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ABSTRACT 

Graph convolutional neural networks (GCNs) emerge as an efficient method to process real-world graph data and have 

been proved powerful in various areas like link prediction and crack detection. While the graphs in GCNs have dynamic 

and irregular inherent patterns, traditional hardware architectures have poor performance on GCN models and 

accelerators are needed. This review discusses four bottlenecks for traditional hardware which are also important issues 

in GCN accelerator designs. The irregular patterns of the input matrix harm the utilization of processing elements (PEs), 

especially for systolic array-based architectures, which can be alleviated by adopting flexible execution patterns. Then 

there is a problem of high adjacent matrix sparsity which decreases performance. Usual solutions include using flexible 

loading patterns and preprocessing adjacent matrix to reduce sparsity. The imbalanced workload in the aggregation stage 

makes PE utilization drop to as low as 18.3%, increasing processing latency. Therefore, a specially designed hardware 

architecture that enables the exchange of workloads may be efficient. Last, this review discusses the data reuse problem, 

which is crucial for saving memory resources. Inner product, outer product and some useful techniques are mentioned.  

Keywords: Graph convolutional neural network, hardware acceleration, accelerator architecture, sparse 

matrix multiplication 

1. INTRODUCTION 

Deep learning networks such as Convolutional Neural 

Networks (CNNs) and Graph Neural Networks (GNNs) 

have been proved powerful in a wide range of areas. 

Inspired by this, Graph Convolutional Networks (GCNs) 

are proposed particularly to process graph data. GCNs 

use nodes and edges to represent the structure and 

properties of graphs, respectively, before constructing a 

neural network for training and inference. Recently, 

GCNs have attracted researchers from a large variety of 

areas to deal with problems including link prediction[1], 

movement recognition[2], crack detection[3] and traffic 

prediction[4]. 

With the development and application of GCNs, 

designing high-performance and energy-efficient GCN 

accelerators is becoming an increasingly important issue. 

Existing hardware architectures like CPUs and GPUs 

cannot handle the dynamic and irregular inherent patterns 

of GCNs, resulting in decreased PE utilization and low 

performance. Furthermore, early hardware designs, 

including the Systolic Array design, are unable to fully 

exploit the adjacent matrix's high sparsity. Moreover, the 

serious workload imbalance problem in the aggregation 

stage in GCNs increases execution latency a lot. As 

Moor’s Law is slowing down, the size of on-chip memory 

is not capable of storing all input data in GCNs, especially 

for some big models. So the issue of data reuse is 

becoming increasingly critical. Under this circumstance, 

domain-specific hardware designs of GCN accelerator 

are needed. Thus, GCN accelerators need to solve the 

bottlenecks that limit the performance of traditional 

hardware architectures.  

This review first introduces GCN and its execution 

patterns, as well as the sequential problems for traditional 

hardware architectures. Then some possible solutions and 

state-of-the-art techniques against these problems are 

introduced. After that, this review gives a general 

perspective of the future development of GCN 

accelerators.  

2. BRIEF INTRODUCTION OF GCN 

ALGORITHM 

A typical GCN algorithm contains three key stages: 

combination, aggregation and feature update. The 
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combination (also known as feature extraction) stage 

applies a multilayer perceptron (MLP) neural network, 

which combines the properties of each vertex and 

generates a new feature vector. For a given graph, the 

parameters of the MLP network remain the same for all 

vertices. Then the aggregation stage aggregates a group 

of feature vectors from each vertex and its neighbors to 

one feature vector. This process depends highly on the 

graph structure which decides the number of neighbors of 

a vertex. Generally, a GCN algorithm can be presented by 

Equation 1: 

Xk+1 =  σ(AXkWk) (1) 

In equation 1, X × W  represents the combination 

stage while A × (XW) denotes the aggregation stage. In 

some cases, there is a sample stage before the aggregation 

stage to choose parts of neighbor vertices of a vertex as 

new neighbors. And there is a pooling stage after the 

combination stage to minify the size of the graph. These 

will not be discussed due to the space limitations. 

