
Using Python to Find the Replication Error if Delta

Hedge a Trinomial Tree Option Over Many Short

Periods

Nuoxing Shang1, Yujia Liu2, Zewei Lin3*

1Jiangsu Tianyi High School, No.18 Erquan Road Xishan District Wuxing City Jiangsu Province, 214101
2Jiangsu Tianyi High School, No.18 Erquan Road Xishan District Wuxing City Jiangsu Province, 214101
3School of Economics and Finance, Queen Mary University of London, London E1 4NS, United Kingdom

*Corresponding author. Email: eltham_nj@hotmail.com

ABSTRACT

In this paper, the researcher creates a model for trinomial tree option pricing with multiple time periods by using Monte-

Carlo estimation and Python. However, the delta hedging strategy needs to be improved to minimize the replication

error.

Keywords: Python, Delta hedgem, replication error, Monte-Carlo estimation

1.INTRODUCTION

What is the problem that always exists with any type

of research or experiment is conducted? The answer

would be the existence of different errors [1]. In the case

of option pricing, the replication error is being considered

when Delta hedge is use over periods. Particularly, how

large the replication error is. A more precise calculation

can be done if we can accurately calculate the existed

error. Thus, a more reliable option price can be provided

to the market. This paper will explain how we can get the

size of the replication error that would occur when we use

delta hedge over many short periods by considering a

trinomial model.

2．METHODS

1.Monte Carlo simulations are used to model the

probability of different outcomes in a process that cannot

easily be predicted due to the intervention of random

variables [2]. It is a broad class of computational

algorithms that rely on repeated random sampling to

obtain numerical results. In our research, we used code to

practice Monte Carlo method to price an option in the

case of three different possible stock price change, or

trinomial tree model. The definition of each variable is

displayed in the following annotation of code.

2.We firstly attempted to model a trinomial tree with

one period. The process chronologically included

defining function to calculate the payoff of an option,

defining variables, solving simultaneous equations for

‘pd’ and ‘pm’, simulating the stock price under three

situations, and obtaining Y1. Then we reedited the code

by increasing the possible range of stock values and

corresponding probability to improve the method to price

trinomial tree option with multiple time periods.

3.We also defined function to calculate the payoff of

the investment portfolio, which equals number of

stock stock price + number of bond annual interest rate.

Using loops and formulas, we replicated the process of

obtaining a new Ns and bringing it into portfolio to gain

a new value of payoff.

4.The differences between two functions (trinomial

tree model & payoff of investment portfolio is named as

hedging error/replication error. We brought several

groups of exact variables to the functions and repeated

process as representatives.

3.TRINOMIAL TREE MODEL WITH

WITH A PERIOD OF ONE

In [1]:import sympy

import numpy as np

 # Define Functions

 def payoff_call(S, K):

 return np.maximum(S-K, 0)

Advances in Social Science, Education and Humanities Research, volume 653

Proceedings of the 2022 International Conference on Social Sciences and Humanities and Arts (SSHA 2022)

Copyright © 2022 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY 4.0 license -http://creativecommons.org/licenses/by/4.0/. 713

mailto:eltham_nj@hotmail.com

 def probability_of_d_and_u(R, d, u, m, pm):

 pd = (R - u - pm * (m - u)) / (d - u)

 pu = (R - d - pm * (m - d)) / (u - d)

 return pd,pu

 # Define Variables

 S0 = 100

 R = 1.07

 u = 2

 d = 0.5

 m = 1 # m = d * u

 pm = 0 # fix the value of probability if the

situatuion 'm' occurs

 n_simulation = 1_000_000

 strike = 80

 pd,pu=probability_of_d_and_u(R,d,u,m,pm)

 print('pd = ',pd,' pu = ', pu,'pm = ', pm) #

Values for 'pd' and 'pu'

 # simulate three situations (u,m,d), and

obtain Y1 (shock at time 1)

 Y1 = np.random.choice(

 [d,m,u],size=n_simulation, replace=True,

p=[pd,pm,pu])

 S1 = Y1 * S0

 f = payoff_call(S1, strike)

 print('S1.mean()/R = ',S1.mean() / R)

 print('A dummy check to see whether the

calcualtions are correct,the value is close to S0, so it is

correct.')

 print(f'The Monte-Carlo estimate of the price

equals {f.mean() / R}.')

 pd = 0.62 pu = 0.38000000000000006 pm = 0

 S1.mean()/R = 99.9018691588785

 A dummy check to see whether the

calcualtions are correct, the value is close to S0, so it is

correct.

