The Reduction of CO and SO$_2$ by Natural Zeolites in Catalytic Converter of Diesel Engine

Abdul Hamid*, Auliana Diah Wilujeng, Ainur Rohman, Faizatur Rohmah
Heavy Equipment Mechanical Engineering
Politeknik Negeri Madura
Sampan, Indonesia
*ahamchimie@poltera.ac.id, ajeng.wut@gmail.com,
ainurohman1903@gmail.com, icha@poltera.ac.id
Susi Nurul Khalifah
Chemistry
Universitas Islam Negeri Malang
Malang, Indonesia
susikhalifah@gmail.com
Mohammad Abdullah
Ship Building Engineering
Politeknik Negeri Madura
Sampan, Indonesia
fisabdulh04@gmail.com

Abstract—Pollution has become one of the most talked issues around the world, especially the exhaust gas from diesel engines. Therefore, this study is intended to find ways of reducing harmful exhaust gases from diesel engines by improving the filter system using a catalytic converter with natural zeolite as the filter. Natural zeolite was used directly without preparation. Before usage, natural zeolite was characterized using Fourier Transform Infra-Red (FTIR) and X-Ray Diffraction (XRD). The characterization results showed that the natural zeolite is a type of mordenite. The presence of chemicals such as natural zeolite allows the filter system to reduce CO and SO$_2$ molecules in diesel engine exhaust gases. Diesel engine emission testing was carried out with time variations from 3 to 21 minutes. The result explains that the emission of CO and SO$_2$ measured by gas analyzer declined as the test time extended. This indicates that a large amount of CO and SO$_2$ as the exhaust gases from diesel engine were adsorbed by natural zeolites in the catalytic converter.

Keywords—zeolite, catalytic converter, emission, diesel engine

1. INTRODUCTION

Pollution can be defined as an unwanted foreign object that contaminates the environment or in other words, it is defined as the excessive discharge or addition of unwanted foreign substances or objects to the environment. Thereby negatively changing the natural air quality and causing damage to the living creatures' habitat on earth. Air pollution can be defined as a polluted atmospheric condition. These substances include gases (sulfur oxides, nitrogen oxides, carbon monoxide, hydrocarbons etc.) and particles (smoke, dust, fumes, aerosols etc.) [1]. Air pollution has produced harms to human health and one of it is the emission of diesel engine exhaust from a vehicle as the result of its CO and SO$_2$ production. Sulfur dioxide (SO$_2$) is the major pollutant element and a toxic precursor for humans which has the potential of causing reduced breathing, inflammation of the respiratory tract, and lung damage [2]. In addition, carbon monoxide (CO) is one of the most poisonous gases in the atmosphere. CO is produced by the incomplete combustion of carbon-containing compounds [3].

Diesel engine is a machine that uses a high compression ratio to carry out the combustion process. This makes the power generated from the combustion process of diesel engine greater than gasoline engine. Therefore, diesel engines are widely used in vehicles, especially vehicles that require large power. In diesel engine, conditions in the engine differ from its ignition since the power is directly controlled by the fuel supply and not by the air supply. This occurs when the engine is running at low power. There is enough oxygen to burn the fuel and a diesel engine will produce a large amount of carbon monoxide when the engine is running under load [4].

One alternative that can be used to reduce the emission compound of diesel engine is the use of a catalytic converter. The catalytic converter is a device used to reduce the toxicity of emissions from internal combustion engines. This converter provides an environment for chemical reactions in which toxic combustion by products are converted to less toxic substances. Silicon dioxide and alumina with silica as a catalyst in a catalytic converter have been developed for diesel engines by Arunkumar et al [1]. Kumar et al [5] have conducted research on the manufacture of converter catalysts using activated carbon filters. The results show that decrease in carbon monoxide content from 13 ppm to 11 ppm, hydrocarbon content from 19 ppm to 16 ppm. The results of other studies by
Naveenkumar et al [6] showed a decrease in HC and NOx gases of around 3 and 14 ppm.

