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Abstract—This paper presents the balancing control of 

underactuated unicycle robot. The authors propose new 

approach to control such system using Adaptive Super-Twisting 

Sliding Mode Control. First, the simplified dynamic model of 

unicycle robot is adopted from previous results and then the 

normal forms are obtained to design controllers. Second, the 

adaptive super twisting sliding mode control is applied for all 

pitch, roll, and yaw dynamics such that the system can be 

balanced upright. Then the controller laws are implemented in 

virtual robot using Open Dynamics Engine (ODE) simulation. It 

is shown in simulations that the proposed controllers are 

effectively stabilized the unicycle robot upright. 

Keywords—adaptive super-twisting algorithm, balancing 

control, unicycle robot, underactuated system, second-order sliding 

mode control 

I. INTRODUCTION 

This paper presents the balancing control of unicycle robot 
which consists of a wheel, a reaction wheel, and a turntable. 
We propose a balancing controller for such robot using 
adaptive-gain second order sliding mode control. This work is 
inspired from the works of Chin [1] and Yang [2] or some 
other works in [3,4] and apply different approach to balance the 
system. Indeed, we use the mathematical model derived by 
Chin [1] and Yang [2] which is based on Euler-Lagrange 
method. Then, we develop the unicycle robot simulator using 
open-dynamic engine (ODE) simulation as a testbed to verify 
the effectiveness of proposed controller design. 

The stabilizing control of unicycle robot is the fundamental 
problem in underactuated unicycle robot. In this control 
problem, the robot is kept balance upright by actuating the 
wheel, reaction wheel, and turntable for pitch, roll, and yaw 
axes, respectively. To control such robot, the dynamics model 
is decoupled into subsystems and control separately. These 
approaches have successfully implemented in previous works 
in [1–4]. The advanced control problem of unicycle robot is the 
motion control of such robot so that the robot can follow a path 
or to track a trajectory. In this paper, the author only discusses 
the fundamental problem in unicycle robot. 

II. UNDERACTUATED UNICYCLE ROBOT 

A. Related Works 

This paper relates with the previous works as conducted by 
Chin [1] and Yang [2] in their thesis. In earlier design, the 
unicycle robots were developed using wheel and reaction 
wheel without turntable as discussed in Ho et al [3], while in 
Hohl et al [4], the robot has reaction wheel and turntable where 
the position of the turntable is located on the top of the body. 
Since the stabilities of the previous systems were harder to 
maintain, then in recent designs the position of the turntable is 
located near the centre of body as depicted in Figure 1 [1,2], 
furthermore, the size and mass of unicycle robot is smaller and 
lighter [3,4]. 

In his master thesis, Chin [1] and Yang [2] have derived the 
mathematical model of unicycle robot based on Euler Lagrange 
method. This method was different from Diaoxiong’s approach 
where he derived his unicycle robot model using Lagrange-
D’Alembert equation [5,6]. Based on simplified model derived 
[1,2], we propose a new approach to solve self-balancing 
controls problem using Adaptive Super Twisting Algorithm. 
Following the system model with similar dimension given in 
Shamsiri et al [2], we have successfully developed a unicycle 
robot simulator as a testbed to verify the control method 
presented in this paper. This simulation is developed using 
commercial package named AnyKode Marilou Robotic Studio 
[7]. This package is utilized Open-Dynamic Engine (ODE) 
libraries that serve as physics engine as many other robotics 
simulation [8–11] including Webots [12,13], Gazebo [14,15], 
and other realistic game software in the market today. 

 

Fig. 1. Unicycle robot model. 
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B. Mathematical Model 

The mathematical model presented in this paper were 
derived by Chin [1] and Yang [2] using Euler-Lagrange 
method. They both developed different robots, but they 
obtained similar mathematical models and this system model is 
depicted as Figure 1 [1,2]. Let α, β, and γ are the respective for 
the pitch, roll, and yaw angles, while {θ,φ,ψ} are the angular 
displacement of the wheel, reaction wheel, and turntable, 
respectively. By using dynamics model of unicycle robot in 
[1,2], the simplified dynamics model can be decoupled into 
pitch (Σ1), roll (Σ2), and yaw (Σ3) as following: 

           (1) 

                          (2) 

             (3)  

with τw is generalized dc motor modelled for modelling τw, 
τd, and τf as: 

  (4) 

τm and u are the motor torque and control voltage applied to 
the motor, respectively. Ra is the armature resistance and Kt is 
motor constant. Furthermore, the parameters of system (1)–(3) 
are given by: 

        (5) 

It is important to note that {Iby,Iwy,Idy,Ify} are the moment of 
inertia of body, wheel, reaction wheel, and turntable about yc 

axis, respectively. {Ibx,Iwx,Idx,Ifx} are the moment of inertia of 

body, wheel, reaction wheel, and turntable about xc axis, 
respectively. Moreover, {Ibz,Iwz,Idz,Ifz} are the moment of inertia 
of body, wheel, reaction wheel, and turntable about the zc axis, 
respectively. 