 The Monte-Carlo estimate of the price

equals 42.538317757009345.

3.1.Trinomial tree model with a period of 2

now we are simulating situations in the period 2

where the stock values can be S0∗u2S0∗u2, S0∗uS0∗

u, S0S0, S0 ∗ dS0 ∗ d or S0 ∗ d2S0 ∗ d2 with probability

of pu2,pm ∗ pu+pu ∗ pm,pm ∗ pm+pu ∗ pd+pd ∗ pu,pm ∗

pd+pd∗pm,pd2pu2,pm∗pu+pu∗pm,pm∗pm+pu∗pd+pd∗

pu,pm∗pd+pd∗pm,pd2

In [2]:# Define Functions

 def payoff_call_2(S, K):

 return np.maximum(S-K, 0)

 # Define Variables

 n_simulation = 1_000_000

 p1= pd * pd

 p2= 2 * pm * pd

 p3= pm * pm + 2 * pu * pd

 p4= 2 * pu * pm

 p5= pu * pu

 Y2 = np.random.choice(

 [d * d,d,m,u,u * u],

 size=n_simulation,

 replace=True,

 p=[p1,p2,p3,p4,p5]

)

 S2 = Y2 * S1

 f = payoff_call_2(S2, strike)

 print('S2.mean() / R**2 = ', S2.mean() /

R**2)

 print(f'The Monte-Carlo estimate of the price

equals {f.mean() / R}.')

 S2.mean() / R**2 = 106.90819067167438

 The Monte-Carlo estimate of the price

equals 66.96706542056074.

3.2.Ploting the error

In [3]: import matplotlib.pyplot as plt

 # Define Functions

 rolling_average = (np.cumsum(f)/R) /

(np.arange(n_simulation) + 1)

 plt.plot((np.arange(n_simulation) + 1),

rolling_average);

 plt.xlabel('Number of samples')

 plt.ylabel('Approximated call value')

 plt.title('Monte-Carlo approximation');

 print('Assuming the option payoff is equal to the

stock price at maturity, the value returned should be

close to S0 ')

 print('S2.mean() / R**2 = ', S2.mean() / R**2)

 Assuming the option payoff is equal to the stock

price at maturity, the value returned should be close to

S0

 S2.mean() / R**2 = 106.90819067167438

Advances in Social Science, Education and Humanities Research, volume 653

714

Figure 1 Spread of the values of call options simulated by Monte-Carlo Method in periods of two.

3.3.An improved method to price trinomial tree

option with multiple time periods

In [4]: # Define Functions

 def stock(Y):

 X = np.zeros(len(Y));

 for i in range(0,len(Y)):

 X[i] = 1;

 for j in range(0,len(Y[0])):

 X[i]*=(Y[i])[j];

 return X;

 def payoff_call_t(S, K):

 return np.maximum(S-K, 0)

 # Define Variables

T = 2

 n_simulation = 1_000_000

 Y =

np.random.choice([d,m,u],[n_simulation,T],

replace=True, p=[pd,pm,pu])

 St = stock(Y) * S0

 f = payoff_call_t(St, strike)

 option_price = f.mean() / R**T

 print(f'The Monte-Carlo estimate

of the price equals {option_price}.')

 print('Those are the shocks occur

in each time periods: ')

 print(Y)

 print('By multipling all shocks in

each simulation, the following values are obatined: ')

 print(stock(Y))

 print('The stock price at the end

of maturity in each simulations: ')

 print ('St = ',St)

 The Monte-Carlo estimate of the

price equals 48.53913878941392.

 Those are the shocks occur in

each time periods:

 [[0.5 2.]

 [0.5 0.5]

 [2. 0.5]

 ...

 [0.5 2.]

 [2. 2.]

 [0.5 0.5]]

 By multipling all shocks in each

simulation, the following values are obatined:

 [1. 0.25 1. ... 1. 4. 0.25]

 The stock price at the end of

maturity in each simulations:

 St = [100. 25. 100. ... 100. 400. 25.]

3.4.Ploting the error

In [5]: import matplotlib.pyplot as plt

 # Define Functions

 St.mean() / R**T # dummy check

 rolling_average =

(np.cumsum(f)/R) / (np.arange(n_simulation) + 1)

Advances in Social Science, Education and Humanities Research, volume 653

715

 plt.plot((np.arange(n_simulation)

+ 1), rolling_average);

 plt.xlabel('Number of samples')

 plt.ylabel('Approximated call

value')

 plt.title('Monte-Carlo

approximation');

 print('Assuming the option

payoff is equal to the stock price at maturity, the value

returned should be close to S0 ')

 print('St.mean() / R**T ',

St.mean() / R**T)

 Assuming the option payoff is

equal to the stock price at maturity, the value returned

should be close to S0

 St.mean() / R**T

99.93685037994584

Figure 2 Spread of the values of call options simulated by Monte-Carlo Method in multiple periods. With a flatter

line, showing that the values gained are more accurate than the previous method.

