

Performance Comparison of Algorithms in Cake

Cutting Game

Yensheng Ma1, Shiyu Liu2*

1School of Artificial Intelligence, Hebei University of Technology, Tianjin, 300132, China

2School of Cyber Engineering, Xidian University, Xi’an Shaanxi, 710126, China
*Corresponding author. Email: ariel_0818@163.com

ABSTRACT

In recent years, games have become a hot field with great commercial value. And artificial intelligence in games

became a important part of game design. In order to develop a sophisticated and efficient game AI, the algorithm

implemented in the AI will play a role that cannot be ignored. Man-machine combat is a part of almost every game.

However, how to choose the most appropriate algorithm to make computer players have better efficiency and winning

rate, so as to bring real players a better experience is still a problem to be studied. Cake cutting is a simple game. We

construct this game as an example to judge the efficiency comparison of four algorithms in this game, match different

algorithms in pairs, and find the algorithm with the highest winning rate by considering factors such as first hand and

then hand, the running time, memory occupation and CPU occupation rate of the game which are the factors for us to

judge the efficiency. After research, we find that Minimax theorem is the algorithm with the best winning rate when

taking no care of running time.

Keywords: Game design; Greedy Algorithm; Dynamic Programming Algorithm; Depth first search (DFS);

Minimax Theorem

1. INTRODUCTION

1.1Background

Gaming is intimately related to the use of proxies

and estimators in decision-making processes.

Nowadays, video games and entertainment systems

collectively make up the biggest industry in terms of

turnover, more than music and cinema. [1] Because of

this we can deduce that video games have become the

preferred games of choice, exerting significant social

and cultural influence over children, teens and adults

[2].

It can be said that there is not much research on the

four algorithms in the game field, and our cake cutting

game can be extended to other aspects, which will bring

high profit and efficiency for game industry.

1.2Subject

This paper mainly studies the application of four

algorithms in cake cutting game.

Our cake cutting game means that we have a cut

cake with randomly generated numbers on each piece of

the cake. Players take turns to take a piece of cake, but

only the cake on both sides of the one taken by the

person in front can be took, until all the cakes are taken

away. Finally, the player with the largest sum of cake

numbers wins.

These four algorithms are greedy algorithm,

dynamic programming algorithm, depth first search

algorithm and maximum minimum theorem. We asked

four computer players to apply four algorithms to

choose which cake to fight against and choose the final

winner among the four computer players.

Our judgment of the algorithm mainly depends on

the winning rate of the game. When the same number

of games are played, the algorithm applied by the

winner has the advantage. In addition, we also discuss

the efficiency of the algorithm. When winning the same

game, consider the running time, memory occupation

and CPU occupation of the game.

Advances in Social Science, Education and Humanities Research, volume 631

Proceedings of the 2021 International Conference on Social Development and Media Communication (SDMC 2021)

Copyright © 2022 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/. 17

1.3What We Find

We mainly use the method of controlling variables

to control all factors except judgment factors. And

increase the number of confrontations to eliminate

randomness. During the experiment, we mainly found

mini-max has the highest success rate both first-hand

and second-hand. The downside is that mini-max runs

very long.

We assume this might be related to minimax’s

overall traversal and pessimistic thinking. The cake

cutting game seems simple, but the specific idea can

also be extended to other similar card games, which also

has great commercial value.

2. FOUR ALGORITHMS

A cake-cutting game is essentially a game be- tween

two players. Game refers to the process in which

individuals or teams choose and implement behaviours

or strategies that are allowed to be chosen at the same

time or successively, and obtain response results or

benefits from each other, depending on the information

they have mastered under certain environmental

conditions and rules [3].

Here are four algorithms that help players find ways

to win in a more efficient way.

2.1 Greedy Algorithm

Greedy algorithm has no specific algorithm

framework. The key of design is to make the best choice

when solving the problem, that is, the local optimal

solution in a sense.

Its basic idea is:

 Establish a mathematical model to describe the

problem

 The problem is divided into several sub problems

 Each sub problem is solved to obtain the local

optimal solution of the sub problem

 The local optimal solution of the sub problem is

synthesized into a solution of the original

problem

Because greedy algorithm selects the optimal

strategy locally, and then combines all parts into a

whole solution, the final result is not necessarily the

overall optimal solution. In addition, because it is to find

the local optimum, it also leads to its inability to find the

global limit values, such as the maximum and minimum

values. Because local constraints are defined in the

process of solving, local constraints will also be

attached to the final solution.