3. THE ISSUES OF DYNAMIC AND 

IRREGULAR PATTERNS 

3.1. Issues 

The aggregation stage does the matrix multiplication 

A × (XW) . It is mentioned before, that the adjacent 

matrix A relies highly on the input graph, so there is a big 

difference between two unrelated graphs and there are no 

regular node connection patterns. Thus, the execution 

pattern in the aggregation stage is dynamic and irregular 

[6].  

Performance of existing hardware architectures is 

limited by these characters. Because memory access is 

unpredictable, CPUs cannot handle large amounts of 

dynamic and irregular data access. For GPUs which are 

suitable for neural networks, they are also unable to deal 

with the irregularity. This results in a large consumption 

of time when loading data both for CPUs and GPUs. For 

the famous design systolic array, which is adopted by 

Google TPU, the irregular matrix harms the utilization of 

processing elements (PEs) a lot because of its rigid 

structure.  

3.2. Possible Solutions and Techniques 

In the aggregation stage, it is possible to get the graph 

information before execution, so one method to 

overcome irregularity is to build a flexible architecture 

that allows the redistribution of PE workforce according 

to the input graph information. This idea is widely 

adopted by state-of-the-art GCN accelerators although 

they have very different hardware designs.  

To be specific, the aggregation engine in HyGCN [6] 

does not use the vertex-concentrated execution mode: 

workloads of one vertex are assigned to one single SIMD 

core (computing unit in HyGCN). In this mode, some 

SIMD cores may have to wait for those SIMD cores with 

heavier workloads.  Instead, it uses the vertex-disperse 

mode and distributes the workloads of each vertex to all 

SIMD cores. In this way, however the input graph 

changes, all the computing units can participate in the 

aggregation stage and the performance is improved.  

Another typical example is SIGMA [7]. SIGMA is 

designed for general matrix-matrix multiplications 

(GEMMs) and it can be used in the calculation of GCNs. 

The design of SIGMA is based on the systolic array, but 

the reduction network in SIGMA makes it flexible. 

Assume that we are facing an irregular adjacent matrix 

that can only fill the upper half of all the rows of the 

systolic array. In traditional systolic array design, the 

partial sums are accumulated downside through the 

forwarding network, so the data-loading pattern is fixed. 

If we try to use the disengaged lower half of the PE array 

and load data into it, errors will take place when 

accumulating partial sums since calculating results in the 

lower half are wrongly added to partial sum. In SIGMA, 

a dedicated designed reduction network replaced the 

traditional forwarding network. The computation results 

are accumulated through the reduction network so the 

unengaged PEs can also be used without accumulation 

errors. The cost is that additional accumulation cycles are 

needed. To deal with this, SIGMA adopts the topology of 

adder-trees in its reduction network and minimizes this 

cost. According to our simulation, the accumulation cycle 

only takes 5% of all the processing cycles.  

In general, dealing with dynamic and irregular 

adjacent matrixes necessitates flexibility. If the GCN 

accelerator's design can transform in response to changes 

in input graphs, it will be able to handle a variety of GCN 

missions. 

4. THE ISSUES OF HIGH SPARSITY OF 

ADJACENT MATRIX 

4.1 Issues 

Another character of aggregation stage in GCNs is 

that the graph adjacent matrix is usually very sparse. 

Common datasets like Cora, Citeseer and Pubmed have 

an adjacent matrix density of lower than 1% [5]. For some 

datasets like NELL, the density is even under 0.01%. In 

this case, utilizing this high sparsity is crucial for 

improving performance.  

Some old designs for matrix multiplication cannot use 

the sparsity and this problem is particularly serious for 

systolic-array-based designs. Systolic array does not have 

a good performance on sparse-sparse matrix 

multiplication or sparse-dense matrix multiplication 

because of the stationary data loading pattern and rigid 

forwarding network between PEs, which is not 

compatible with the dynamic and sparse data pattern. As 
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a result, the utilization rate of processing elements (PEs) 

is very low. We designed a cycle-accurate simulator to 

simulate the performance of systolic array on Cora, 

Citeseer and Pubmed and the result shows that PE 

utilization is all below 10% on the three datasets. The low 

PE utilization caused by sparsity is a waste of computing 

power that needs to be improved. 