3.5.Replicating the call option using bonds and

shares

In [6]:# Define Variables

 N_sim = 1000

 Samples = []

 for i in range (N_sim):

 X_j = option_price

Assume the initial portfolio value is equal to the

option price

 Sj = S0 # The initial

stock price is S0

 for t in range (T):

 Y_j =

np.random.choice([d,m,u], replace=True,

p=[pd,pm,pu]) # Shock at time J

 NS_j =

(np.maximum(Sj * u - strike, 0) - np.maximum(Sj * d -

strike, 0)) / (Sj * (u - d)) # Number of stock invested in

time J

 Sj *= Y_j # Stock

price at time J

 X_j = R * X_j + NS_j

* Sj * (Y_j - R) # Portfolio value at time J

 Replication_error =

X_j - np.maximum(Sj - strike, 0)

 Samples.append(Replication_error)

 np.mean(Samples)

 plt.hist(Samples, bins =

100,density=True);

 print('X_j = ',X_j)

 print('oprtion_price =

',option_price)

 print('Y_j = ',Y_j)

 print('NS_j = ',NS_j)

 plt.xlabel('Error')

 plt.ylabel('Frequency')

 plt.title('Replication Error');

 X_j = 27.376459999999998

 oprtion_price =

48.53913878941392

 Y_j = 0.5

 NS_j = 0.26666666666666666

Advances in Social Science, Education and Humanities Research, volume 653

716

Figure 3 Frequency of replication errors.

In [7]: Replication_error

 27.376459999999998

4.DISCUSSION

For the trinomial tree option pricing, the price values

obtained are checked by assuming the option payoff is

equal to the stock price at maturity, then divide it by R **

T, if a value close to the initial stock price is returned,

then it proves the simulation of stock price in each three

probability conditions in different time periods is correct

[3].

In the simulation process of trinomial tree option

pricing with two periods, the value is not close enough to

S0; this is casued by model error, the mathmatical model

in two-period-price calcuation is not fully presented with

codes, and the method of Monte-Carlo simulation is not

used.

In the second attempt, again with a two period model,

the changes in stock prices and shocks at each periods is

not only better presented using matrix but also more

accurate by using the Monte-Carlo simulation, and the

option price calcualted is well improved compared to the

firse attempmt, with a dummy check result very close to

the initial stock price. By plotting the errors in the two

attempts, it is clear that the second attempt has less error

[4]. However, the error can be further reduced by

increasing the number of simulations, in our model, only

1,000,000 simulations are made due to limitions of

computer, our results can be improved if number of

simulations is more.

In our final step of trying to replicate the option by

finding a delta hedge stragety, it is hard to find a stragety

to replicate an option with three probabilities [5]. We

have used the following stragety, Number of stock

invested = (payoff when stock goes up - payoff when

stock goes down) / (Stock price * (u - d)). By plotting the

error, this stragety is clearly not suitable for a trinomial

tree option pricing. The replication would be better if an

improved stragety is found.

5.CONCLUSION

We have successfully built up a model for trinomial

tree option pricing with multiple time periods by using

Monte-Carlo estimation and Python. However, the delta

hedging strategy needs to be improved to minimize the

replication error.

REFERENCES

[1]. Cunningham P. The Apparition at Medjugorje: A

Transpersonal Perspective - Part I[J]. Journal of

Transpersonal Psychology, 2011, 43.

[2]. Madouasse A, Huxley J N, Denborne B H P V, et al.

Presenting uncertainty and variability to the

decision maker: A computer program that uses

Monte Carlo simulations to improve the

management of the dry period.

[3]. Tomá Tich. The convergence of binomial and

trinomial option pricing models.

[4]. Collin-Dufresne P, Daniel K D, Moallemi C C, et al.

Advances in Social Science, Education and Humanities Research, volume 653

717

Dynamic Asset Allocation with Predictable Returns

and Transaction Costs[J]. Ssrn Electronic Journal,

2015.

[5]. Arnold W C, Chess D M, Morar J F, et al. Method

and Apparatus for Determination of the Non-

Replicative Behavior of a Malicious Program[J].

2008.

Advances in Social Science, Education and Humanities Research, volume 653

718