Also because of the special idea of local solution,

the premise of greedy strategy is that the local optimal

strategy can produce the global optimal solution. But in

fact, the greedy algorithm is rarely applicable. It is

limited when producing a possible solution for the

problem of finding a mini- mum weight base in an

independence system when the weights are taken from a

finite range [4] . Generally, to analyse whether a

problem is suitable for greedy algorithm, you can first

select several actual data under the problem for special

value analysis, and then make a judgment.

2.2 Dynamic Programming Algorithm

Dynamic programming is a mathematical method to

solve the optimization of decision proces.

Dynamic programming is mainly used to solve the

optimization problem with multiple repeated sub

problems. It can decompose the original problem into

similar sub problems, solve the solutions of sub

problems and save them, so as to avoid solving the same

problem repeatedly, and then gradually merge the

solutions of non-repeated sub problems into the

solutions of the original problem. How- ever, although

this avoids repeated solution, it will occupy more space

because the solution of the sub problem will be stored.

The problem solved by dynamic programming

mainly has the following two characteristics:

 Overlapping Sub Problems: some sub problems

will be calculated repeatedly

 Optimal Substructure: the optimal solution of the

problem can be obtained from the optimal

solution of a sub problem. Depth first

search(DFS)

In introducing the DFS algorithm, we first introduce

the decision tree structure.

A decision tree is a tree structure in which each case

can be represented as a node. Like trees in nature,

decision trees have root and leaf nodes. From the root

node, the content of the root node represents the cake of

the first selection. As we search for another cake

gradually, we connect the node to be selected with the

current node, indicating that we have searched for the

second cake from the first one. Considering each case

like this, a decision tree is formed.

Depth first search starts from the root node, finds the

rightmost child node of the root node, and looks down

gradually along the rightmost child node branch. When

the rightmost leaf node is found, return the penultimate

child node of the root node and continue to search

downward. Re- peat this process step by step to the left

until all nodes are traversed.

Algorithm idea:

1. Create an empty stack and an empty visit list.

Advances in Social Science, Education and Humanities Research, volume 631

18

2. Place the starting point and adjacent points in the

stack and visit list in turn.

3. Take the last node in the stack out of the stack

and obtain the adjacent points of the node from

the graph

4. If the critical point has not been accessed, it is

added to the stack and visit list

5. Output the node that is out of the stack

6. Repeat 3.4.5 until the stack is empty

DFS is a search algorithm, which needs to visit all

nodes once, which is very time-consuming, so it is not

suitable for the case of large amount of data.

When the traversal layer is very deep, there may also

be insufficient storage space.

2.3 Minimax Theorem

Minimax is a very pessimistic algorithm. It always

thinks that the opponent is strong, so it always chooses

the algorithm with the least possible failure.

In addition to the second selection, each cake

selection can only be made from two pieces at the gap,

which results in only two cases for each node,

representing two subtrees, which is also called a binary

tree. Minimax algorithm is based on binary tree,

traversing all nodes from leaf node to root node.

Combined with our cake-cutting game, mini- max

describes the following scenarios:

Two people play the cake-cutting game, one named

min and the other named max. Max al- ways wants his

own cake score to be the largest, and Min always wants

Max score to be the small- est. As Max, we always start

with the leaf node layer. Starting from the bottom of the

leaf node, the first layer of the binary tree is Max and

the second layer is Min. Max is not selected as the

bottom layer, followed by Min. In order to let Max

select the smallest value, Min selects the smallest child

node (the slice with smaller number) from the child

nodes (all the slices) and fills it in its own nodes (It

means this slice is Min’s choice). Alternate to Max, and

fill in the Max layer with the maximum value of the

child node (It means this slice is Max’s choice). This

alternates until the root node is reached, at this time all

the slices are taken.

Minimax essentially traverses all nodes. This

method is simple and effective, and can also return

better results, but there are many problems.

Very complex task situations: because mini-max

algorithm contains the idea of” exhaustive”, that is,

access to all situations that should be accessed as much

as possible. If the maximum depth of the tree is m and

each point has b legal and effective action methods, the

time complexity of the algorithm is O(bm)For real

games, this shows that the running time will be very

long and some are difficult to accept.

Minimax pessimism: because you always imagine

that your opponent is strong, the purpose of each step is

to reduce the loss as much as possible. This leads to the

result of selection, which may give up better options

because of” lack of courage”.