III. CONTROLLER DESIGN 

A. Stabilizing Controller of Longitudinal Dynamics 

Since the system is only operated near equilibrium point 
and so the system (1) can be linearized by assuming sinα ≈ α, 
cosα ≈ 1 and cos2 α ≈ 1. Furthermore, let q = [q1 q2]T, p = [p1 

p2]T in which q1 = α, q2 = θ, p1 = α˙, and p2 = θ
˙
. If the dc motor 

model in (4) is applied into τw of longitudinal dynamics model, 
and then, the linearized model can be rewritten as follow 

q˙1 = p1 

p˙1 = f1(q,p) + g1(q2)u 

(6) 

q˙2 = p2 p˙2 = f2(q,p) + 

g2(q2)u 

where: 

,

.  

Furthermore, K1, K2, L1, L2, J1, J2, M1 are given: 

  (7) 

In (6), the control input u appears on second and fourth 
rows and we need to decouple the system by using standard 
decoupling algorithm [16]. We use the change of coordinates 
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, and ξ2 = p2 to 
decouples (q1,p1) subsystem and (q2,p2) subsystem with respect 
to u. The balance point of unicycle robot for longitudinal 

dynamics model where α → 0, θ → 0, α˙ → 0, and θ
˙ 

→ 0 is 

equivalent to z1 → 0, z2 → 0 and ξ1 → 0, ξ2 → 0. It follows that 

 

The relation of (q,p) and (z,ξ) are given: 

           (9) 

and by substituting (9) into (8), we have: 

         (10) 

Where d is the higher order terms, and we assume as 
disturbances due to unmodelled dynamics. Furthermore, A1, B1, 
A2, B2, and K are given: 

    (11) 

and: 

            (12) 

The system in (10) can be rewritten as: 

z˙1 = z2  

z˙2 = f1(z1,z2,ξ1) 

ξ˙1 = ξ2 

ξ
˙

2 = f2(z1,z2,ξ1,ξ2) + b(z1,z2,ξ1)u + d                                      (13) 

With |d| ≤ D. To design sliding mode controller for 
underactuated system (13), there are three conditions need to 
be satisfied as given in Xu and Özgüner [17] and all three 
conditions are satisfied. Hence, we allow to design sliding 
manifold as: 

It follows that: 

s = ξ2 − c1z1 − c2z2 − c3ξ1. (14) 

 
s˙ = ξ˙2 − c1z˙1 − c2z˙2 − c3ξ˙1. (15) 

When the system trajectory reaches and stay on sliding 
manifold at time ts, we have s = 0. On this manifold as shown 
in (14) we may rewrite as: 

 ξ2 = c1z1 + c2z2 + c3ξ1. (16) 

To choose ci (i = 1,2,3) such that the system trajectory 
converges to zero, we let µ1 = ξ2 and µ2 = [z1 z2 ξ1]T, then (16) 
becomes: 

 µ1 = Cµ2 (17) 

Where C = [c1 c2 c3]. When time t ≥ ts, we have s˙ = 0 and 
thus (15) can be represented in µ1 and µ2 by: 

           s˙ = µ˙1 − Cµ˙2 

= A2z1 + B2ξ1 + Ku + d − Cµ˙2          (18) 

In (18), it is important to choose C such that µ˙2 → 0. This 
can be achieved by choosing C as Hurwitz as discussed in Liu 
[18]. To do that, let us take first derivative of µ2, it yields: 

Advances in Engineering Research, volume 208

241



                    (19) 

         (20) 

From (17), the equation (19) can be rewritten as: 

                   µ˙2 = (C1 C + C2)µ2.                                       (21) 

To guarantee µ2 → 0, then (C1 C + C2) must be Hurwitz. 
Calculating C1 C + C2 from (20), we have: 

     (22) 

The pole for (22) can be designed by: 

|sI − (C1C + C2)| = s3 − c3s2 + (B1c2 − A1)s 

                              + (A1c3 + B1c1) = 0                                (23) 

Let (s + k)3 = 0 where k > 0 and equate with (23), then: 

                                                     (24) 

By solving (24) we obtain: 

                                                            (25) 

If c1, c2, and c3 are chosen properly, then (21) would make 
µ2 → 0. Since µ2 → 0 then µ1 → 0 in (17), and thus, s → 0 in 
(14) as time t → ∞. 

