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ABSTRACT 

A graph labelling with a condition at distance two was first introduced by Griggs and Robert. This labelling is also 

known as 𝐿(2,1)-labelling. Let 𝐺 = (𝑉, 𝐸) be a non-multiple graph, undirected, and connected.  An 𝐿(2,1)-labelling on 

a graph is defined as a mapping from the vertex set 𝑉(𝐺) to the set of nonnegative integer such that for 𝑥, 𝑦 ∈ 𝑉(𝐺), 

|𝑓(𝑥) − 𝑓(𝑦)| ≥ 2 if  𝑑(𝑥, 𝑦) = 1 and |𝑓(𝑥) − 𝑓(𝑦)| ≥ 1 if  𝑑(𝑥, 𝑦) = 2, where 𝑑(𝑥, 𝑦) denoted the distance between 

vertex 𝑥 and 𝑦. The largest number of the vertex labels is called as span of 𝐿(2.1)-labelling. The span of a graph 𝐺 can 

be more than one, the minimum value of the span of a graph 𝐺 is notated by 𝜆(2,1)(𝐺). In this paper, we consider a graph 

labelling with distance two on generalized friendship, windmill, and torch graphs. 

Keywords: 𝐿(2,1)-labelling, Labelling graph with distance two, Minimum of span, Generalized friendship, 

Windmill, and Torch graph.  

1. INTRODUCTION 

 Graph labelling is an assignment from the elements of 

graph such as vertex, edge, or both to the set of non-

negative integer (commonly) with a certain requirement. 

Over the years, more than 200 graph labelling have been 

investigated. We can see it in [1] for further study. Every 

variety of graph labelling hold different condition. There 

are graph labelling with certain distance as a requirement, 

one of them is L(2,1)-labelling. An 𝐿 (2,1)-labelling 

requires the difference between two vertex labels to reach 

certain conditions if the distance between two vertices is 

one or two [2].    

 Griggs and Roberts in the 1992 presented a concept 

of graph labelling with a condition at distance two. This 

concept is arisen from the modification of the frequency 

assignment problem presented by Hale in 1980. On a 

number of transmitters, each of them must be assigned a 

frequency to avoid frequency stacking. To overcome the 

frequency stack, then two transmitters that are “close” 

must receive different channels. While two transmitters 

that are “very close” must receive channels that are at 

least two channels apart. In the language of graph theory, 

the vertices of a graph represent transmitters, a “very 

close” transmitters represented by two vertices that are 

adjacent, and “close” transmitters represented by two 

vertices with distance two in the graph [3]. 

Let 𝐺 = (𝑉, 𝐸)  be a non-multiple, connected, and 

undirected graph. Suppose that 𝑢, 𝑣 ∈ 𝑉(𝐺) and 𝑑(𝑢, 𝑣) 
denoted the distance between vertex 𝑢 and 𝑣. An 𝐿(2,1)-

labelling of a graph 𝐺 is defined as a mapping 𝑓: 𝑉(𝐺) →
{0,1, 2, … , 𝑘}  such that |𝑓(𝑢) − 𝑓(𝑣)| ≥ 2  if 𝑑(𝑢, 𝑣) =
1 and |𝑓(𝑢) − 𝑓(𝑣)| ≥ 1 if 𝑑(𝑢, 𝑣) = 2 [2,4]. A number 

𝑘 such that an 𝐿(2,1)-labelling exist is called as span of 

𝐿(2.1)-labelling if there is no label greater than 𝑘. The 

span of a graph 𝐺  can be more than one, and the 

minimum value of the span of a graph 𝐺 is notated by 

𝜆(2,1)(𝐺) [3]. 

