
A Review on Important Issues in GCN Accelerator

Design

Siyuan Miao

1Department of Electrical Engineering, Xi’an Jiaotong University, Xian, Shaanxi Province, 710049, China

*Corresponding author. Email: msy011002@stu.xjtu.edu.cn

ABSTRACT

Graph convolutional neural networks (GCNs) emerge as an efficient method to process real-world graph data and have

been proved powerful in various areas like link prediction and crack detection. While the graphs in GCNs have dynamic

and irregular inherent patterns, traditional hardware architectures have poor performance on GCN models and

accelerators are needed. This review discusses four bottlenecks for traditional hardware which are also important issues

in GCN accelerator designs. The irregular patterns of the input matrix harm the utilization of processing elements (PEs),

especially for systolic array-based architectures, which can be alleviated by adopting flexible execution patterns. Then

there is a problem of high adjacent matrix sparsity which decreases performance. Usual solutions include using flexible

loading patterns and preprocessing adjacent matrix to reduce sparsity. The imbalanced workload in the aggregation stage

makes PE utilization drop to as low as 18.3%, increasing processing latency. Therefore, a specially designed hardware

architecture that enables the exchange of workloads may be efficient. Last, this review discusses the data reuse problem,

which is crucial for saving memory resources. Inner product, outer product and some useful techniques are mentioned.

Keywords: Graph convolutional neural network, hardware acceleration, accelerator architecture, sparse

matrix multiplication

1. INTRODUCTION

Deep learning networks such as Convolutional Neural

Networks (CNNs) and Graph Neural Networks (GNNs)

have been proved powerful in a wide range of areas.

Inspired by this, Graph Convolutional Networks (GCNs)

are proposed particularly to process graph data. GCNs

use nodes and edges to represent the structure and

properties of graphs, respectively, before constructing a

neural network for training and inference. Recently,

GCNs have attracted researchers from a large variety of

areas to deal with problems including link prediction[1],

movement recognition[2], crack detection[3] and traffic

prediction[4].

With the development and application of GCNs,

designing high-performance and energy-efficient GCN

accelerators is becoming an increasingly important issue.

Existing hardware architectures like CPUs and GPUs

cannot handle the dynamic and irregular inherent patterns

of GCNs, resulting in decreased PE utilization and low

performance. Furthermore, early hardware designs,

including the Systolic Array design, are unable to fully

exploit the adjacent matrix's high sparsity. Moreover, the

serious workload imbalance problem in the aggregation

stage in GCNs increases execution latency a lot. As

Moor’s Law is slowing down, the size of on-chip memory

is not capable of storing all input data in GCNs, especially

for some big models. So the issue of data reuse is

becoming increasingly critical. Under this circumstance,

domain-specific hardware designs of GCN accelerator

are needed. Thus, GCN accelerators need to solve the

bottlenecks that limit the performance of traditional

hardware architectures.

This review first introduces GCN and its execution

patterns, as well as the sequential problems for traditional

hardware architectures. Then some possible solutions and

state-of-the-art techniques against these problems are

introduced. After that, this review gives a general

perspective of the future development of GCN

accelerators.

2. BRIEF INTRODUCTION OF GCN

ALGORITHM

A typical GCN algorithm contains three key stages:

combination, aggregation and feature update. The

Advances in Social Science, Education and Humanities Research, volume 638

Proceedings of the 2021 International Conference on Public Art and

Human Development (ICPAHD 2021)

Copyright © 2022 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/. 1158

combination (also known as feature extraction) stage

applies a multilayer perceptron (MLP) neural network,

which combines the properties of each vertex and

generates a new feature vector. For a given graph, the

parameters of the MLP network remain the same for all

vertices. Then the aggregation stage aggregates a group

of feature vectors from each vertex and its neighbors to

one feature vector. This process depends highly on the

graph structure which decides the number of neighbors of

a vertex. Generally, a GCN algorithm can be presented by

Equation 1:

Xk+1 = σ(AXkWk) (1)

In equation 1, X × W represents the combination

stage while A × (XW) denotes the aggregation stage. In

some cases, there is a sample stage before the aggregation

stage to choose parts of neighbor vertices of a vertex as

new neighbors. And there is a pooling stage after the

combination stage to minify the size of the graph. These

will not be discussed due to the space limitations.

