land Change Modeler (LCM) module from 

Terrset) allows users to allocate specific areas where the 

land change is prohibited in the future. Thus, it provides 

an opportunity to investigate the effects of policies on 

land change [9]. A study [10] has been done to 

demonstrate architects and landscape architects' 

involvement in the modeling process. However, the 

participants' cognitive function in the land change 

modeling has not been further discussed.  

The use of computers for problem-solving in a 

creative process had become a concept known before 

the term 'artificial intelligence' was first introduced in 

1956 (McCorduck 2004, cited in Steenson [11]). A 

study from Steenson [11] studied how architects explore 

cybernetics and artificial intelligence on buildings and 

the built environment. Negroponte from the MIT 

Architecture Machine Group stated that an architecture 

machine should employ sensing capabilities and 

immerse with the environment similar to what designers 

would do; formulating and solving appropriate problems 

[11,12]. The process is influenced by the designers' 

education and experiences, including attachment to a 

single design concept.  

This paper presents the integrated MLP-CA-Markov 

model's potential to simulate the land cover change in 

Jakarta and the surrounding area (1989-2019). The 

study also describes the use of machine learning and 

development scenarios in the simulations, including the 

user's cognitive process in land change modeling. While 

most of the land change modeling studies focus on 
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predicting land use and land cover changes, user 

involvement in the modeling optimization still becomes 

a challenge [1]; thus, further research on this topic is 

required.  

2. DATA AND METHODS 

The case study area is located in Jakarta and the 

surrounding area in Indonesia. Maps showing the 

developed and the undeveloped regions were generated 

from Landsat imagery (USGS/ United States Geological 

Survey) taken on 6 July 1989 and 11 September 2019 

(Figure 1). The developed areas include settlements, 

public facilities, streets, and other impervious surfaces. 

On the other hand, undeveloped areas comprise natural 

landscapes, agricultural fields, and other areas covered 

by vegetation. The two land cover types were identified 

using the unsupervised image classification in ArcGIS. 

The image accuracy of the 2019 developed map was 

assessed using a confusion matrix.  

Figure 2 shows the generated 1989 and 2019 land 

cover maps with an overall accuracy of 84.40% for the 

latter map. Both maps were then used to simulate the 

land cover change in the area (1989-2019) using the 

Land Change Modeler (LCM) module from Terrset, 

which applies the CA-Markov-MLP model. CA 

simulates the land change based on the previous state of 

cells and the condition of their surrounding [6], whereas 

Markov models the transition probabilities of land cover 

change [13]. 

MLP comprises three layers; input layer, hidden 

layer, and output layer [14] (Figure 3). MLP uses the 

information on the maps of land cover change (i.e., 

explanatory variables or elements that cause the 

alteration) as the input layer to develop their 

relationships with land cover patterns in an iterative 

process [15]. The number of hidden nodes affects the 

accuracy level and training time. The output layer of 

MLP is the probability of conversion from one land 

cover type to another [14]. 

Five potential explanatory variables of land cover 

change (e.g., elevation, slopes, proximity to rivers, 

population density, and the likelihood of land cover to 

change to another), as the input layers, are modeled at 

once in the MLP. In this study, the raw data to develop 

the land change driver maps (Figure 4) were retrieved 

from various datasets. The elevation and slope maps 

were generated from the digital elevation model (DEM) 

from the BIG/ Indonesian Geospatial Agency. A map 

showing the proximity to rivers was developed from the 

river network data retrieved from BIG. The population 

density map was downloaded from WorldPop [17]. 

MLP works iteratively using the maps of drivers as the 

input data to model the transition potential from one 

land cover type to another [4]. LCM, then, uses the 

MLP outcomes to simulate the future land cover based 

on scenarios. 

 

 

Figure 1 Natural color of Landsat imagery in 1989 and 2019. Source: [16] 
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Figure 2 Developed areas (black color) in Jakarta and its surrounding area identified using the unsupervised 

classification 

 

Figure 3 An artificial neural network structure. Source: [6] 

 
(a)               (b) 

 
(b)               (d) 

Figure 4 Raw data for the explanatory variables of land cover change; (a) elevation (meter); (b) the percentage of 

slopes; (c) river networks; (d) population density (number of people per pixel) 
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3. RESULTS AND DISCUSSION 

Figure 5 illustrates the land cover change in Jakarta 

and the surrounding area (1989-2019), modeled in 

LCM. The land cover alteration from undeveloped to 

developed areas is indicated by the red color on the 

map, whereas areas with no change and background (no 

data) are shown in black. It can be seen that the 

alteration is mostly located in the eastern, southern, and 

western parts of Jakarta. These areas are located in the 

lowland (Figure 4b) inhabited by dense populations 

(Figure 4d). The change map, which also includes the 

transition from undeveloped to developed areas (Figure 

5), was further processed to generate the likelihood of 

land cover change in the past thirty years as part of the 

input datasets in the MLP process.  

Figure 6a shows the model panel to run the Transition 

Sub-Models (i.e., simulates the change from one land 

cover type to another) using MLP. The network has 

three hidden layers, or 2n/3, where n is the input layer 

[18]. The modeling outcomes are the images of 

transition potential from one land cover to another 

(Figure 6b and Figure 6c). The model accuracy of 

71.85% and the skill measure (i.e., how useful the 

explanatory variables influenced the land cover 

alteration in the past) of 0.6246. Each pixel on the 

output images has a value ranging from 0 to 1, which 

indicates the likelihood of specific land cover types to 

change at the end of the simulation. 