4.2 Possible Solutions and Techniques 

One possible solution is to use a flexible data-loading 

pattern instead of a stationary one. In the original systolic 

array, every element of the matrix has to be loaded into 

the PE array even if the value of the element is zero and 

no calculation is needed. In contrast, SIGMA [7] adds a 

dedicated distribution network and makes it possible to 

load any element of the matrix to any position in the PE 

array. Also, an element filter is added so only non-zero 

elements are loaded. In this way, the sparsity of matrix is 

fully used. However, the cost is that there will be extra 

loading cycles because of the limited bandwidth and 

irregular memory access. Our simulation shows that the 

loading latency takes about 50% of the processing latency, 

which is not negligible. 

5. THE ISSUES OF IMBALANCED 

WORKLOAD 

5.1 Issues 

It is mentioned that the graph patterns in GCNs are 

dynamic and irregular. Specifically, different vertices 

may have a different number of neighbors due to the 

irregular connection between vertices. Figure 1 shows the 

distribution of non-zero elements in the adjacent matrix. 

For some designs in which one processing element is 

responsible for the aggregation of one vertex, the 

workloads of PEs are extremely imbalanced. In these 

cases, the PEs with light workloads have to wait for PEs 

with heavy workloads until aggregation of all the vertices 

is finished. In other words, the processing latency equals 

to the latency of the slowest PE. As a result, PE utilization 

is harmed and performance drops. 

 
Figure 1 Distribution of none-zero elements in Cora, Citeseer and Pubmed 

5.2 Possible Solutions and Techniques 

To deal with the imbalanced workload, the natural 

idea is to balance the PE workload. The best situation is 

that all PEs have the same workloads, no PE is free during 

the aggregation process and the PE utilization is 100%.  

To reach this situation, some of the latest designs 

choose to redistribute workloads dynamically during 

execution. This is based on the fact that when the 

computation order in the aggregation stage is A × (X ×
W) , XW  is dense so the workloads of PEs are mainly 

decided by matrix A which remains constant. This 

character leads to similar workload distribution in the 

calculation of the multiplication of A and (part of) XW, 

whatever XW exactly is. So the workloads of the next 

calculation can be adjusted according to the workload of 

the current calculation.  

Under this condition, AWB-GCN [5] proposed three 

hardware-based techniques to handle different kinds of 

workload clusters: distribution smoothing, remote 

switching and evil row remapping. Distribution 

smoothing balances the workloads among neighbors by 

tracking the number of pending tasks of each PE and 

move tasks from busier PEs to their less busy neighbors. 

Remote switching deals with regionally clustered 

workloads, where all PEs in a region are busy and 

distribution smoothing does not work. This technique 

exchanges the workloads between under-loaded PEs and 

over-loaded PEs. Evil row remapping is employed on PEs 

with extremely heavy workloads, so their workloads can 

be distributed to several pre-specified PEs. Note that 

remote switching and evil row remapping needs 

workload distribution information of the current round of 

calculation and they will not work until the next round.  

6. THE ISSUE OF LIMITED ON-CHIP 

MEMORY AND DATA REUSE 

6.1 Issues 

As Moore’s Law is slowing down, the size of the on-

chip memory can no longer meet the needs of GCN 

models whose size is increasing. As a result, not all the 

data can be put in on-chip memories and some have to be 

loaded from DRAMs, which takes a large amount of time 

and energy due to poor locality and irregular memory 

access patterns. Under this circumstance, data reuse is 
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especially important during calculation. There are 

different methods to do sparse-dense matrix 

multiplications and corresponding techniques have been 

proposed to increase data reuse.  

6.2 Inner Product and Its Opitimization 

The traditional way to do matrix-matrix 

multiplication A × B = C  is to use inner product, in 

which dot product operations are performed between 

rows of matrix A and columns of matrix B, as shown in 

figure 2. Thus, each element of matrix C is obtained 

through a set of multiply-and-accumulate (MAC) 

operations.  