3. THE ISSUES OF DYNAMIC AND

IRREGULAR PATTERNS

3.1. Issues

The aggregation stage does the matrix multiplication

A × (XW) . It is mentioned before, that the adjacent

matrix A relies highly on the input graph, so there is a big

difference between two unrelated graphs and there are no

regular node connection patterns. Thus, the execution

pattern in the aggregation stage is dynamic and irregular

[6].

Performance of existing hardware architectures is

limited by these characters. Because memory access is

unpredictable, CPUs cannot handle large amounts of

dynamic and irregular data access. For GPUs which are

suitable for neural networks, they are also unable to deal

with the irregularity. This results in a large consumption

of time when loading data both for CPUs and GPUs. For

the famous design systolic array, which is adopted by

Google TPU, the irregular matrix harms the utilization of

processing elements (PEs) a lot because of its rigid

structure.

3.2. Possible Solutions and Techniques

In the aggregation stage, it is possible to get the graph

information before execution, so one method to

overcome irregularity is to build a flexible architecture

that allows the redistribution of PE workforce according

to the input graph information. This idea is widely

adopted by state-of-the-art GCN accelerators although

they have very different hardware designs.

To be specific, the aggregation engine in HyGCN [6]

does not use the vertex-concentrated execution mode:

workloads of one vertex are assigned to one single SIMD

core (computing unit in HyGCN). In this mode, some

SIMD cores may have to wait for those SIMD cores with

heavier workloads. Instead, it uses the vertex-disperse

mode and distributes the workloads of each vertex to all

SIMD cores. In this way, however the input graph

changes, all the computing units can participate in the

aggregation stage and the performance is improved.

Another typical example is SIGMA [7]. SIGMA is

designed for general matrix-matrix multiplications

(GEMMs) and it can be used in the calculation of GCNs.

The design of SIGMA is based on the systolic array, but

the reduction network in SIGMA makes it flexible.

Assume that we are facing an irregular adjacent matrix

that can only fill the upper half of all the rows of the

systolic array. In traditional systolic array design, the

partial sums are accumulated downside through the

forwarding network, so the data-loading pattern is fixed.

If we try to use the disengaged lower half of the PE array

and load data into it, errors will take place when

accumulating partial sums since calculating results in the

lower half are wrongly added to partial sum. In SIGMA,

a dedicated designed reduction network replaced the

traditional forwarding network. The computation results

are accumulated through the reduction network so the

unengaged PEs can also be used without accumulation

errors. The cost is that additional accumulation cycles are

needed. To deal with this, SIGMA adopts the topology of

adder-trees in its reduction network and minimizes this

cost. According to our simulation, the accumulation cycle

only takes 5% of all the processing cycles.

In general, dealing with dynamic and irregular

adjacent matrixes necessitates flexibility. If the GCN

accelerator's design can transform in response to changes

in input graphs, it will be able to handle a variety of GCN

missions.

4. THE ISSUES OF HIGH SPARSITY OF

ADJACENT MATRIX

4.1 Issues

Another character of aggregation stage in GCNs is

that the graph adjacent matrix is usually very sparse.

Common datasets like Cora, Citeseer and Pubmed have

an adjacent matrix density of lower than 1% [5]. For some

datasets like NELL, the density is even under 0.01%. In

this case, utilizing this high sparsity is crucial for

improving performance.