There are many research about L(2,1)-labelling of a 

graph. Griggs and Yeh [2,5] in 1992 proved that 

𝜆2,1(𝑆1,𝑛) = 𝑛 + 1, 𝜆2,1(𝐶𝑛) = 4 and 𝜆2,1(𝑃𝑛) = 4. The 

minimum span of fan graph (𝑓𝑛)  is 𝑛 + 1  and wheel 

graph (𝑊𝑛) is 𝑛 + 1 [6]. Yuri et al. [7] in 2018 proved 

that the minimum span of Sierpinski graph (𝑆(𝑛,𝑚)) is 4 

for 𝑚 = 2 and 𝑚 = 3.  

In this paper, we present the minimum span of 

generalized friendship, windmill, and torch graphs. 

Before the further discussion, there are some properties 

of 𝐿(2,1)-labelling which will be used in this paper as 

follows. 

Lemma 1.1. [8] If 𝐻  is a subgraf of graph 𝐺,  then 

𝜆2,1(𝐻) ≤ 𝜆2,1(𝐺). 
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Lemma 1.2. [2] Let 𝑆𝑛be a star graph with 𝑛 ≥  1, then  

𝜆2,1(𝑆𝑛) = 𝑛 + 1.   

2. MAIN RESULT 

In this section we discuss about the minimal span of 

generalized friendship, windmill, and torch graphs. 

2.1. Generalized Friendship Graph 

Generalized friendship graph (𝐹𝑛,𝑚)  is defined as a 

collection of m cycles 𝐶𝑛  with a common vertex [9]. 

Suppose that the vertices and edges of generalized 

friendship graph (𝐹𝑛,𝑚) are notated as follows.  

𝑉(𝐹𝑛,𝑚)  = {𝑣0, 𝑣𝑗
𝑖; 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2, … , 𝑛 − 1}  

𝐸(𝐹𝑛,𝑚)  = {𝑣0𝑣1
𝑚 , 𝑣0𝑣𝑛−1

𝑚 , 𝑣𝑗
𝑖𝑣𝑘
𝑖 ;  𝑗 ≠ 𝑘; 𝑗, 𝑘 =

1, 2, … , 𝑛 − 1 }   

Its notation can be seen in Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1 Generalized friendship graph (𝐹𝑛,𝑚).  
 

Theorem 2.1. Let 𝐹𝑛,𝑚  be a generalized friendship 

graph with 𝑛 ≥  2,  and 𝑚 ≥  2  then  𝜆2,1(𝐹𝑛,𝑚)  =
2𝑚 + 1.   

Proof. We will prove that 𝜆2,1(𝐹𝑛,𝑚)  ≥ 2𝑚 + 1. Since 

the star graph (𝑆2𝑚)  is a subgraph of generalized 

friendship graph 𝐹𝑛,𝑚 , then based on Lemmas 1.1 dan 

1.2, we have 𝜆2,1(𝐹𝑛,𝑚) ≥ 𝜆2,1(𝑆2𝑚) = 2𝑚 + 1. So, we 

have shown that 𝜆2,1(𝐹𝑛,𝑚) ≥ 2𝑚 + 1.  Next, we will 

prove that 𝜆2,1(𝐹𝑛,𝑚) ≤ 2𝑚 + 1 by constructing 𝐿(2,1)-

labelling on generalized friendship graph 𝐹𝑛,𝑚 .  Let 

𝑓: 𝑉(𝐹𝑛,𝑚) → {0,1, 2, … ,2𝑚 + 1}  be a function as 

follows.   

𝑓(𝑣0) = 0 

𝑓(𝑣1
𝑖) = 2𝑖 

𝑓(𝑣𝑛−1
𝑖 ) = 2𝑖 + 1 

For the image of 𝑓(𝑣𝑗
𝑖)  with 𝑖 = 2,… ,𝑚  and 𝑗 =

2,… , 𝑛 − 2, we consider 2 cases as follows.    

