Enteric Methane from Small Ruminants in Indonesia for Recent Years: Tier 2 Methods

Teguh Wahyono^{1, *}, Dadang Priyoatmojo¹, Tri Handayani¹, Afi Candra Trinugraha¹,

Widhi Kurniawan², Tekad Urip Sujarnoko³

¹National Research and Innovation Agency of Indonesia, Jakarta, Indonesia

² Faculty of Animal Husbandry, University of Halu Oleo, Kendari, Indonesia

³ Vocational School, IPB University, Bogor, Indonesia

*Corresponding author. Email: <u>teguhwahyono@batan.go.id</u>

ABSTRACT

Indonesia, as an agricultural country, has a large amount of small ruminant population, which contributes a significant amount to national enteric CH₄ emission. This study aimed to calculate enteric CH₄ emission from small ruminants (sheep and goat) in Indonesia using Intergovernmental Panel on Climate Change (IPCC) Tier-2 method. Emission factors (EF) from the country-specific calculation in Indonesia was used in this study. The national population of sheep and goat based on production categories (weaning, yearling, and mature) were obtained from the Director-General of Livestock and Animal Health Services (DGLAH) of Indonesia. From 2016 to 2019, the enteric CH₄ emission from sheep and goat increases approximately 4.36% and 1.11%, respectively, due to the increase in the animal population. On contrary, from 2019 to 2020, the enteric CH₄ emission from sheep and goat that are at production levels (mature) produce 63.49% - 54.86% of the total enteric CH₄ emissions from small ruminants. Despite having a greater population, goats produce lower enteric CH₄ than sheep. These results are related to the lower EF value for goats due to the indigenous feed consumed by goats in Indonesia, that contains a lot of secondary metabolites compounds. Further research is needed on how to reduce enteric CH₄ emission from small ruminants in Indonesia.

Keywords: Enteric CH₄, Goat, Tier-2, Sheep.

1. INTRODUCTION

Gases that contribute to the greenhouse gasses (GHG) effect include: H_2O (65%), CO_2 (33%) and the rest are CH₄, N₂O and ozone [1]. The agricultural sector represented approximately 24% of the global total in 2010 [1], [2]. Ministry of Environment and Forestry of Indonesia [3] reported that the agricultural sector contributed 131,641.97 Gg CO₂e from total anthropogenic GHG emissions. As a part of the

agricultural sector, livestock sub-sector contributes quite high GHG emissions. Livestock population growth leads to an increase in GHG emissions from the livestock sector. Generally, CH₄ emission from livestock are obtained from manure management and enteric fermentation. Nugrahaeningtyas *et al.* [4] reported that CH₄ from enteric fermentation was the main source of GHG emission from the livestock sector. In 2018, enteric CH₄ contributed 61.10% GHG of the national total in Indonesia from livestock [3].

Sub-categories	Composition in total population (%)		
	Sheep	Goat	
Weaning	24.46	25.84	
Yearling	26.69	26.26	
Mature	48.85	47.90	

Table 1. Sub-categories of sheep and goat in Indonesia based on production level [7]

Table 2. Population of sheep and goat since 2016 to 2020 [7]

Year	Population (heads)		
	Sheep	Goat	
2016	15,717,000	17,862,000	
2017	17,142,000	18,208,000	
2018	17,611,000	18,306,000	
2019	17,834,000	18,463,000	
2020	17,769,000	19,096,000	

The population of small ruminants in Indonesia always increases every year due to the stable market and its position as livestock savings. As ruminants, sheep and goats produce enteric CH₄ which is harmful to the environment. In 2018, sheep and goats were ranked 3rd and 4th and accounted for 7.29% and 5.66%, respectively, of the total CH₄ emissions from the livestock sector [3]. Enteric fermentation calculations from small ruminants are necessary to support the mitigation of GHG emissions. Widiawati and Tiesnamurti [5] and Krisnan and Ginting [6] have reported the calculation of enteric CH₄ emissions from sheep and goat using Tier 1 and Tier 2. Furthermore, it was demonstrated that Tier 2 was more accurate data due to it includes specific emission factor (EF) from each country. In recent years (2016-2020), there have been no studies reporting on enteric CH4 emissions produced by small ruminants in Indonesia by subcategories animals. Therefore, the present study aims to calculate enteric CH₄ emission from small ruminants (sheep and goat) in Indonesia using IPCC Tier-2 method.

2. MATERIALS AND METHODS

2.1. Characterization of population and subcategories for small ruminants

The livestock that was included in the CH_4 emission intensity calculation were small ruminant commodities, such as sheep and goat. Data on the sheep and goat population was collected from the Director-General of Livestock and Animal Health Services [7]. Small ruminants categories based on production levels were also obtained from [7]. Data population of sheep and goat was from 2016-2020. Data of sheep was categorized by three subcategories, namely weaning (0 - 12 weeks), yearling (12 weeks to 1 year) and mature (more than 1 year). Whereas, data of goat was categorized by weaning (0 - 8 weeks), yearling (8 weeks to 9 months) and mature (more than 9 months). The sub-categories percentage of sheep and goat in Indonesia are presented in Table 1. The population of sheep and goat in each sub-category from 2016 to 2020 was obtained from the multiplication of the data of each year with the percentage of animal sub-categories and presented in Table 2.