Naveenkumar et al [6] created catalytic converters using monoliths in diesel engines. The monolith of the catalytic converter was formed using ceramics and metals. Rajakrishnamoorthy et al [7] synthesized ZSM-5 zeolite from coal fly ash and used it as catalytic converter to reduce NOx content in gasoline-fueled engines. The ZSM-5 was doped with copper and cobalt. The experiment was carried out on a two-cylinder gasoline engine by making zeolite-based catalytic converter. Zeolite based on Cu-ZSM-5 monolith showed NOx reduction performance at low temperature, whereas Co-zeolite monolith showed NOx conversion at high temperature. CO and HC emissions are significantly reduced at all levels of load conditions.

The zeolite has the advantage as emission adsorbent because its structure has a large enough cavity or pore and surface area that it can absorb exhaust gas content, especially from diesel engines. Therefore, in this study, catalytic converter was created using natural zeolite as the filter. Zeolite is used directly with no treatment or preparation as a diesel engine exhaust gas filter.

II. RESEARCH METHODS

A. Tools and Materials

The tools used in this study is single cylinder diesel engine 178 F model. Test measuring tools such as Ecom-D flue gas analyzer, tachometer DT-1236L, stopwatch. The single cylinder diesel engine type used in this study can be seen in Figure 1. The materials used in this study are iron plate, natural zeolite and iron net.

![Fig. 1. Single cylinder diesel engine.](image)

B. Characterization of Natural Zeolites

Natural zeolites were characterized by X-ray diffraction and FTIR. XRD measurements were carried out with Cu Kα radiation on a Bruker D2 Phaser 2nd Gen diffractometer in the range of 5°-50° (2θ), λ = 1.54056 Å for phase identification. Thermo Nicolet Avatar 360 infrared spectrum was carried out using KBr pellets at wave number between 1400 and 400 cm⁻¹.

C. Catalytic Converter Design

In the making process of the pipe-shaped converter catalyst made of iron plate, hollow balls were then placed inside the pipe. The hollow balls were coated with an iron net and then filled with natural zeolite which was used as filter media for diesel engine emissions. The material used for the manufacture of hollow balls was an iron plate covered with an iron net. There were about 146 grams of Zeolite put into three hollow balls. The designs and drawings of the catalytic converter are shown in Figures 2, 3 and 4.

![Fig. 2. Design of a catalytic converter.](image)

![Fig. 3. Catalytic converter.](image)

![Fig. 4. Hollow balls as natural zeolite place.](image)
D. Diesel Engine Emission Testing

Diesel engine emission testing was carried out using a gas analyzer. First, the granular zeolite was inserted into a spherical net then proceed into the converter catalyst that has been previously made. The converter catalyst was then attached to the exhaust gas line to see how much absorption of the exhaust gas content in the diesel engine. The presence of harmful gas molecules produced by diesel engines. The diesel engine specifications are shown in Table 1.

III. RESULTS

A. Characterization of Natural Zeolites

FTIR spectra of natural zeolite samples are shown in Figure 5. Characterization by FTIR was carried out at 1400-400 cm\(^{-1}\). The FTIR spectra of the samples showed the characteristic vibrations for the mordenite zeolite. The characteristic peaks of mordenite appear around 466, 620, 693, 794, and 1020 cm\(^{-1}\). A peak around 1020 cm\(^{-1}\) represents internal asymmetric stretching vibration. The appearance of the absorption band at 693 cm\(^{-1}\) indicates internal symmetric vibration, while at 794 cm\(^{-1}\) is external symmetry vibration [8]. A sensitive band structure of about 620 cm\(^{-1}\) indicates the presence of double ring of mordenite material. The peak around 466 cm\(^{-1}\) is the bending vibration of T-O, where T are Si or Al [9].