The system in (15) has relative degree one so that the super 
twisting algorithm can be applied. To design controller, we 
may choose 

                                                    (26) 

for K 6= 0. Substituting (26)-(28) into (18), it yields: 

 s˙ = usm + d                                                                     (27) 

where ueq = (A2 − A1c2)z1 − c1z2 + (B2 + B1c2)ξ1 − c3ξ2             (28) 

 And d can be removed by control input usm. This controller 
is super-twisting algorithm [19] i.e.: 

                           (29) 

We consider α and β are adaptively changing by: 

       (30) 

 where  with αm is small positive value. 

B. Stabilization Control of Lateral Dynamics 

We ignore the state variable φ from equation (2) [3,20,21] 

and let x1 = β, x2 = β
˙
, and x3 = φ

˙
. It yields: 

x˙ = f(x) + g(x)u            (31) 

  

Output equation is defined: 

            .                                      (34) 

We take derivative of y using Lie Derivatives with respect 
to f and g [20,22] until we find LgLf

k−1h 6= 0 for k = 1,2,...,n. By 
computing these derivatives, we obtain: 

               (35) 

Since LgL2
fh 6= 0. Following (34)-(35) and choosing new 

state variables as: 
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                                               (36) 

It follows that the normal form of system (2) in feedback 
linearization is: 

ξ˙1 = ξ2            (37) 

ξ˙2 = ξ3  

ξ˙3 = v 

 
When u is chosen as: 

 

i.e., valid for |x1| < π/2. 

We choose the sliding surface as: 

                 s = c1 ξ1 + c2 ξ2 + ξ3                                (39) 

For c1, c2 > 0. Using (37) in the first-time derivative of (39), 
we have 

s˙ = c1 ξ2 + c2 ξ3 + v. 

To design controller, we choose 

(40) 

v = usm − ueq 

where: 

(41) 

ueq = c1ξ2 + c2ξ3. (42) 

The new system (40) has relative degree one because the 
control input appears in first time derivative of s, and thus, the 
Super-Twisting Algorithm [19] can be applied. Hence, usm is 
given by: 

                 (43) 

The control gains for α and β are adaptively changing by: 

  (44) 

Where  with αm is small positive value. 

C. Control Yaw Dynamics 

Following Rizal et al [4], from the yaw dynamics model in 
(3), we have: 

  (45) 

Where Iz = Iwz +Ifz +Ibz +Idz. Simplifying and eliminating for 

ψ
¨ 

in (49), then: 

  (46) 

we define 

eγ = γ − γd 

                                          e˙γ = γ˙                                         (47) 

 e¨γ = γ¨ 

Let z1 = eγ and z2 = e˙γ, then we have: 

          (48) 
We choose a sliding manifold as: 

  s = z2 + c1z1            (49) 

Then, if s → 0 then both z1 → 0 and z2 → 0 and thus γ → γd. 
This means the angle heading of unicycle γ will converge to γd. 
It follows from (49) that: 

  (50) 

By choosing: 

  (51) 

and substitute (51) for u in (50) then we have 

 s˙ = v. (52) 
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Fig. 2. Unicycle robot simulation. 

The super-twisting algorithm [19] is used in (51) i.e., given 
by: 

               (53) 

where α = α(s,s˙) is adaptively changing by 

 

if |α| > αm  

if |α| ≤ αm                         (54) 

 

Where ω3, γ3, and are positive constants and αm is small 
value. 

IV. RESULTS AND DISCUSSION 

A. Unicycle Robot Simulation 

The developed of robot simulation in Fig. 2 is inspired from 
the appearance and mechanical design of Yang’s work in his 
thesis [2]. The simulation is based on Open Dynamics Engine 
(ODE) simulation using commercial robot software AnyKode 
Marilou [7]. We assume all states are available to measure and 
the sensors and actuators are provided by robot simulation 
software. The system parameters used in simulation is given in 
Table I. 