Some old designs for matrix multiplication cannot use

the sparsity and this problem is particularly serious for

systolic-array-based designs. Systolic array does not have

a good performance on sparse-sparse matrix

multiplication or sparse-dense matrix multiplication

because of the stationary data loading pattern and rigid

forwarding network between PEs, which is not

compatible with the dynamic and sparse data pattern. As

Advances in Social Science, Education and Humanities Research, volume 638

1159

a result, the utilization rate of processing elements (PEs)

is very low. We designed a cycle-accurate simulator to

simulate the performance of systolic array on Cora,

Citeseer and Pubmed and the result shows that PE

utilization is all below 10% on the three datasets. The low

PE utilization caused by sparsity is a waste of computing

power that needs to be improved.

4.2 Possible Solutions and Techniques

One possible solution is to use a flexible data-loading

pattern instead of a stationary one. In the original systolic

array, every element of the matrix has to be loaded into

the PE array even if the value of the element is zero and

no calculation is needed. In contrast, SIGMA [7] adds a

dedicated distribution network and makes it possible to

load any element of the matrix to any position in the PE

array. Also, an element filter is added so only non-zero

elements are loaded. In this way, the sparsity of matrix is

fully used. However, the cost is that there will be extra

loading cycles because of the limited bandwidth and

irregular memory access. Our simulation shows that the

loading latency takes about 50% of the processing latency,

which is not negligible.

5. THE ISSUES OF IMBALANCED

WORKLOAD

5.1 Issues

It is mentioned that the graph patterns in GCNs are

dynamic and irregular. Specifically, different vertices

may have a different number of neighbors due to the

irregular connection between vertices. Figure 1 shows the

distribution of non-zero elements in the adjacent matrix.

For some designs in which one processing element is

responsible for the aggregation of one vertex, the

workloads of PEs are extremely imbalanced. In these

cases, the PEs with light workloads have to wait for PEs

with heavy workloads until aggregation of all the vertices

is finished. In other words, the processing latency equals

to the latency of the slowest PE. As a result, PE utilization

is harmed and performance drops.

Figure 1 Distribution of none-zero elements in Cora, Citeseer and Pubmed

5.2 Possible Solutions and Techniques

To deal with the imbalanced workload, the natural

idea is to balance the PE workload. The best situation is

that all PEs have the same workloads, no PE is free during

the aggregation process and the PE utilization is 100%.

To reach this situation, some of the latest designs

choose to redistribute workloads dynamically during

execution. This is based on the fact that when the

computation order in the aggregation stage is A × (X ×
W) , XW is dense so the workloads of PEs are mainly

decided by matrix A which remains constant. This

character leads to similar workload distribution in the

calculation of the multiplication of A and (part of) XW,

whatever XW exactly is. So the workloads of the next

calculation can be adjusted according to the workload of

the current calculation.

Under this condition, AWB-GCN [5] proposed three

hardware-based techniques to handle different kinds of

workload clusters: distribution smoothing, remote

switching and evil row remapping. Distribution

smoothing balances the workloads among neighbors by

tracking the number of pending tasks of each PE and

move tasks from busier PEs to their less busy neighbors.

Remote switching deals with regionally clustered

workloads, where all PEs in a region are busy and

distribution smoothing does not work. This technique

exchanges the workloads between under-loaded PEs and

over-loaded PEs. Evil row remapping is employed on PEs

with extremely heavy workloads, so their workloads can

be distributed to several pre-specified PEs. Note that

remote switching and evil row remapping needs

workload distribution information of the current round of

calculation and they will not work until the next round.

6. THE ISSUE OF LIMITED ON-CHIP

MEMORY AND DATA REUSE

6.1 Issues

As Moore’s Law is slowing down, the size of the on-

chip memory can no longer meet the needs of GCN

models whose size is increasing. As a result, not all the

data can be put in on-chip memories and some have to be

loaded from DRAMs, which takes a large amount of time

and energy due to poor locality and irregular memory

access patterns. Under this circumstance, data reuse is

Advances in Social Science, Education and Humanities Research, volume 638

1160

especially important during calculation. There are

different methods to do sparse-dense matrix

multiplications and corresponding techniques have been

proposed to increase data reuse.