1. Cases 1: 𝑚 = 2 

 If 𝑛 ≡ 0 mod 3 and 𝑗 = 2,… , 𝑛 − 2 

𝑓(𝑣𝑗
1) =

{
 

 
2; 𝑗 = 1 mod 3 , 𝑗 ≠ 𝑛 − 2
4; 𝑗 = 2 mod 3                     
0; 𝑗 = 0 mod 3                     
5; 𝑗 = 𝑛 − 2                          

 

𝑓(𝑣𝑗
2) =

{
 

 
4; 𝑗 = 1 mod 3 , 𝑗 ≠ 𝑛 − 2
2; 𝑗 = 2 mod 3                     
0; 𝑗 = 0 mod 3                     
3; 𝑗 = 𝑛 − 2                          

 

       If 𝑛 ≡ 1 mod 3 and 𝑗 = 2,… , 𝑛 − 2 

𝑓(𝑣𝑗
1) =

{
 

 
2; 𝑗 = 1 mod 3 , 𝑗 ≠ 𝑛 − 2
4; 𝑗 = 2 mod 3                     
0; 𝑗 = 0 mod 3                     
5; 𝑗 = 𝑛 − 2                          

 

𝑓(𝑣𝑗
2) = {

4; 𝑗 = 1 mod 3                     
2; 𝑗 = 2 mod 3                     
0; 𝑗 = 0 mod 3                     

 

      If 𝑛 ≡ 2 mod 3 and 𝑗 = 2,… , 𝑛 − 2 

𝑓(𝑣𝑗
1) =

{
 

 
2; 𝑗 = 1 mod 3 , 𝑗 ≠ 𝑛 − 2
4; 𝑗 = 2 mod 3                     
0; 𝑗 = 0 mod 3                     
1; 𝑗 = 𝑛 − 2                          

 

𝑓(𝑣𝑗
2) =

{
 
 

 
 
4; 𝑗 = 1 mod 3                     
2; 𝑗 = 2 mod 3                     
0; 𝑗 = 0 mod 3                     
3; 𝑗 = 𝑛 − 3                          
1; 𝑗 = 𝑛 − 2                         

 

Based on the definition of 𝐿(2,1)-labelling, two vertices 

with a distance one differ by at least two. It will be shown 

as follows. Since the labels of {𝑣0, 𝑣𝑗
1} in the form of 

cycle sequence (0,2,4,0,2,4,...,4,0,5,3) and the labels of 

{𝑣0, 𝑣𝑗
2}  in the form of cycle sequence 

(0,4,2,0,4,2,...,0,3,5) for 𝑛 ≡ 0 mod 3, it is easy to see 

that the difference labels of two vertices with distance 

one is at least two. In the same way, for the labels of 

{𝑣0, 𝑣𝑗
1}  and {𝑣0, 𝑣𝑗

2}  where 𝑛 ≡ 1 mod 3  and 𝑛 ≡

2 mod 3, we can see that the difference labels of two 

vertices with distance one is at least two. Furthermore, 

for those of vertices with a distance two, we can also 

easily see that the difference of the labels is at least one. 

So, we can conclude that for 𝑚 = 2,  the function 

𝑓 satisfied 𝐿(2,1)-labelling. 
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2. Case 2: 𝑚 ≥ 3 

𝑓(𝑣𝑗
1) = {

7; 𝑗 = 2 mod 3                     
1; 𝑗 = 0 mod 3                     
5; 𝑗 = 1 mod 3                     

 

𝑓(𝑣𝑗
2) = {

7; 𝑗 = 2 mod 3                     
1; 𝑗 = 0 mod 3                     
3; 𝑗 = 1 mod 3                     

 

𝑓(𝑣𝑗
𝑖) = {

1; 𝑗 = 2 mod 3, 𝑖 = 3,… ,𝑚 
5; 𝑗 = 0 mod 3, 𝑖 = 3,… ,𝑚 
3; 𝑗 = 1 mod 3, 𝑖 = 3,… ,𝑚

 

In the same way with the Case 1, we can prove that the 

function 𝑓 satisfied 𝐿(2,1)-labelling for 𝑚 ≥  3.  