 

 

 

 

TABLE I.  PHYSICAL PARAMETERS 

Symbol Value and unit Description 

mb 0.500 kg  Mass of body (without other parts) 

md 0.610 kg  Mass of reaction wheel 

mf 0.200 kg  Mass of turntable 

mw 0.453 kg  Mass of wheel 

Iwx 1.34 ×10−3 kg.m2 Moment of inertia of wheel about xc axis 

Iwy 6.71 ×10−4 kg.m2 Moment of inertia of wheel about yc axis 

Iwz 6.71 ×10−4 kg.m2 Moment of inertia of wheel about zc axis 

Ifx 1.68 ×10−4 kg.m2 Moment of inertia of turntable about xc axis 

Ify 1.68 ×10−4 kg.m2 Moment of inertia of turntable about yc axis 

Ifz 3.36 ×10−4 kg.m2 Moment of inertia of turntable about zc axis 

Ibx 1.70 ×10−2 kg.m2 Moment of inertia of body about xc axis 

Iby 1.70 ×10−2 kg.m2 Moment of inertia of body about yc axis 

Ibz 3.30 ×10−5 kg.m2 Moment of inertia of body about zc axis 

Idx 3.82 ×10−2 kg.m2 Moment of inertia of reaction wheel about 

xc 

Idy 3.39 ×10−2 kg.m2 Moment of inertia of reaction wheel about 

yc 

Idz 2.12 ×10−3 kg.m2 Moment of inertia of reaction wheel about 

zc 

l 0.166 m  Length from the center of wheel to 

turntable 

lr 0.077 m  Radius of the wheel 

lwf 0.077 m  Length of center of reaction wheel to 

turntable 

Kt 0.0530 N.m/A Motor constant 

Ra 1.3000 Ω Armature constant 

g 9.8 m/s2 Gravitational acceleration 

Here, we use IMU (inertia measurement unit) to detect α, β 
and γ angles. Furthermore, each motor has motor encoder with 
resolution 1024 ppr and thus, the angular position of wheel θ 
can be measured. 

In simulation, we use equations (29)-(30), (43)-(44), and 
(53)-(54) to control pitch, roll, and yaw dynamics, respectively. 
The control parameters for pitch dynamics are αm = 
0.
6.75, c2 = 3.1c3 = −1.511, um = 1. Moreover, for roll dynamics, 
its parameters are αm = 0.22, ω2 = 1.115, γ2 = 
0.  
Finally, the parameters for yaw dynamics are αm = 0.22, ω3 = 

0. . 

These control laws were implemented using C/C++ 
programming in Microsoft Visual C++ 2008 for controlling the 
virtual unicycle robot in AnyKode Marilou. 
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Fig. 3. Unstable unicycle robot. 

 
Fig. 4. Stable unicycle robot. 

The simulation results are given in Figure 3 and Figure 4 
for unbalanced and balanced systems, respectively. In Figure 3, 
the robot is released from any initial position and since the 
system follows the physical laws, the system falls on the 
ground. This means the angular position of unicycle robot in 
roll and yaw axes are not equal to zeros. 

For the second simulation, we set the initial position of the 
robot has 3◦ in lateral direction (roll). If the control parameters 
are chosen properly and tuned as given parameters above, then 
the robot can be balanced upright. It is shown in Fig. 4, the 
angular position for pitch, roll, and yaw are on equilibrium 
points (nearly zeros). This means the robot successfully can be 
stabilized upright. 

In different scenarios, we set different initial positions in 
lateral axis range from 1◦ ∼ 10◦. From this experiment, we 

found that the maximum angle for initial position is 6◦. Other 
than that, the system becomes unstable, and it is harder to 
control. In real-world application, for example in Ho et al and 
Rizal et al [3,4], the initial position of unicycle robot in lateral 
axis was less than ±1.14◦ (±0.02rad), i.e., very close to 
equilibrium point. Thus, the efficacy of proposed balance 
control in this paper is better than those experimental results 
presented in [3,4]. Although this proposed robust control is 
promising, but the drawback of this controller is too many 
control gains and parameters compared to previous works 
[3,4]. 

V. CONCLUSION 

In this paper, we discussed the adaptive-gain second order 
sliding mode control to balance the unicycle robot by using the 
simplified dynamics of unicycle robot model in literature. The 
system was decoupled into three independent subsystem and 
then the controller design is derived separately. To verify the 
effectiveness of the control law, we developed a virtual robot 
as a testbed to implement the controllers. It shown that the 
virtual robot follows the physical laws i.e., when the system is 
not properly controlled, the robot may fall down to ground due 
to gravitational force. By properly tuning the control 
parameters and control gains, the robot can be stabilized 
upright. It is found in simulation that the proposed controller 
can stabilize the unicycle robot upright even when the initial 
position in lateral axis is more than 3◦ as compared to existing 
approaches in Ho et al [3] and Rizal et al [4]. 
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