2.2. Enteric CH₄ emission from small ruminants

The emissions from the small ruminants were calculated using Tier 2 methods by IPCC (2006) based on animal population or each sub-category and the emission factor (EF) specific for Indonesia, by the following equation:

Enteric CH₄ = EF_(T) x (N_(T) / 10⁶) x 21/1000

Enteric CH₄ emission is the CH₄ emission emitted (Gg CO₂-e/year), EF_(T) is the emission factor for each animal sub-categories. The country-specific EF for the enteric fermentation in Indonesia for sheep was available for weaning (1.30 kg CH₄/head/year), yearling (4.33 CH₄/head/year) and mature (5.25 CH₄/head/year) [5]. For goat, the EF is also available for weaning (2.29 kg CH₄/head/year), yearling (2.65 CH₄/head/year) and mature (3.27 CH₄/head/year) [6]. N_(T) is the population of sheep or goat for each sub-categories T in Indonesia (head). T is sub category of sheep or goat in Indonesia. 21/1000 is the conversion factor from CH₄ to CO_{2-e} [8], [9].

	Population					
Year	Sheep			Goat		
	Weaning	Yearling	Mature	Weaning	Yearling	Mature
2016	3,844,378	4,194,867.	7,677,754	4,615,540	4,690,561	8,555,898
2017	4,192,933	4,575,199	8,373,867	4,704,947	4,781,420	8,721,632
2018	4,307,651	4,700,375	8,602,973	4,730,270	4,807,155	8,768,574
2019	4,362,196	4,759,894	8,711,909	4,770,839	4,848,383	8,843,777
2020	4,346,297	4,742,546	8,680,156	4,934,406	5,014,609	9,146,984

Table 3. Population of sheep and goat based on sub-category since 2016 to 2020

Figure 1. Year 2016 to 2020 total enteric CH₄ emission from sheep and goat in Indonesia

3. RESULTS AND DISCUSSION

In 2019, Indonesia has started to develop countryspecific data for CH_4 emissions from enteric and manure from 2006 to 2014 [10]. In the present study, the data were collected from the Director-General of Livestock and Animal Health Services [7], because they demonstrated the actual situation and conditions of the small ruminants population in Indonesia. The population of sheep and goat in each sub-category since 2016 to 2020 is reported in Table 3. The results of enteric CH_4 emissions from small ruminants in total and each subcategory are presented in Figure 1 and Table 4.

Sheep is the major emitter of the enteric CH₄ emission from 2016 to 2020, accounting for 1.33 to 1.51 Gg CO₂e year⁻¹ (Fig. 1). This high contribution is attributed to the higher EF for enteric CH₄ in sheep compared with goat in yearling and mature subcategories. Emission from yearling and mature sheep has shown greater values than goat. On contrary, for weaning sub-category, CH₄ emission of goat is higher than sheep. The cause of this situation is the higher country-specific EF for the weaning sub-category in goat than for the sheep. From 2016 to 2019, the enteric CH₄ emission from sheep and goat increases approximately 4.36% and 1.11%, respectively, due to the increase in the animal population. On contrary, from

2019 to 2020, the enteric CH₄ emission from sheep decreases 0.36%. The increase in goat population from 2019 to 2020 leads to 3.43% increase in CH₄ emission. Sheep and goat that are at production levels (mature) produce 63.49% - 54.86% of the total enteric CH₄ emissions from small ruminants. Data distribution for enteric CH₄ from 2016 to 2020 is almost identical to the distribution of the previous study in 2006 – 2014 [5]. In the previous study, mature sheep contributed 62.19% of total emissions.

Despite having a greater population, goats produce lower enteric CH₄ than sheep. These results are related to the lower EF value for goats due to the indigenous feed consumed by goats in Indonesia, that contains a lot of secondary metabolites compounds. This assumption is derived from the differences in the feeding behavioural, i.e. sheep are grazers and goats are browsers [11]. Tropical browse plants tend to contain of concentrations secondary high metabolites compounds [12]. Plant secondary metabolites has potential to be used as feed additives to reduce enteric CH₄ production due to anti-methanogenic activity [13], [14]. This is relevant to the Ministry of Environment and Forestry of Indonesia [3] recommendation which stated that the provision of feed additives is an effort to reduce GHG emission from the livestock sector.

Livestock	Year	Enteric CH₄ emission (Gg CO₂-e/year)			
		Weaning	Yearling	Mature	
Sheep	2016	0.105	0.381	0.846	
	2017	0.115	0.416	0.923	
	2018	0.118	0.427	0.948	
	2019	0.119	0.433	0.960	
	2020	0.119	0.431	0.957	
Goat	2016	0.222	0.261	0.588	
	2017	0.227	0.266	0.599	
	2018	0.228	0.267	0.602	
	2019	0.230	0.269	0.607	
	2020	0.238	0.279	0.628	

 Table 4. Estimation of enteric CH4 emission from sheep and goat in Indonesia since 2016-2020 calculated using Tier-2 method

4. CONCLUSION

From 2016 to 2019, the enteric CH₄ emission from sheep increases approximately 4.36% per year. On contrary, from 2019 to 2020, the enteric CH₄ emission decreases 0.36%. For goat, from 2016 to 2020, the enteric CH₄ increases 1.69% per year. Sheep and goat that are at production levels (mature) produce 63.49% -54.86% of the total enteric CH₄ emissions from small ruminants. More research is needed on how to reduce enteric CH₄ emissions from small ruminants in Indonesia.

