
1. INTRODUCTION

In finance, the success of the BSM model stems less
from its empirical quality than from its computational 
convenience. This convenience comes in two flavors. 
Firstly, we have closed-form pricing equations 
(Gaussian distribution functions cannot be analyzed, but 
fast and accurate approximations exist). Secondly, the 
calibration model requires the identification of only one 
parameter, volatility, which can be easily calculated 
from market prices using Newtonian methods or other 
zero-finding techniques. With the Heston and Bates 
models, both of these tasks become more difficult. 
Pricing requires numerical integration and calibration 
requires finding five and eight parameters, whereas for 
the BSM there is only one parameter. 

The authors will examine the calibration of these 
models. Finding the parameters that align the models 
with market prices implies solving a non-convex 
optimization problem. The authors suggest the use of 
optimization heuristics, and more specifically they show 
that both differential evolution and particle swarm 
optimization provide good solutions to this problem. 

2. LITERATURE REVIEW

The use of mathematical methods to analyze
financial problems dates back to the early 20th century. 
In 1900 the French mathematician Bachelier published 
his doctoral thesis 'Theory of Speculation'. He argued 
that in the capital market there are buyers and sellers, 
that buyers are bullish and sellers are bearish, that the 

price fluctuations are Brownian movements and that 
their statistical distribution is normal, which gradually 
led to the subsequent theory of the capital market[1]. 
After 50 years of silence, Bachelier's work was 
rediscovered. In 1952, Markowitz published "Portfolio 
Selection", which revealed for the first time from the 
perspective of mathematical economics how to choose 
the optimal portfolio through the efficient frontier of the 
portfolio and how to reduce risk through diversification, 
pioneering modern investment analysis theory[2]. In 
1963, Sharpe, a student of Markowitz, proposed a 
simplified form of the calculation, now known as the 
single exponential model, which made the base of the 
theory for investment[3]. Johnson and Stein used the 
bond portfolio approach to extend portfolio theory to 
hedging. In the late 1970s, Ederington developed 
Johnson and Stein's work to include financial futures to 
hedge financial price risk, which led to modern hedging 
theory.[4] 

In 1958, Modigliani and Miller, in their study of the 
relationship between corporate capital structure and 
corporate value, published an important and 
epoch-making result, the so-called MM theory, which 
implies an extremely deep. This theory contains a 
profound idea, the idea of no-arbitrage equilibrium, 
which later had a great impact and became an important 
analytical tool in a series of subsequent financial 
research results, such as arbitrage pricing theory and 
option pricing theory. It has also become a fundamental 
analytical technique in today's financial engineering for 
product design, development and facilities.[5] 

In 1973, Brennen relaxed the no-tax assumptions of 
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the capital asset pricing model to take into account the 
effect of tax rates[6]. In 1965, Fama and Samuelson 
proposed the Efficient Market Theory, which states that 
in a properly functioning capital market, the evolution 
of asset prices can be described by a lower harness 
process and that the best estimate of the value of a bond 
is today's price.[7]. In 1973, Black and Scholes proposed 
the first complete model of option pricing, the 
Black-Scholes formula[8], which was widely accepted 
and applied by both the theoretical and practical 
communities and became another revolution in the field 
of finance. In the same year, Merton gave a model with 
continuous branch interest rates and coefficients are not 
constant in the important case, thus refining the theory 
of option pricing. 

In 1976, Ross further developed the capital asset 
pricing model and introduced the theory of arbitrage 
pricing. The theory does not require the same stringent 
assumptions as the capital asset pricing model and its 
model takes the same form as the multi-index model[9]. 
For mathematical finance, one of the main objects of 
study is the pricing, modeling and hedging problems of 
marketable securities and their derivatives, such as 
forward contracts, futures, options and swaps. The main 
problem to be solved in the study of derivative securities 
is how to determine the price of the derivative security, 
i.e. the pricing of the derivative security, and the other is
the hedging of the derivative security. Among all of
the derivative securities, options are the most widely
studied.

3. METHODOLOGY

3.1. Pricing with the characteristic function 

The nature of the BSM is a no-arbitrage argument; it 
generates a partial differential equation which can be 
solved numerically or analytically. A recent method is 
based on the characteristic function of (log) stock prices. 
Euclidean options can be priced by the equation below: 
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in the equations. The marker Φ is the characteristic 
function of the log stock price; the function Re (·) gives 
the actual part of a complex number. For a certain Φ  
it can compute 1Π and 2Π by numerical integration,
and therefore acquire option prices. 