B. Diesel Engine Emission Test Results

In this study, XRD analysis was carried out at an angle of 20 between 5°-50°. The X-ray diffraction pattern (XRD) of natural zeolite is shown in Figure 6. The XRD characterization results of the natural zeolite sample showed characteristic peaks of the mordenite zeolite at 20 around 20.81°; 23.55°; 26.62°; 27.93°. Diesel engine emission testing was carried out on single cylinder diesel engine. In this study, the test was carried out with no catalytic converter to see the resulting emission content of diesel engine (Figure 7). With a test time variation, another test was performed with catalytic converter as comparison (Figure 8). The amount of zeolite put into the three hollow balls about 146 gram/539 cm\(^3\). Zeolite has been widely used as catalyst and adsorbent because of its high surface area and good porosity [10]. Therefore, zeolite has the ability to adsorb harmful gas molecules produced by diesel engines. The design of the zeolite holder is made in the shape of sphere so that when testing the emission, the hollow balls can move and rotate. Therefore, the zeolite's ability to absorb emissions is greater. The movement and rotation of the ball will cause the zeolite to react more quickly to absorb gas molecules produced from the diesel engine. Zeolite also has limited time in absorbing diesel engine emissions because the exhaust gas molecules that are absorbed by the zeolite's pores are saturated.

Diesel engine emission testing was carried out at 1000 rpm. The emission content of diesel engine was measured using gas analyzer instrument. Gas analyzers were used to measure the content of CO, CO\(_2\), SO\(_2\), O\(_2\) and NO\(_x\). The results of the measurement of diesel engine emission content are shown in Table 2. The table shows that there was decrease in CO and SO\(_2\) gas content but an increase in NO\(_x\) content using catalytic converter. The results of testing O\(_2\), CO, NO\(_x\), SO\(_2\) and CO\(_2\) content without catalytic converter were 19.34%; 17,023 ppm; 631.3 ppm 158.8 ppm and 1.22%, respectively. Meanwhile, by using a catalytic converter for 21 minutes, the content of O\(_2\),
CO, NOₓ, SO₂ and CO₂ were 18.38%; 9862 ppm; 1388.4 ppm; 9.7 ppm; 1.92%, respectively.

Table 2 shows that the use of catalytic converter in diesel engine can reduce the emission content of CO and SO₂. The largest decrease occurred in the gas content of CO and SO₂, along with the increasing time of testing, the use of adsorption media could further absorb CO and SO₂ content. This can occur because natural zeolite, apart from functioning as adsorbent, can also function as catalyst [11].

Figure 9 shows the effect of testing time on the CO content at the time of testing. The use of catalytic converter with natural zeolite as adsorbent can reduce CO content. The CO content from the test results without a catalytic converter was obtained at 17,023 ppm, then the CO content decreased along with the installation of the catalytic converter. The emission test was carried out for 21 minutes and obtained of CO content around 9862 ppm. This is accordance with the theory described by Kaspar et al. [12], who showed that the oxidation reaction of CO to CO₂ occurs in the exhaust gas that is installed with a catalytic converter in the exhaust gas line. This happens because the catalyst in the catalytic converter makes the oxidation reaction process of CO to be CO₂ faster. The reaction is as follows

\[2 \text{CO} + \text{O}_2 \rightarrow 2 \text{CO}_2 \]
ORPORATION WOULD LIKE TO.

Kumar, R. Balaji, attached to the

Ghandra Dhal, “Controlling carbon monoxide emissions

Swaran, and M. R. Aravind,

f iron plate, hollow balls and a

xide & Alumi

ter

bathu

na With Silica as Catalysts,” vol.

09, no. Marc

ission Redu

s obtained at

The adsorption data was collected every three minutes.

ary zeolite had been saturated by C

additional amount was attained. Persumably, the pores of

even when extending emission test to 21 minute

maximum ads

exhaust gas was influenced by the emission test time. The

prolonged. The performance

adsorbed on zeolit increased as the emission test time

Subjected time

IV. CONCLUSION

The catalytic converter has been successfully created with a pipe made of iron plate, hollow balls and attached to the exhaust gas line of a diesel engine. The catalytic converter with mordenite type zeolite as filter can reduce CO and SO2 content in diesel engines. The longer of testing time, the smaller of CO and SO2 content obtained. This shows that the mordenite natural zeolite can adsorb CO and SO2 molecules.

ACKNOWLEDGMENT

The Authors would like to acknowledge “the Politeknik Negeri Madura for the 2020 DIPA funding”.

REFERENCES