6.2 Inner Product and Its Opitimization

The traditional way to do matrix-matrix

multiplication A × B = C is to use inner product, in

which dot product operations are performed between

rows of matrix A and columns of matrix B, as shown in

figure 2. Thus, each element of matrix C is obtained

through a set of multiply-and-accumulate (MAC)

operations.

Figure 2 An example of inner product operations

Mathematically:

ci,j = ∑ ai,k
N−1
k=0 × bk,j (2)

N is the number of columns in matrix A.

Inner product has poor input reuse. To be specific,

when doing sparse-dense matrix multiplication in GCNs,

the multiplication of A and B is usually decomposed into

a series of vector-matrix multiplications, in which entire

matrix A multiplies one column of matrix B. Generally,

on-chip memory can store one column of matrix B but it

may not be big enough for the entire matrix A, especially

in some big models. As a result, matrix A has to be loaded

more than once (usually N times, N is the number of

columns of matrix B), leading to large consumption of

energy.

The inner product is usually optimized with graph

partition and tiling techniques. Early works [9] propose

unaligned block compressed sparse row (UBCSR) format

and tiling techniques. Then GraphChi [10] proposes a

basic programming model for graph computation on a

single machine, followed and optimized by subsequent

designs. Among them, NXgraph [11] proposes a scalable

partition method, together with the concept of vertex

interval and edge shard, which is commonly used [6][12]

for graph partitions.

In NXgraph, vertices are partitioned into different

intervals and edges are classified according to their

source vertex and destination vertex. The size of intervals

and shards can be adjusted for different hardware designs.

In most cases of GCNs, aggregation is performed interval

by interval because this execution order will increase data

reuse since vertices in one interval tend to have

overlapping neighbors. Also, loading the vertices and

edges of adjacent matrix interval by interval can address

the problem of poor locality.

6.3 Outer Product and Its Opitimization

Although input reuse of inner product can be

improved by graph partition and tiling techniques, the

effect is not so satisfying. In order to completely solve the

problem of input reuse, OuterSPACE [13] proposes an

outer product based design. In outer product

multiplication of matrix A and B, each column of A and

the corresponding column of B are multiplied to produce

N partial matrices (N is the number of columns of matrix

A). Then the partial matrices are summed together to

form the final result matrix C, as shown in figure 3.

Figure 3 An example of outer product operations

This process can be represented by equation 3:

C = ∑ Ci = ∑ ai
N−1
i=0

N−1
i=0 bi (3)

N is the number of columns in matrix A.

It is clear to see that each element in matrix A and

matrix B is loaded only once in outer product operation.

Thus, the input data reuse problem does not exist.

However, outer product brings the problem of poor

output data reuse. Except for very small models, the on-

chip memory cannot hold the considerable amount of

partial matrices and they have to be stored in DRAM

before the merge phase, resulting in extensive DRAM

access. So the outer product-based designs mainly focus

on the optimization of merge phase.

One way to deal with this problem is to reduce the

total size of partial matrices. SpArch [8] condenses the

first input matrix (the original adjacent matrix) to the left,

reducing the number of columns, thus reducing the

number of partial matrices. Since the adjacent matrix is

very sparse, the number of partial matrices is reduced by

three orders of magnitude. SpArch also proposes a

multiply-merge pipeline and a merge tree so that once

Advances in Social Science, Education and Humanities Research, volume 638

1161

partial matrices are computed, they can immediately be

sent to merge, instead of waiting in memories. Through

these two methods, SpArch achieves good output data

reuse.

7. CONCLUSION

In this review, four important issues and

corresponding techniques in the design of GCN

accelerator are concluded and introduced. First, this

paper suggests that a flexible hardware structure is

compatible in dealing with irregular and dynamic

patterns. Then two methods to solve the high-sparsity

problem are mentioned: using flexible data-loading

patterns, in the cost of high loading latency or

preprocessing input matrix to reduce sparsity, in which

sparsity cannot be totally eliminated. After that, this paper

discusses the workload imbalance problem and some

useful techniques. In the last, the data reuse problem for

different execution patterns in matrix-matrix

multiplication is introduced and some possible solutions

are given.