3. EXPERIMENT

3.1 Combat methods

We realize the real cake cutting game through the

python environment. In addition, four functions are

completed to represent four algorithms. In the game,

two players are set to call the corresponding function to

represent the method they use to select the cake.

Because of the particularity of this game rule, the

first player can choose from all the cake pieces when

choosing to extract the cake pieces, while the second

player can only choose two pieces at the edge of the gap

when choosing again. The difference in the fast number

of this kind of cake caused by choosing first and then

shows that it needs to be divided into two cases for

discussion.

3.2 Result presentation

For each case, we carried out 500 experiments.

Table 1 shows the experiments’ results. The first row in

Table 1 represents the four algorithms that are

performed first, and the first column represents the four

algorithms that are performed later, so that we can see

16 situations in which the first one is engaged. The

diagonal data represents the situation in which you are

fighting against your- self.

The data for each cell indicates the probability of

winning for the first hand. W = Number of wins for the

first-hand algorithm, T = 500(Total number of

experiments)

The calculation method is:

 𝑊÷ 𝑇 (1)

Table 1: First Hand

2/1 Greedy DFS DP Minimax

Greedy 74.7% 26.3% 28.2% 99.7%

DFS 92.6% 36.4% 76.8% 99.2%

DP 62.8% 26.2% 49.7% 99.4%

Minimax 34.7% 1.8% 1.2% 99.6%

3.3 Mutuality

When compared with the other three algorithms,

minimax always has great advantages to win, and the

Advances in Social Science, Education and Humanities Research, volume 631

19

winning rate is almost all over 99%. Secondly, the

greedy algorithm performs better than DFS and DP

algorithms. Compared with other algorithms (except

minimax), greedy algorithm’s war victory rate is more

than 60%. Followed by DP algorithm, the worst is DFS

algorithm.

Minimax Wins So Much

Why did minimax show a huge advantage when it

first started? This is related to their respective algorithm

ideas.

When minimax selects the first cake, it will traverse

all 32 pieces of the whole cake according to the

algorithm principle described in 2.4. Turn the specific

cake into a binary tree, select the leaf node, select the

maximum value for yourself, and imagine that the other

party will choose the mini- mum value, alternating

layers until it traverses the root node. Finally, choose the

best first cake that minimax thinks.

Minimax carefully considered the situation of the

global game when choosing from the first piece.

However, compared with the greedy algorithm, starting

from the second selection, only local problems are

considered in each selection without global

consideration. The scope of each selection is only

limited to the two slices at the optional gap, and the

calculation is only limited to these two cakes without

global consideration. So, the result is not the best.

Similar to greedy algorithm, DP algorithm divides

the problem into subproblems. The algorithm stores the

best results of all subproblems, and selects the results of

subproblems as the best results that can represent the

whole problem. How- ever, as a backhand, DP can only

choose two cakes at the gap. Therefore, compared with

minimax for all cake situations, DP is not

comprehensive enough in each step.

As a backhand, DFS algorithm traverses all the

cakes that can be selected at the beginning. However, in

the search process, the search is only carried out in the

fixed order of depth first, and the idea of defeating the

other party is not taken into account in the selection

process, which naturally leads to the disadvantage in the

comparison of minimax with competitive ideas.

3.3.1dp and greedy algorithm

In the war between DP algorithm and greedy

algorithm as backhand and DFS at the same time, we

can also see that the winning rate of minimax is very

close, both of which are 26%. At the same time,

combined with the algorithm theory and experimental

results, we speculate that the ability of DP and greedy

algorithm is similar in the cake cutting game. However,

when greedy and DP play DFS and minimax and DFS

respectively, we can see from the winning rate (greedy

minimax 34%, DP minimax 0%, greedy dfs 92%, DP

DFS 76%) that DP is not as good as greedy algorithm.

The decision of each step of greedy algorithm is the

optimal solution derived from the previous step, but all

solutions before the previous step are discarded.

The decision of dynamic programming algorithm

will contain a local optimal solution, which is not

necessarily the optimal solution of the previous step.

The cake cutting game is a continuous selection game.

The choice of the previous step will greatly affect the

next step, while the previous step will not have a great

impact on the winning rate results brought by the choice

of this step. Compared with greedy algorithm, this may

lead to excessive consideration of worthless local

solutions in DP decision-making.

3.4 Self-Combat

We can see from the data in the table that different

algorithms have significantly different winning rates.