Under a BSM model, the stock price St in the 
risk-neutral measure follows:  
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The above equation is the well-known pricing 
formula for the BSM call. 

Given the dynamics of S, the log price s τ = log ( S 
τ ) comply with Gaussian distribution where S0 is the 
natural logarithm of the current spot price. The 
characteristic function of s τ is given by 
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Merton (1976) proposed to model the underlier's 
movements as a diffusion with discontinuous jumps; 
therefore acquire 

( ) ttttttJt dNSJdzSvdtSqrdS ++−−= λµ
    (7)

tN  is a poisson counting process, with intensity 

λ ; tJ  is the random jump size (if a jump happened). 
Under Merton's model the log-jumps are distributed as 
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The pricing equation is defined as this (Merton,1976, 
P.135):
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(5), although the prime shows that '
0T  is deemed at 

adjusted values of r and v . 

Factorials will easily result in an overflow (Inf), 
which is benign for two reasons. First, it does not need 
big numbers for n, a value of around 20 is 
well-sufficient. Second(if we insist on large n), software 
packages as Matlab or R will deem 1/Inf as zero, 
therefore the summing will add zeros for large 
n.(Numerical analysts prefer to replace n! by 

( )∑ =

n

i
i

1
logexp  as this result in better accuracy for 

large n. For Merton's model it is not required.) In light 
of the implementation, working with big values for n 
will still result in a warning or an error, and so disrupt a 
calculation. In R for example, the handling of such a 
warning will rely on the options setting: 

Advances in Economics, Business and Management Research, volume 211

1153



> options()$warn
[1] 0

The above is the standardized setting. Calculating 
the factorial for a big number will lead to a warning; 

> factorial(200)
[1l Tnf
Warning message:
In factorial(200): value out of range in 'gammafn'

However, with warn set to 2, any warning are to be 
changed into an error. Thus: 

> options(warn=2)
> Error in factorial(200):
(converted from warning) value out of range in
'gammafn’

our calculation disrupt. It needs to safeguard against 
these possible errors: it can for example substitute the 
function call factorial(n) by its real calculation which 
generates: 

> options(warn=2)
> exp(sum(log(1:200)))
[1] Inf
> Prod(1:200)
[1] Inf

In the Heston (1993) model the stock price S and its 
variance v  are defined as 

tttttt dzSvdrSdS +=
   (10)
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   (11)

The mean reversion speed is k  and σ  is the 
volatility-of-volatility, long-term variance is defined as 
θ , the Wiener processes ( ).z  have correlation ρ . For

0→σ , the Heston dynamics approach those of BSM.
A thorough analysis of the model will be traced in
Gatheral’s research[10]. The characteristic function of the
log-price in the Heston model was defined as below, see
Albrecher’s research[11].

CBA
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   (12)
With only 5 parameters(in the risk-neutral 

probability), the Heston model can produce a volatility 
smile. 

In the Bates model, described in Bates’ research[12], 
makes jumps to the dynamics of the Heston model. The 
stock price S and its variance v are defined as 

tttttttJt dNSJdzSvdtSqrdS ++−−= )( λµ
             

(13)
dzvdtvkdv ttt σθ +−= )(

 (14)

tN  is poisson count process with intensity λ , 
therefore the possibility a jump of size one occur is 

dtλ . As ubder Merton's model, the logarithm of the 
jump size tJ  is distributed as a Gaussian. 

We use the Gauss-Legendre rule, see Davis and 
Rabinowitz[13], Trefethen[14]and Appendix; we have also 
experimented with other schemes such as 
Gauss-Lobatto[15], but given the accuracy required for 
our problem (option prices do not need to be computed 
to 8 decimal places), no integration scheme significantly 
better than the other schemes. Therefore, in the 
following, instead of using the equations, we calculate 
the nodes and weights and evaluate the integrals 
directly. 

In order to test the pricing procedure, we need to 
analyze the BSM model and the Merton jump diffusion 
model. For the above models, we can compare the 
solutions obtained by the classical formulation with 
those obtained by integration. Furthermore, we can 
explore several extreme cases: for Heston with zero 
volatility, we should obtain the BSM value; for Bates 
with zero volatility, we should obtain the same value as 
in the Merton jump diffusion. (Of course, Bates with 
zero volatility and no jumps should still obtain the BSM 
value.) 