AUTHORS' CONTRIBUTIONS

Teguh Wahyono designed the experiment, collected the data, and wrote the first draft of the manuscript. Dadang Priyoatmojo and Tri Handayani performed data analysis. Afi Candra Trinugraha checked data analysis and revised the manuscript. Widhi Kurniawan and Tekad Urip Sujarnoko supervised the experiment and revised the manuscript.

ACKNOWLEDGMENTS

We are thankful for the kind support from Center for Isotope and Radiation Application, National Nuclear Energy Agency of Indonesia, National Research and Innovation Agency Republic of Indonesia.

REFERENCES

- [1] Intergovernmental Panel on Climate Change [IPCC], IPCC fifth assessment report: Climate change 2013 (AR5), (2014). www.ipcc.ch/index.htm.
- [2] M. Han, B. Zhang, Y. Zhang, C. H. Guan,

Agricultural CH₄ and N₂O emissions of major economies: consumption vs production-based perspectives, Journal of Cleaner Production 210 (2019) 276–286. DOI: https://doi.org/10.1016/j.jclepro.2018.11.018.

- [3] Ministry of Environment and Forestry of Indonesia, Laporan Inventarisasi Gas Rumah Kaca (GRK) dan Monitoring, Pelaporan, Verifikasi (MPV) Tahun 2019. Jakarta: Kementerian Lingkungan Hidup dan Kehutanan, Direktorat Jenderal Pengendalian Perubahan Iklim. Direktorat Inventarisasi GRK dan Monitoring, Pelaporan, Verifikasi (2020).
- [4] E. Nugrahaeningtyas, C. Y. Baek, J. H. Jeon, H. J. Jo, K. H. Park, Greenhouse gas emission intensities for the livestock sector in Indonesia, based on the national specific data, Sustainability 10 (6) (2018) 1-15. DOI: https://doi.org/10.3390/su10061912.
- [5] Y. Widiawati, B. Tiesnamurti, Sumbangan emisi gas rumah kaca dari domba di Indonesia, in: E. Aldrian, S. Puspowardoyo, and B. Haryanto (Eds.), Emisi gas rumah kaca dari peternakan di indonesia dengan TIER 2 IPCC, LIPI Press, Jakarta, 2019, pp. 57–70.
- [6] R. Krisnan, S. P. Ginting, Komparasi emisi gas rumah kaca dari kambing di Indonesia antara metode TIER 1 dan TIER 2 IPCC, in: E. Aldrian, S. Puspowardoyo, and B. Haryanto (Eds.), Emisi gas rumah kaca dari peternakan di indonesia dengan TIER 2 IPCC, LIPI Press, jakarta, 2019, pp. 71–82.
- [7] Director-General of Livestock and Animal Health Services, Livestock and Animal Health Statistics 2020. Jakarta: Direktorat Jenderal Peternakan dan Kesehatan Hewan, Kementerian

Pertanian Republik Indonesia (2020).

- [8] S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, 2006 IPCC Guidelines for national Greenhouse Gas Inventories. Japan: IGES (2006).
- [9] Y. Widiawati, M. N. Rofiq, B. Tiesnamurti, Methane emission factors for enteric fermentation in beef cattle using IPCC Tier-2 method in Indonesia, Jurnal Ilmu ternak dan Veteriner 21 (2) (2016) 101-111. DOI: https://doi.org/10.14334/jitv.v21i2.1358.
- [10] Y. Widiawati, M. N. Rofiq, Akurasi inventori gas rumah kaca dari peternakan menggunakan lokal faktor emisi: TIER 2, in: E. Aldrian, S. Puspowardoyo, and B. Haryanto (Eds.), Emisi gas rumah kaca dari peternakan di indonesia dengan TIER 2 IPCC, LIPI Press, Jakarta, 2019, pp. 1–14.
- [11] C. M. C. Raoult, B. Osthaus, A. C. G. Hildebrand, A. G. McElligott, C. Nawroth, Goats show higher behavioural flexibility than sheep in a spatial detour task, Royal Society Open Science 8 (3) (2021). DOI: https://doi.org/10.1098/rsos.201627
- [12] O. Babayemi, D. Demeyer, V. Fievez, *In vitro* rumen fermentation of tropical browse seeds in relation to their content of secondary metabolites, Journal of Animal and Feed Sciences 13(Suppl. 1) (2004) 31–34.
- [13] M. Rira, A. Chentli, S. Boufenera, H. Bousseboua, Effects of plants containing secondary metabolites on ruminal in vitro, Energy methanogenesis of sheep Procedia (2015)15-24. DOI: 74 htpps://doi.org/10.1016/j.egypro.2015.07.513.