 

Since the function 𝑓 satisfied the rule of 𝐿(2,1)-labelling 

then we can conclude that 𝜆2,1(𝐹𝑛,𝑚) ≤ 2𝑚 + 1.  

Therefore, we get 𝜆2,1(𝐹𝑛,𝑚) = 2𝑚 + 1.  We give an 

example to illustrate Theorem 2.1 in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 𝐿(2,1)-labelling of generalized friendship 

graph 𝐹3,4. 

2.2. Windmill Graph 

Windmill graph (𝑊𝑛
𝑚)  is a graph obtained by 

combining 𝑚 copies complete graph 𝐾𝑛 with a common 

vertex. For the case 𝑛 = 3, windmill graph (𝑊𝑛
𝑚) is a 

generalized friendship graph 𝐹3,𝑚.  So, the windmill 

graph here is started with 𝑛 ≥ 4  and 𝑚 ≥ 2.  Suppose 

that the vertices and edges of windmill graph are notated 

as follows.  

𝑉(𝑊𝑛
𝑚) = {𝑣0, 𝑣𝑗

𝑖 ; 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2,… , 𝑛 − 1}  

𝐸(𝑊𝑛
𝑚) = {𝑣0𝑣𝑗

𝑖; 𝑖 = 1, 2, … ,𝑚; 𝑗 = 1, 2, … , 𝑛 − 1} ∪

{𝑣𝑗
𝑖𝑣𝑘
𝑖 ; 𝑗 ≠ 𝑘; 𝑗, 𝑘 = 1, 2, … , 𝑛 − 1}  

The notation of vertices and edges of windmill graph as 

depicted in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Windmill graph 𝑊𝑛
𝑚 . 

 

Theorem 2.2 Let 𝑊𝑛
𝑚 be a windmill graph with 𝑚 ≥ 2, 

then 𝜆2,1(𝑊𝑛
𝑚) = {

𝑚𝑛 − 𝑚 + 𝑛 − 1;𝑚 is odd
𝑚𝑛 − 𝑚 + 1;𝑚 is even

 

Proof. Let 𝑊𝑛
𝑚 be a windmill graph with 𝑚 ≥ 2, we will 

consider two cases to prove this theorem.  

a). Case 1:  𝑚 is odd 

We will show that 𝜆2,1(𝑊𝑛
𝑚) ≥ 𝑚𝑛 −𝑚 + 𝑛 − 1. Since 

the distance of vertex 𝑣𝑗
𝑖  and 𝑣𝑘

𝑖  for 𝑗 ≠ 𝑘 is one, then in 

order to satisfy the 𝐿 (2,1)-labelling rule, the absolute 

value of their label difference is at least two. So, all 

vertices of 𝑣𝑗
𝑖  and 𝑣𝑘

𝑖  for 𝑗 ≠ 𝑘  must be labelled with 

even labels or odd label only. Since the distance of vertex 

𝑣𝑗
𝑖  and 𝑣𝑘

𝑙  is two for 𝑖 ≠ 𝑙 , then in order to satisfy a 

condition that |𝑓(𝑣𝑗
𝑖  ) − (𝑣𝑘

𝑙 )| ≥ 1 , every vertex of 𝑣𝑗
𝑖  

with 𝑖 = 1, 2, … ,𝑚 and 𝑗 = 1, 2, … , 𝑛 − 1 must be 

assigned different label. The minimal span of windmill 

graph 𝑊𝑛
𝑚 can be reached if the label of vertex 𝑣0 is 0. 

Since vertex 𝑣0  adjacent with every vertex 𝑣𝑗
𝑖 , then the 

label 1 cannot be attached to the vertex 𝑣𝑗
𝑖 . In view of 𝑚 

is odd, all vertices 𝑣𝑗
𝑖  need exactly (

𝑚+1

2
) (𝑛 − 1) even 

labels and (
𝑚−1

2
) (𝑛 − 1)  odd labels .  Considering that 

the minimum even label of vertices 𝑣𝑗
𝑖  is 2, then the 

largest label is 2 + ((
𝑚+1

2
) (𝑛 − 1)  − 1) 2 = 𝑚𝑛 −

𝑚 + 𝑛 − 1.  So, we have identified that 𝜆2,1(𝑊𝑛
𝑚) ≥

𝑚𝑛 −𝑚 + 𝑛 − 1.  