Because both players use the same algorithm, it is only

different when the first hand chooses the cake for the

first time, which further explains the necessity of

increasing the discussion of successive hands. If the

winning rate is close to 50%, it shows that whether the

first hand or the second hand has little effect on the

winning rate. The more the winning rate deviates from

50% on both sides, the greater the influence of first hand

and then hand.

Minimax has a huge advantage when it comes first.

When the first cake is selected, the number of all cakes

will be selected. Considering all the circumstances, it

will have great advantages at the beginning. The specific

reason is also similar to the great advantages of

minimax against other algorithms discussed in 3.3.1

above. Here, even if minimax itself is the backhand,

only calculating the remaining two pieces cannot make

up for the great advantage of minimax’s first hand in

traversing all cakes.

The results show that DP algorithm is different from

other algorithms. He won 50% against himself, which

shows that he is not affected by the first hand. When DP

algorithm is compared with other algorithms, it can also

be seen that whether DP is the first or the second hand,

it has no great impact on the winning rate. DP first hand

greedy algorithm: the winning rate is 28.2%; Grey

algorithm of DP backhand Combat: the winning rate is

31.2% (1-62.8%); DP first hand DFS algorithm: the

winning rate is 76.8%; DP backhand DFS algorithm: the

winning rate is 73.8% (1-1.2%); DP first hand battle

minimax algorithm: the winning rate is 1.2%; DP

backhand battle minimax algorithm: the winning rate is

0.6% (1-99.4%)

The reason is still related to the calculation idea of

DP algorithm. DP as the first hand, traverse all cake

Advances in Social Science, Education and Humanities Research, volume 631

20

blocks for calculation, and finally find the most suitable

one. When you get a piece of cake, you temporarily

think it is the best cake. When you see the next piece of

cake, compare it with the first piece. If the number of

the second piece is larger, choose the second piece,

otherwise continue to choose the first piece of cake. Re-

peat this comparison until all the cakes are com- pared,

and choose the best one as the first cake to choose.

When DP the second choice, compare the two cakes that

can be selected. Also choose a larger number. But

because the difference between the numbers on the cake

is not big, even if you get the largest cake first, you

can’t win the game directly. In the follow-up selection,

if the backhand DP always chooses the cake with large

number, it is entirely possible to make up for the digital

difference brought by the first cake.

4. RUNNING TIME

In each case, we conducted 500 experiments. The

first row in the table represents the four algorithms

performed by the first hand, and the first column

represents the four algorithms performed by the second

hand, so we show 12 cases of first hand combat. The

diagonal data indicates the situation of fighting with

yourself.

Similar to the winning table, Table 2 shows the

running time of 16 cases.

The result retains 3 decimal places. The unit is

seconds(s)

Table 2: Running Time

2/1 Greedy DFS DP Minimax

Greedy 0.067 0.900 0.474 3.612

DFS 0.849 1.145 0.885 4.148

DP 0.338 0.639 1.305 3.619

Minimax 1.009 1.333 0.892 0.098

From the table, we can see that the operaion time of

minimax as a pioneer in the war with other algorithms

(greedy algorithm, DFS and DP) is much longer than

that of other algorithms. This is because all cake pieces

need to be traversed when selecting the cake for the first

time. Suppose that each cake is the first one and pushed

to the end until all the cakes are selected.

Minimax takes a lot of time to traverse all situations,

so it is not the best choice in some time limited games.

But we found that when minimax fought against

itself, the time was unexpectedly short, as long as 0.098

seconds. Analysing the code, we think this may be

because the two functions are the same, so they use the

same decision tree. When two players’ minimax

traverse each cake, they assume that each other will

have the best choice. Therefore, their decision-making is

completely carried out according to the ideal decision

tree established for the first time, so there will be no

new decision tree construction and modification process,

so the time consumption is greatly reduced.

5. MEMORY USAGE

5.1 Greedy Algorithm

Greedy algorithm as a backhand only needs to

compare the two cakes at the optional gap. It is

stipulated in the algorithm idea of greedy algorithm that

it does not need to store complete data. Just compare the

size of two optional cakes. There- fore, by analysing the

code of the running program, we get that its space

complexity is O (1)

Greedy algorithm, as the first hand, needs to traverse

all cakes and store them in the list, and finally select the

largest cake fast. So, the spatial complexity is O(n)

5.2 DP

DP, as a backhand, needs to constantly com- pare

the size with the numbers of other cake blocks during

each selection, and the results of each com- parison

should be stored. There are n cakes in total. Each cake

has to be compared with other N-1 cakes. Therefore, a

two-dimensional array needs to be used to store data.