 
Figure 2 An example of inner product operations 

Mathematically: 

ci,j = ∑ ai,k
N−1
k=0 × bk,j (2) 

N is the number of columns in matrix A. 

Inner product has poor input reuse. To be specific, 

when doing sparse-dense matrix multiplication in GCNs, 

the multiplication of A and B is usually decomposed into 

a series of vector-matrix multiplications, in which entire 

matrix A multiplies one column of matrix B. Generally, 

on-chip memory can store one column of matrix B but it 

may not be big enough for the entire matrix A, especially 

in some big models. As a result, matrix A has to be loaded 

more than once (usually N times, N is the number of 

columns of matrix B), leading to large consumption of 

energy.  

The inner product is usually optimized with graph 

partition and tiling techniques. Early works [9] propose 

unaligned block compressed sparse row (UBCSR) format 

and tiling techniques. Then GraphChi [10] proposes a 

basic programming model for graph computation on a 

single machine, followed and optimized by subsequent 

designs. Among them, NXgraph [11] proposes a scalable 

partition method, together with the concept of vertex 

interval and edge shard, which is commonly used [6][12] 

for graph partitions.  

In NXgraph, vertices are partitioned into different 

intervals and edges are classified according to their 

source vertex and destination vertex. The size of intervals 

and shards can be adjusted for different hardware designs. 

In most cases of GCNs, aggregation is performed interval 

by interval because this execution order will increase data 

reuse since vertices in one interval tend to have 

overlapping neighbors. Also, loading the vertices and 

edges of adjacent matrix interval by interval can address 

the problem of poor locality.  

6.3 Outer Product and Its Opitimization 

Although input reuse of inner product can be 

improved by graph partition and tiling techniques, the 

effect is not so satisfying. In order to completely solve the 

problem of input reuse, OuterSPACE [13] proposes an 

outer product based design. In outer product 

multiplication of matrix A and B, each column of A and 

the corresponding column of B are multiplied to produce 

N partial matrices (N is the number of columns of matrix 

A). Then the partial matrices are summed together to 

form the final result matrix C, as shown in figure 3.  

 
Figure 3 An example of outer product operations 

This process can be represented by equation 3:  

C = ∑ Ci = ∑ ai
N−1
i=0

N−1
i=0 bi (3) 

N is the number of columns in matrix A. 

It is clear to see that each element in matrix A and 

matrix B is loaded only once in outer product operation. 

Thus, the input data reuse problem does not exist. 

However, outer product brings the problem of poor 

output data reuse. Except for very small models, the on-

chip memory cannot hold the considerable amount of 

partial matrices and they have to be stored in DRAM 

before the merge phase, resulting in extensive DRAM 

access. So the outer product-based designs mainly focus 

on the optimization of merge phase. 

One way to deal with this problem is to reduce the 

total size of partial matrices. SpArch [8] condenses the 

first input matrix (the original adjacent matrix) to the left, 

reducing the number of columns, thus reducing the 

number of partial matrices. Since the adjacent matrix is 

very sparse, the number of partial matrices is reduced by 

three orders of magnitude. SpArch also proposes a 

multiply-merge pipeline and a merge tree so that once 
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partial matrices are computed, they can immediately be 

sent to merge, instead of waiting in memories. Through 

these two methods, SpArch achieves good output data 

reuse.  

7. CONCLUSION 

In this review, four important issues and 

corresponding techniques in the design of GCN 

accelerator are concluded and introduced. First, this 

paper suggests that a flexible hardware structure is 

compatible in dealing with irregular and dynamic 

patterns. Then two methods to solve the high-sparsity 

problem are mentioned: using flexible data-loading 

patterns, in the cost of high loading latency or 

preprocessing input matrix to reduce sparsity, in which 

sparsity cannot be totally eliminated. After that, this paper 

discusses the workload imbalance problem and some 

useful techniques. In the last, the data reuse problem for 

different execution patterns in matrix-matrix 

multiplication is introduced and some possible solutions 

are given. 