Next, we will prove that 𝜆2,1(𝑊𝑛
𝑚
) ≤ 𝑚𝑛−𝑚+𝑛− 1 

by applying 𝐿 (2,1)-labelling on windmill graph 

𝑊𝑛
𝑚 . Define a function 𝑓: 𝑉(𝑊𝑛

𝑚
) → {0,1, 2, … ,𝑚𝑛−

𝑚+𝑛− 1} as follows.  

  𝑓(𝑣0) = 0 

For the image of all vertices 𝑣𝑗
𝑖 , there are two cases to be 

consider. 
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1. If 𝑖 is odd 

𝑓(𝑣𝑗
𝑖) = (𝑚 − 1)(𝑛 − 1) + 2𝑗  

for 𝑗 = 1, 2,… , 𝑛 − 1 

2. If 𝑖 is even 

𝑓(𝑣𝑗
𝑖) = (𝑚 − 2)(𝑛 − 1) + 2𝑗 + 1  

for 𝑗 = 1, 2,… , 𝑛 − 1 

Using similar method with Theorem 2.1, it can be easily 

seen that 𝑓  satisfied 𝐿 (2,1)-labelling and we get 

𝜆2,1(𝑊𝑛
𝑚
) ≤ 𝑚𝑛−𝑚+𝑛− 1.  Therefore, we can 

conclude that 𝜆2,1(𝑊𝑛
𝑚
) =𝑚𝑛−𝑚+𝑛− 1. 

 

b). Case 2: 𝑚 is even 

We will prove that 𝜆2,1(𝑊𝑛
𝑚
) ≥𝑚𝑛−𝑚+ 1. Assume 

that windmill graph 𝑊𝑛
𝑚  can be labelled by 

0, 1, 2, 3, . . . ,𝑚𝑛−𝑚. Since 𝑣0  adjacent to all vertices 

𝑣𝑗
𝑖 , then the minimum span of windmill graph 𝑊𝑛

𝑚 can 

be obtained if the label of vertex 𝑣0 is 0. As a result, label 

1 cannot be attach to any vertex of  𝑣𝑗
𝑖  due to the rule of 

𝐿(2,1)-labelling. Now, the remaining labels available are 

𝑚𝑛 −𝑚 − 1, while the number all vertices of  𝑣𝑗
𝑖  is 

𝑚(𝑛 − 1) = 𝑚𝑛 −𝑚. It means that we short of 1 label. 

Therefore, we need 1 label except labels 

0, 1, 2, 3, . . . ,𝑚𝑛−𝑚.  So, the assumption that windmill 

graph 𝑊𝑛
𝑚  can be labelled by 0, 1, 2, 3, . . . ,𝑚𝑛−𝑚 is 

failed to be reached. Here, we have proved that 

𝜆2,1(𝑊𝑛
𝑚
) ≥ 𝑚𝑛−𝑚+ 1. 

Next, we will prove that 𝜆2,1(𝑊𝑛
𝑚
) ≤ 𝑚𝑛−𝑚+ 1 by 

formulating an 𝐿(2,1)-labelling on windmill graph 𝑊𝑛
𝑚 . 

Suppose that 𝑓: 𝑉(𝑊𝑛
𝑚
) → {0,1, 2, … ,𝑚𝑛−𝑚+ 1}  is 

a function with the rule as follows.  

  𝑓(𝑣0) = 0 

For the map of all vertices 𝑣𝑗
𝑖 , we will divide it into two 

cases.  