3.2. Calibrating model parameters 

Calibrating an option pricing model means finding 
parameters to match the model price to the market price, 
which gives rise to an optimization problem of the 
following form 

∑
=

−M

i
market
i

market
i

el
i

C

CC

1

mod

min
   (15)

where M is the number of market prices. You can also 
specify absolute deviations, replace absolute values with 
squared values or introduce a weighting scheme. The 
choice of the objective function depends on the scope of 
the application, and ultimately the determination of a 
good objective function is an empirical question. In this 
case, we are interested in the numerical aspect and 
therefore use the specification (14). Figure 1 displays a 
objective function case for the Heston model (on a log 
scale) when varying two parameters - mean reversion 
k  and volatility-of-volatility −σ when holding the 
others constant. The problem is not convex, so standard 
methods (e.g. derivatives based on the objective 
function) may not work. We apply heuristics such as 
differential evolution and particle swarm optimization to 
solve (14). 
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Figure 1 A search space for the Heston model 

In evaluating (14), instead of determining the price 
of a single option, we determine the price of a whole set 
of options with different maturities. However, for a 
given set of parameters describing the underlying 
process of the model, the characteristic function depends 
only on the time to maturity and not on the strike price. 
This suggests that speed can be improved by 
pre-processing the members of p that are constant for a 
particular maturity and then calculating all strike prices 
for that maturity, see Kilin[16]for a discussion, 
summarised in Algorithm 1. 

Differential Evolution (DE) is described in detail by 
Storn and Price[17]: Differential Evolution has np 
solutions, stored in a real vector of length p (p is 5 for 
Heston and 8). In each generation k, the algorithm 
creates a new candidate solution pn , one new solution 

for each existing solution. Such a candidate solution is 
created by taking the difference between the other two 
solutions, weighting this difference, and adding the 
weighted difference to the third solution. An 
element-by-element crossover is then performed 
between the auxiliary solution ( )vP and the original
solution. If such a final candidate is better than the 
original solution, it is replaced by the original solution, 
otherwise the original solution is retained. 

In particle swarm optimization[18], there is again a 
population of pn solutions stored in real-valued vectors.

At each generation, the solutions are updated by adding 
another vector iv  (called velocity). A solution is a 
position in the search space and the velocity can be seen 
as the direction in which the solution is moving. During 
the optimization process, the velocity changes. The 
magnitude of the change is the sum of the two parts. The 
magnitude of the change is the sum of two parts: the 
movement of a particular solution in the direction of the 
best solution it has found so far, iPbest  and the 
movement in the direction of the best solution for the 
whole group, iPbest . These two directions are 
perturbed and summed by multiplying by a uniform 

random number ζ  and a constant (.)c . The resulting

vector is added to the previous solution and the resulting 
update rate is added to the corresponding solution. In 
some embodiments, the speed is reduced in each 
generation by setting a parameterδ  called inertia to a 
value less than 1. 

Initial tests showed that the objective function tends 
to be flat, so that different parameter values produce 
similar objective function values. This suggests that our 
problem may be sensitive to small changes in the data 
when we are interested in exact parameter estimates, and 
if we insist on exact parameter calculations, we may 
need multiple iterations or an algorithm with large step 
sizes. Therefore, as a local search strategy, we use the 
direct search method of Nelder and Mead[19], 
implemented in Matlab's fminsearch. This algorithm can 
vary its step size, and it is also robust in the presence of 
noisy objective functions. Algorithm 4 summarized the 
hybrid search. 

Algorithm 4 Hybrid search. 
1:set parameters for population-based method 
2: for k =1 to nc do 
3: do population-based search 
4: if local search then 
5: select ns solutions as starting values for local search 
6: for each selected solution do 
7: perform local search 
8: end for 
9: end if 
10: end for 

During implementation it is necessary to decide how 
often to start a local search, how many solutions to 
choose and how to select them. In an extreme case, the 
strategy would be a simple one of using only one 
generation and restarting the local search method. 

Spendley et al.[20] proposed encoding a solution x as 
a mere x. A single line of dimension p consists of p + 1 
vertices (points), so that it is a line segment for p = 1, a 
triangle for p = 2, a tetrahedron for p = 3, and so on. In 
the algorithm of Spendley et al. (1962), this singular can 
be reflected through an edge or collapsed. Thus, the size 
of the monoclinic can change, but not its shape. Nelder 
and Mead added two more operations, namely that the 
monogram can be stretched and contracted, and 
therefore the monogram can change its size and shape. 

In Algorithm 5, we describe the Niederer-Mead 
algorithm. The notation follows Wright[21] and the 
solution is organised as follows. 