Therefore, the space complexity is O(n2)

As the first hand, DP is much better than the second

hand. When selecting first, it calculates each cake and

stores it in a dictionary. When selecting for the first

time, it always selects the one with the highest score, so

the space complexity is

𝑂(𝑛3)

5.3 DFS

When DFS is the first one, choose from all the cake

pieces as the first one. Because the traversal of all cakes

is in the form of binary tree, it is necessary to choose

one from two pieces each time. So, the final spatial

complexity is O(n2).

As a backhand, DFS only needs to choose from two

pieces. After making the selection, it continues to look

for the appropriate cake pieces. Because the decision

tree we use is a binary tree, there are only two forks

under a node. Therefore, the spatial complexity is

O(2n) . According to the definition of spatial

complexity, the constant of spatial complexity can be

omitted, so the final spatial complexity is O(n).

5.4 Minimax

Minimax algorithm is also based on binary decision

tree.

When you start, you need to traverse all cakes

Advances in Social Science, Education and Humanities Research, volume 631

21

horizontally, starting from each cake, and then traverse

all other cakes downward. Each time you make a

selection, you should choose one of the two blocks. So,

the final spatial complexity is O(n2)

When minimax is the backhand, select from the two

pieces at the notch. After making the se- lection,

continue to traverse all the cakes except this to find the

appropriate cake pieces. The data structure used here is

also a decision binary tree. Therefore, similar to DFS

algorithm, the spatial complexity of minimax is

O(2n).According to the definition of spatial complexity,

the constant of spatial complexity can be omitted, so the

final spatial complexity is O(n).

6. CONCLUSION

Through 500 game experiments, we make four

algorithms compete with other algorithms and our own

same algorithms. It is analysed and evaluated from the

following aspects: hand in hand, victory rate, running

time and storage space. In the end, we found that

minimax had the highest winning rate regardless of

time. But the fly in the ointment is that minimax ran for

a long time and is not suitable for situations with time

constraints.

If minimax is excluded, the greedy algorithm has a

higher winning rate. Greedy algorithm not only has a

high winning rate, but also performs well in running

time and space.

DP algorithm is similar to greedy algorithm, but it is

slightly inferior to greedy algorithm in winning rate and

running time. At the same time, compared with the

greedy algorithm, DP algorithm also occupies more

storage space.

The worst is the DFS algorithm. This is a completely

ambitious algorithm. At the same time, there is no

special merit in running time and occupied space.

Generally speaking, it is the most undesirable algorithm.

Our research on the algorithm in the cake cutting

game can be applied to other commercial games, so as

to improve the efficiency of commercial games and

bring players a better experience.

With the continuous development of game artificial

intelligence with implemented algorithms we tested,

game is not the only place where this technology can

play a role. It can be used to solve problems similar to

game decision-making in the real world. In addition to

the game industry, personal electronic assistants,

recommendation systems, driverless driving, chip

design, decision support and all other areas that need

continuous decisions and decision-making are also the

application scenarios of game AI technology.[5]

ACKNOWLEDGMENTS

Professor Bill Nace always gives us encouragement,

determines the general direction of the overall paper for

us, and enables us to complete the task on time.

Teaching assistant Ziyi Wang always puts forward

many new ideas for us, which makes our achievements

more perfect.

The two authors are both the first author, and they

have the same attribute to this paper.

REFERENCES

[1] Jose Luis Gonz´alez S´anchez, Natalia Padilla Zea,

and Francisco L. Guti´errez.From usability to

playability: Introduction to player centred video

game development process. In Masaaki Kurosu,

editor, Human Centred Design, pages 65–74,

Berlin, Heidelberg, 2009. Springer Berlin

Heidelberg.

[2] E. F. Provenzo. Video Kids. Video Kids.

[3] VJ Rayward-Smith. Introduction to the theory of

complexity. journal of the Operational Research

Society, 46(12):1507–1508, 1995.

[4] Jørgen Bang-Jensen, Gregory Gutin, and Anders

Yeo. When the greedy algorithm fails. Discrete

optimization, 1(2):121–127, 2004.

[5] Minqi Hu. Video games: an "alternative" training

ground for artificial intelligence. China Science

Daily, 2021-10-21(003).

Advances in Social Science, Education and Humanities Research, volume 631

22