REFERENCES 

[1] X. Wang, J. Wang and Z. Wang, "A Drug-Target 

Interaction Prediction Based on GCN Learning," 

2021 IEEE 9th International Conference on 

Bioinformatics and Computational Biology 

(ICBCB), 2021, pp. 42-47, doi: 

10.1109/ICBCB52223.2021.9459231. 

[2] L. Lo, H. -X. Xie, H. -H. Shuai and W. -H. Cheng, 

"MER-GCN: Micro-Expression Recognition Based 

on Relation Modeling with Graph Convolutional 

Networks," 2020 IEEE Conference on Multimedia 

Information Processing and Retrieval (MIPR), 

2020, pp. 79-84, doi: 

10.1109/MIPR49039.2020.00023. 

[3] H. Feng et al., "GCN-Based Pavement Crack 

Detection Using Mobile LiDAR Point Clouds," in 

IEEE Transactions on Intelligent Transportation 

Systems, doi: 10.1109/TITS.2021.3099023. 

[4] L. Zhao et al., "T-GCN: A Temporal Graph 

Convolutional Network for Traffic Prediction," in 

IEEE Transactions on Intelligent Transportation 

Systems, vol. 21, no. 9, pp. 3848-3858, Sept. 2020, 

doi: 10.1109/TITS.2019.2935152. 

[5] T. Geng et al., "AWB-GCN: A Graph Convolutional 

Network Accelerator with Runtime Workload 

Rebalancing," 2020 53rd Annual IEEE/ACM 

International Symposium on Microarchitecture 

(MICRO), 2020, pp. 922-936, doi: 

10.1109/MICRO50266.2020.00079. 

[6] M. Yan et al., "HyGCN: A GCN Accelerator with 

Hybrid Architecture," 2020 IEEE International 

Symposium on High Performance Computer 

Architecture (HPCA), 2020, pp. 15-29, doi: 

10.1109/HPCA47549.2020.00012. 

[7] E. Qin et al., "SIGMA: A Sparse and Irregular GEMM 

Accelerator with Flexible Interconnects for DNN 

Training," 2020 IEEE International Symposium on 

High Performance Computer Architecture (HPCA), 

2020, pp. 58-70, doi: 

10.1109/HPCA47549.2020.00015. 

[8] Z. Zhang, H. Wang, S. Han and W. J. Dally, "SpArch: 

Efficient Architecture for Sparse Matrix 

Multiplication," 2020 IEEE International 

Symposium on High Performance Computer 

Architecture (HPCA), 2020, pp. 261-274, doi: 

10.1109/HPCA47549.2020.00030. 

[9] Vuduc, R W, and Moon, H. Fast sparse matrix-vector 

multiplication by exploiting variable block 

structure. United States: N. p., 2005. Web. 

doi:10.2172/891708. 

[10] Y. Jiang, D. Zhang, K. Chen, Q. Zhou, Y. Zhou and 

J. He, "An improved memory management scheme 

for large scale graph computing engine GraphChi," 

2014 IEEE International Conference on Big Data 

(Big Data), 2014, pp. 58-63, doi: 

10.1109/BigData.2014.7004357. 

[11] Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li and H. Yang, 

"NXgraph: An efficient graph processing system on 

a single machine," 2016 IEEE 32nd International 

Conference on Data Engineering (ICDE), 2016, pp. 

409-420, doi: 10.1109/ICDE.2016.7498258. 

[12] S. Liang et al., "EnGN: A High-Throughput and 

Energy-Efficient Accelerator for Large Graph 

Neural Networks," in IEEE Transactions on 

Computers, vol. 70, no. 9, pp. 1511-1525, 1 Sept. 

2021, doi: 10.1109/TC.2020.3014632. 

[13] S. Pal et al., "OuterSPACE: An Outer Product Based 

Sparse Matrix Multiplication Accelerator," 2018 

IEEE International Symposium on High 

Performance Computer Architecture (HPCA), 2018, 

pp. 724-736, doi: 10.1109/HPCA.2018.00067. 

Advances in Social Science, Education and Humanities Research, volume 638

1162