1. If 𝑖 is odd 

𝑓(𝑣𝑗
𝑖) = (𝑚 − 1)(𝑛 − 1) + 2𝑗  

for 𝑗 = 1, 2,… , 𝑛 − 1 

2. If 𝑖 is even 

𝑓(𝑣𝑗
𝑖) = (𝑚 − 2)(𝑛 − 1) + 2𝑗 + 1  

for 𝑗 = 1, 2,… , 𝑛 − 1 

Again, in the same way with Theorem 2.1 it is easy to 

prove that 𝑓  is 𝐿 (2,1)-labelling. So, we have 

𝜆2,1(𝑊𝑛
𝑚
) ≤ 𝑚𝑛−𝑚+ 1. Therefore, we can conclude 

that 𝜆2,1(𝑊𝑛
𝑚
) = 𝑚𝑛−𝑚+ 1. For example, an 𝐿(2,1)-

labelling of windmill graph  𝑊4
4 can be seen in Figure 4. 

 

 

 

 

 

 

 

 

 

Figure 4 𝐿(2,1)-labelling of Windmill graph 𝑊4
4. 

2.3. Torch Graph 

Torch graph (𝑂𝑛) is a graph obtained by combining a 

triangular book graph with a fan graph 𝑓3 containing one 

leaf in the central vertex [10]. Suppose that the vertices 

and edges in the torch graph are notated as follows (see 

Figure 5 for the illustration). 

𝑉(𝑂𝑛) = {𝑣𝑖 ; 𝑖 = 1, 2, … , 𝑛 + 4},  

𝐸(𝑂𝑛) = {𝑣𝑖𝑣𝑛+1, 𝑣𝑖𝑣𝑛+3; 𝑖 =  2, … , 𝑛 − 2} ∪
                 {𝑣1𝑣𝑖 ; 𝑛 ≤ 𝑛 ≤ 𝑛 + 4; 1, 2, … , 𝑛 − 1} ∪  

                 {𝑣𝑛+3𝑣𝑛+1, 𝑣𝑛−1𝑣𝑛 , 𝑣𝑛𝑣𝑛+4, 𝑣𝑛𝑣𝑛+2}. 

 

 

 

 

 

 

 

 

 

Figure 5 Torch graph (𝑂𝑛). 

 

Theorem 2.3. Let 𝑂𝑛 be a torch graph with 𝑛 ≥  3, then 

 𝜆2,1(𝑂𝑛 ) = {
6; for 3 ≤ 𝑛 ≤ 5
𝑛 + 1; for 𝑛 ≥ 6

. 

Proof. Since the star graph and triangular book are the 

subgraph of a torch graph 𝑂𝑛 [11], it is easy to prove that 

𝜆2,1(𝑂𝑛 ) ≥ 6  for 3 ≤ 𝑛 ≤ 5  and 𝜆2,1(𝑂𝑛 ) ≥ n + 1  for 

𝑛 ≥ 6. 
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Next, we will see that 𝜆2,1(𝑂𝑛) ≤ n + 1  by assigning 

𝐿(2,1)-labelling on torch graph 𝑂𝑛. Let 𝑓 be a function 

from 𝑉(𝑂𝑛) to {0,1, 2, … , n + 1} as follows.  

𝑓(𝑣𝑖) = {

    7 − 𝑖; 𝑖 = 1,2,3         
     𝑖 + 3;4 ≤ 𝑖 ≤ 𝑛− 2

      𝑖 − 𝑛 + 1; 𝑖 = 𝑛, 𝑛 + 1, 𝑛 + 2
4𝑖 − 4𝑛− 12; 𝑖 = 𝑛 + 3,𝑛 + 4    

     

𝑓(𝑣𝑛−1) = 5   

It is easy to show that 𝜆2,1(𝑂𝑛) ≤ 𝑛 + 1. Then, we get 

𝜆2,1(𝑂𝑛) = 𝑛 + 1. 

As an illustration, Figure 6 presents an 𝐿(2,1)-labelling 

of torch graph 𝑂6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 𝐿(2,1)-labelling of torch graph 𝑂6. 
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