Open data sources, such as World pop 

(https://www.worldpop.org/) [17] and OpenStreetMap 

[19], provide an opportunity for the modeling users to 

create more maps of land change drivers, thus more 

input data for MLP to learn. In this study, a raster map 

showing the population density in 2015 retrieved from 

Worldpop was used in the modeling (Figure 4d). The 

raster image (100 m pixel resolution) was generated 

based on the United Nations' estimated population data. 

OpenStreetMap offers free shapefiles of streets, trails, 

and buildings built by mapper communities as 

contributors.  

Potential scenarios for modeling the future land 

cover in the case study area include a scenario without 

any development constraints, based on existing spatial 

policy. That can be developed based on different 

modeling and maps created by users. LCM uses a list of 

incentives and restrictions derived from each scenario to 

model the future land cover map. For example, in the 

existing policy-based method, the constraint maps, 

which show the areas restricted to be built, can be 

generated based on the study area's current spatial plan 

(Figure 7a). No further development of settlements and 

other facilities is allowed in the space allocated for 

conservation, agriculture, and the existing water bodies. 

In this case, users should extract the information on the 

spatial plan and the written guidelines for delineating 

those restricted areas.  

Figure 7b shows the identification process of areas 

allowed to be built in the future from the spatial plan, 

which has been previously georeferenced. River buffer 

and other green spaces on the project are identified as 

undeveloped areas. In contrast, all classes of built-up 

areas (e.g., settlements, settlements with green open 

spaces, offices, and retails) are categorized as developed 

areas. This study is limited to simulating future change 

from two general land cover types (e.g., developed areas 

and undeveloped areas) in the case study area. 

Therefore, MLP projects any transitions from one land 

cover type to another regardless of the land cover sub-

classes' characteristics. For example, the probability of 

undeveloped areas to change into settlements with green 

open spaces is similar to that of offices. 

 

 

Figure 5 Transition from undeveloped areas (black color) to developed areas (red) (1989-2019) in the case study area. 
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Figure 6 (a) Transition Potentials panel in LCM; (b) Transition potential from developed areas to undeveloped areas 

(1989-2019); (c) Transition potential of amorphous regions to developed areas (1989-2019). 
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Figure 7 (a) Transition Potentials panel in LCM; (b) Transition potential from developed areas to undeveloped areas 

(1989-2019) 

 

Figure 8  A sketch to propose the connectivity of green corridors in the case study area.

(a) 

(b) 
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Users might also generate constraint maps based on 

on-site analysis and particular design and planning 

theories. One example is implementing ecological 

design principles, such as the protection of the river 

ecosystem, in the development of constraint maps for 

LCM [10]. It is argued that this process is similar to the 

aspects of design cognition; problem identification, 

proposing alternatives to design solutions, and 

application of design process strategies [12]. It is argued 

that the application of specific planning guidelines to 

the modeling requires identifying particular problems on 

the site, in the same way as the problem framing in the 

design activity. Constraint maps, then, are generated 

based on the selected planning guidelines or concepts. 

As shown on the maps, designers create forms to 

comply with the design problem (Alexander, 1971, cited 

in Steenson [11]). 

The modeling process can be conducted iteratively 

to test different sets of spatial planning guidelines. In 

this case, users are required to develop two or more 

development scenarios, which are arguably identical to 

the alternatives of design solution concepts [12]. 

Sketching can be incorporated into the generation of 

constraint maps at the preliminary stage of modeling 

[10]. The sketches are digitized using GIS software 

before they can be used as constraint maps. Sketching 

helps designers to think of a general concept and its 

implementation simultaneously [20].  

Figure 8 presents an example of a sketch to propose 

the connectivity of green corridors along the roads and 

rivers in the case study area. The width of the green 

corridors is assigned based on the literature review. The 

sketch can be overlaid with satellite imagery and the 

corridor's form based on the existing conditions. Finally, 

the constraint maps can be generated by digitizing the 

sketch. Similar to the georeferencing process in the 

previous scenario (a scenario based on the existing 

spatial policy), the accuracy relies on the image 

resolution. 

It should be noted that there are at least two 

limitations of the CA-Markov model; the model 

stationary and the absence of human decisions in the 

modeling [21]. The model assumes land change drivers 

in the past are similar to the factors that cause alteration 

in the future. However, in reality, the land cover 

alteration process is not stationary [22], as it is affected 

by both endogenous and exogenous variables (e.g., 

natural disturbances and changes in socioeconomic 

conditions) [15]. Uncertainty is also embedded in the 

development of base maps from remotely sensed 

imagery and the land change modeling process [23-24]. 

Therefore, the modeling outcomes should be interpreted 

based on these considerations.  

 

4. CONCLUSIONS 

This study responds to the challenge of integrating 

land change modeling optimization and user 

involvement in the process. The results from MLP 

indicate the future land cover distribution in the case 

study area, given the current development trends in the 

area. The research also demonstrates the potential 

application of the existing spatial policy and other 

scenarios created by users in the modeling process. The 

use of MLP in the simulation can assist users or 

designers in analyzing the potential drivers of land 

cover alteration. The analysis runs multiple times and 

produces maps of land cover change probability in the 

case study area to simulate future land cover maps based 

on different scenarios.  

This study complements the previous research on 

architects and landscape architects' involvement in the 

land change modeling process. This paper shows how a 

decision on the design and planning process for 

allocating areas for further development can be 

integrated into the modeling. This process is arguably 

similar to the design cognition aspects. Users create 

forms on the constraint maps and benefit from sketching 

to assist the design cognition. Different development 

scenarios can be proposed and tested in the model, 

allowing architects, planners, decision-makers, and 

other users to visualize the implementation of specific 

spatial policies and planning guidelines in the future. 
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