REFERENCES

[1] X. Wang, J. Wang and Z. Wang, "A Drug-Target

Interaction Prediction Based on GCN Learning,"

2021 IEEE 9th International Conference on

Bioinformatics and Computational Biology

(ICBCB), 2021, pp. 42-47, doi:

10.1109/ICBCB52223.2021.9459231.

[2] L. Lo, H. -X. Xie, H. -H. Shuai and W. -H. Cheng,

"MER-GCN: Micro-Expression Recognition Based

on Relation Modeling with Graph Convolutional

Networks," 2020 IEEE Conference on Multimedia

Information Processing and Retrieval (MIPR),

2020, pp. 79-84, doi:

10.1109/MIPR49039.2020.00023.

[3] H. Feng et al., "GCN-Based Pavement Crack

Detection Using Mobile LiDAR Point Clouds," in

IEEE Transactions on Intelligent Transportation

Systems, doi: 10.1109/TITS.2021.3099023.

[4] L. Zhao et al., "T-GCN: A Temporal Graph

Convolutional Network for Traffic Prediction," in

IEEE Transactions on Intelligent Transportation

Systems, vol. 21, no. 9, pp. 3848-3858, Sept. 2020,

doi: 10.1109/TITS.2019.2935152.

[5] T. Geng et al., "AWB-GCN: A Graph Convolutional

Network Accelerator with Runtime Workload

Rebalancing," 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture

(MICRO), 2020, pp. 922-936, doi:

10.1109/MICRO50266.2020.00079.

[6] M. Yan et al., "HyGCN: A GCN Accelerator with

Hybrid Architecture," 2020 IEEE International

Symposium on High Performance Computer

Architecture (HPCA), 2020, pp. 15-29, doi:

10.1109/HPCA47549.2020.00012.

[7] E. Qin et al., "SIGMA: A Sparse and Irregular GEMM

Accelerator with Flexible Interconnects for DNN

Training," 2020 IEEE International Symposium on

High Performance Computer Architecture (HPCA),

2020, pp. 58-70, doi:

10.1109/HPCA47549.2020.00015.

[8] Z. Zhang, H. Wang, S. Han and W. J. Dally, "SpArch:

Efficient Architecture for Sparse Matrix

Multiplication," 2020 IEEE International

Symposium on High Performance Computer

Architecture (HPCA), 2020, pp. 261-274, doi:

10.1109/HPCA47549.2020.00030.

[9] Vuduc, R W, and Moon, H. Fast sparse matrix-vector

multiplication by exploiting variable block

structure. United States: N. p., 2005. Web.

doi:10.2172/891708.

[10] Y. Jiang, D. Zhang, K. Chen, Q. Zhou, Y. Zhou and

J. He, "An improved memory management scheme

for large scale graph computing engine GraphChi,"

2014 IEEE International Conference on Big Data

(Big Data), 2014, pp. 58-63, doi:

10.1109/BigData.2014.7004357.

[11] Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li and H. Yang,

"NXgraph: An efficient graph processing system on

a single machine," 2016 IEEE 32nd International

Conference on Data Engineering (ICDE), 2016, pp.

409-420, doi: 10.1109/ICDE.2016.7498258.

[12] S. Liang et al., "EnGN: A High-Throughput and

Energy-Efficient Accelerator for Large Graph

Neural Networks," in IEEE Transactions on

Computers, vol. 70, no. 9, pp. 1511-1525, 1 Sept.

2021, doi: 10.1109/TC.2020.3014632.

[13] S. Pal et al., "OuterSPACE: An Outer Product Based

Sparse Matrix Multiplication Accelerator," 2018

IEEE International Symposium on High

Performance Computer Architecture (HPCA), 2018,

pp. 724-736, doi: 10.1109/HPCA.2018.00067.

Advances in Social Science, Education and Humanities Research, volume 638

1162