121 ,, +pxxx 
that means we have 

( ) ( ) ( )121 , +< pxFxFxF 
Define the objective values connected with 
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particular solutions as 121 ,, +pFFF  .the values for 

the parameters in Algorithm 5 are 

2/1,2/1,2,1 ==== ςγχρ and
they are as well applied in Matlab's fmingearch. Matlab 
transforms the starting guess x  into 
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where the superscript (i) implied the i-th element of x. 
In the implementation applied here(Matlab 2008a), ε  
is 0.05. If ( )ix  is 0, then ( )ixε  is set to 0.00025.

Simplex adapts to the contours of the objective 
function (i.e. it can 'stretch'), allowing it to take large 
steps in favorable directions. However, this flexibility 
can also be a drawback. For example, imagine a narrow 
valley through which a long, stretched monolith can 
pass. If this valley curves, the monad will not easily fit. 
This phenomenon also seems to be a problem for us. 
When the monad is initialised, the maximum parameter 
value is 5% larger than its minimum, and structurally 
this is true for all parameters, see equation (14). Thus, 
the relative growth along any dimension is uniform. If 
we search and compare this initial singular with the final 

singular, we find that it grows by a factor of over 200 in 
just one dimension, and that the number of terms in the 
singular often increases from around 10 to over 1012. It 
turns out that restarting the algorithm, i.e. initializing the 
singletons several times, leads to a better solution. 

We therefore expect non-negative variance, 
correlation between -1 and 1 and parameters such as k  , 
σ and λ  to be non-negative as well. These constraints
are achieved through penalty clauses. If there is a
violation, a positive number proportional to the violation 
is added to the objective function. 

4. RESULTS

To test the author’s technique, artificial data set was
created. The spot price 0S  was 100, the risk-free rate r
was 2% and there was no return. We calculated prices 
for two strike levels X, from 80 to 120, as well as 1/12, 
3/12, 6/12, 9/12, 1, 2 and 3 year maturitiesq . The 
system therefore consists of 21 x 7 = 147 prices. Given 
the parameters, we calculate the option prices and record 
them as actual prices. We then run each method 10 times 
to solve (13) and see if we can recover the parameters. 
This setup implies that a perfect fit is possible. 

The parameters for the Heston model are taken from 
the table below. 

0.10.10.10.10.38.08.05.05.00.15.1
0.10.20.30.35.02.02.00.30.32.00.2
5.05.05.05.00.05.05.00.09.07.03.0

3.03.03.03.05.04.02.02.02.03.03.0
8.07.06.06.05.02.04.03.03.03.03.00

σ
κ
ρ
θ

−−−−−−−−−

v

The Bates model uses parameter sets. 

Each model has 10 different parameter sets, 10 
optimization runs (restarts) for each parameter set, and 
10 outputs for each optimization method. For each 
restart we store the value of the objective function and 
the corresponding parameter estimates. For the latter, we 
calculate the absolute error, i.e. 

Error = | estimated parameters - true parameters |. 

We then analyze the distribution of these errors. 

All algorithms are coded in Matlab. We use fminab 
for direct search. In DE the parameter F should be set 
around 0.3-0.5 (we use 0.5). In RS the main goal is to 
speed up convergence. It is not good to accelerate too 
much, so we keep the inertia below unity level (here o.7) 
and limit the absolute value of acceleration to o.2. The 
stopping criterion for DE and ps is a fixed number of 
function estimates (population size x number of 
generations) and 3 settings. 

Using an Intel 87oo processor with a 2.53 GHz core 
and 2 GB of RAM, a single run takes about 10, 40 and 

160 seconds, respectively. Another stopping criterion is 
to stop the algorithm when the diversity of the 
population (as measured by the objective function or a 
set of parameter values) falls below an acceptable level. 
This strategy works well for DE, since its solution 
converges quickly, but increases the runtime of ps). 

The hybrid method is run for 50 generations with a 
population of 25 solutions. Every tenth generation, one 
or three solutions are selected that are either the best 
("elite") solutions or random solutions. These solutions 
are used as starting values for the local search. This 
search is performed under the Nelder-Meade constraint 
for up to 200 iterations until further improvements are 
achieved; each run takes between 10 and 30 seconds. 

5. DISCUSSIONS

For the purely population-based approach, the gray
scale shows increasing estimates of the function (1,250, 
5,000, 2,000). 

For the Heston model, all methods converged 
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quickly to a very good solution with a pricing error of 
less than 1% and were perfectly consistent (although not 
reported, additional DE and ps tests were run to increase 
the estimate of the function and extend the run time to 
3-5 minutes, but both algorithms (without exception)
converged to a true solution). However, for practical
purposes, this level of accuracy was sufficient. DE
converges faster than PS. This is evident in the hybrid
algorithm. Here, in the case of DE, it does not matter
how the solution for the local search (random or elite) is
chosen, as all members of the population are similar to
each other; in the case of PS, it is more efficient to
choose the solution by quality.

The calibration of the Bates model is a more difficult 
task. The results showed that convergence is slower here. 
The hybrid approach is very efficient, especially when 
both DE- and rs-based solutions are chosen: for the 
Heston and Bates models, the hybrid algorithm works 
best, with a slight advantage for the DE-based 
algorithm. 

According to the results, in the case of the Heston 
model the parameters converge almost as fast as the 
objective function. 

For the Bates model, the results are even worse. The 
parameters, also included in the Heston model, are not 
estimated very accurately, but for the jump parameters 
(A, yy and o), there is almost no convergence. The fact 
that the parameters do not converge does not mean that 
a good fit cannot be achieved. The lack of convergence 
can also be attributed to the choice of parameters. 
Experiments on the Merton model (unpublished) have 
shown that it is difficult to recover the parameters 
accurately for 'small' average jumps of -10% or -20%, as 
many parameter values result in price errors close to 
zero. In other words, the optimization works well and 
the prices can be fitted well, but the various parameters 
cannot be determined accurately. In any case, the 
parameter values used here are consistent with those 
reported in the literature[22]. The accuracy of the large 
jumps has been improved. This is consistent with the 
results of other studies. For example, He[23] reported a 
relatively accurate estimate of the mean jump size of 
-90%. (This also raises the question of how reasonable
the parameters should be). The advantage of the
theoretical model over simple interpolation is that the
parameters can be interpreted. There is little benefit in
using such a model if only unrealistic parameters can be
used to fit option prices.

It can be seen that even when the results in terms of 
the objective function are good, i.e. the price errors are 
small, the errors in the estimated parameters can be 
large. This may be due to the particular parameters of 
Merton's jump-diffusion model described above. It also 
reflects the fact that both stochastic volatility and jump 
models can produce volatility smiles (although 
stochastic volatility models perform better in long 

periods, while jump models perform better in short 
periods[24] ). Therefore, the optimization procedure 
cannot unambiguously identify the cause of the smile. 
This is a problem of model identification rather than a 
numerical approach. 

The objective function can be rewritten as a system 

of non-linear equations   0
mod

=−
market
i

market
i

el
i

C
CC

Where Mi ,,1∈ . Since the number of market 
prices, M, is greater than the number of parameters, the 
system is over-identified and can only be resolved by 
minimizing the residual criterion. The conditionality of 
the equation does not necessarily affect the value of the 
residuals. A poorly conditioned equation can also lead to 
small residuals, but in this case the parameters cannot be 
defined precisely. This is the same as in the present case. 

The results show that the condition numbers in the 
model are mostly numerically acceptable with double 
precision (e.g. of the order of 105 or 106), although the 
conditions deteriorate sharply in some steps. 

The fact that the condition numbers are not 
numerically problematic does not mean that the model is 
not problematic. Intuitively, for a linear regression 
model, the Jacobian is the data matrix. The number of 
conditions in this matrix may be acceptable, even if the 
correlation between columns is too high to draw 
reasonable inferences. The Matlab scenario below sets 
up a linear regression model with highly correlated 
regressors. 

There are no numerical problems with the 
calculation of the regression coefficients, but it is best 
not to interpret them. 

6. CONCLUSIONS

The authors discuss the problem of calibrating the
option pricing model, where all methods are consistent 
in terms of cost, but the parameter estimates converge 
very slowly and do not converge to the jumps in the 
Bates model. In contrast, the parameters of the Heston 
model were much easier to estimate. Empirical studies 
testing the effectiveness of hedging should take into 
account the sensitivity of the results to calibration. 
However, optimization validity should be tested 
empirically rather than by hypothesis. Such a test is 
simple. By running a series of empirical tests, repeating 
the calibration with different initial values each time, the 
sensitivity of the results to the quality of the 
optimisation can be determined. The results of this study 
suggest that model builders in quantitative finance 
should be sceptical about pure numerical accuracy. 
Model risk remains an underappreciated aspect of 
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quantitative finance (and one that is best not addressed 
by rigorous mathematical models). This result suggests 
that lower levels of numerical optimisation may 
themselves introduce bias. 
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