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ABSTRACT 

In this paper, the researcher creates a model for trinomial tree option pricing with multiple time periods by using Monte-

Carlo estimation and Python. However, the delta hedging strategy needs to be improved to minimize the replication 

error. 
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1.INTRODUCTION 

What is the problem that always exists with any type 

of research or experiment is conducted? The answer 

would be the existence of different errors [1]. In the case 

of option pricing, the replication error is being considered 

when Delta hedge is use over periods. Particularly, how 

large the replication error is. A more precise calculation 

can be done if we can accurately calculate the existed 

error. Thus, a more reliable option price can be provided 

to the market. This paper will explain how we can get the 

size of the replication error that would occur when we use 

delta hedge over many short periods by considering a 

trinomial model. 

2．METHODS 

1.Monte Carlo simulations are used to model the 

probability of different outcomes in a process that cannot 

easily be predicted due to the intervention of random 

variables [2]. It is a broad class of computational 

algorithms that rely on repeated random sampling to 

obtain numerical results. In our research, we used code to 

practice Monte Carlo method to price an option in the 

case of three different possible stock price change, or 

trinomial tree model. The definition of each variable is 

displayed in the following annotation of code. 

2.We firstly attempted to model a trinomial tree with 

one period. The process chronologically included 

defining function to calculate the payoff of an option, 

defining variables, solving simultaneous equations for 

‘pd’ and ‘pm’, simulating the stock price under three 

situations, and obtaining Y1. Then we reedited the code 

by increasing the possible range of stock values and 

corresponding probability to improve the method to price 

trinomial tree option with multiple time periods. 

3.We also defined function to calculate the payoff of 

the investment portfolio, which equals number of 

stock stock price + number of bond annual interest rate. 

Using loops and formulas, we replicated the process of 

obtaining a new Ns and bringing it into portfolio to gain 

a new value of payoff. 

4.The differences between two functions (trinomial 

tree model & payoff of investment portfolio is named as 

hedging error/replication error. We brought several 

groups of exact variables to the functions and repeated 

process as representatives. 

3.TRINOMIAL TREE MODEL WITH 

WITH A PERIOD OF ONE 

In [1]:import sympy 

import numpy as np 

 

 # Define Functions 

 def payoff_call(S, K): 

 return np.maximum(S-K, 0) 
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 def probability_of_d_and_u(R, d, u, m, pm):  

    pd = (R - u - pm * (m - u)) / (d - u) 

      pu = (R - d - pm * (m - d)) / (u - d) 

     return pd,pu 

 

 # Define Variables 

 S0 = 100 

 R = 1.07 

 u = 2 

 d = 0.5    

 m = 1   # m = d * u 

 pm = 0  # fix the value of probability if the 

situatuion 'm' occurs 

 n_simulation = 1_000_000 

 strike = 80    

 pd,pu=probability_of_d_and_u(R,d,u,m,pm) 

 print('pd = ',pd,' pu = ', pu,'pm = ', pm)   # 

Values for 'pd' and 'pu' 

 #  simulate three situations (u,m,d), and 

obtain Y1 (shock at time 1) 

 Y1 = np.random.choice( 

     [d,m,u],size=n_simulation, replace=True, 

p=[pd,pm,pu])   

 S1 = Y1 * S0 

 f = payoff_call(S1, strike) 

 print('S1.mean()/R = ',S1.mean() / R)   

 print('A dummy check to see whether the 

calcualtions are correct,the value is close to S0, so it is 

correct.')  

 print(f'The Monte-Carlo estimate of the price 

equals {f.mean() / R}.') 

 pd =  0.62  pu =  0.38000000000000006 pm =  0 

 S1.mean()/R =  99.9018691588785 

  

 A dummy check to see whether the 

calcualtions are correct, the value is close to S0, so it is 

correct. 

 The Monte-Carlo estimate of the price 

equals 42.538317757009345. 

3.1.Trinomial tree model with a period of 2 

now we are simulating situations in the period 2 

where the stock values can be S0∗u2S0∗u2, S0∗uS0∗

u, S0S0, S0 ∗ dS0 ∗ d or S0 ∗ d2S0 ∗ d2 with probability 

of pu2,pm ∗ pu+pu ∗ pm,pm ∗ pm+pu ∗ pd+pd ∗ pu,pm ∗

pd+pd∗pm,pd2pu2,pm∗pu+pu∗pm,pm∗pm+pu∗pd+pd∗

pu,pm∗pd+pd∗pm,pd2 

 

In [2]:# Define Functions 

  def payoff_call_2(S, K): 

  return np.maximum(S-K, 0) 

 # Define Variables 

 n_simulation = 1_000_000 

 p1= pd * pd 

 p2= 2 * pm * pd 

 p3= pm * pm + 2 * pu * pd 

 p4= 2 * pu * pm 

 p5= pu * pu 

 Y2 = np.random.choice( 

        [d * d,d,m,u,u * u], 

         size=n_simulation, 

         replace=True, 

         p=[p1,p2,p3,p4,p5] 

        ) 

 S2 = Y2 * S1 

 f = payoff_call_2(S2, strike) 

 

 print('S2.mean() / R**2 = ', S2.mean() / 

R**2) 

 print(f'The Monte-Carlo estimate of the price 

equals {f.mean() / R}.') 

 S2.mean() / R**2 =  106.90819067167438 

        

 The Monte-Carlo estimate of the price 

equals 66.96706542056074. 

3.2.Ploting the error 

In [3]:    import matplotlib.pyplot as plt 

 # Define Functions 

        rolling_average = (np.cumsum(f)/R) / 

(np.arange(n_simulation) + 1) 

 

        plt.plot((np.arange(n_simulation) + 1), 

rolling_average); 

        plt.xlabel('Number of samples') 

        plt.ylabel('Approximated call value') 

        plt.title('Monte-Carlo approximation'); 

 

        print('Assuming the option payoff is equal to the 

stock price at maturity, the value returned should be 

close to S0 ')  

        print('S2.mean() / R**2 = ', S2.mean() / R**2) 

        Assuming the option payoff is equal to the stock 

price at maturity, the value returned should be close to 

S0  

        S2.mean() / R**2 =  106.90819067167438 
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Figure 1 Spread of the values of call options simulated by Monte-Carlo Method in periods of two. 

3.3.An improved method to price trinomial tree 

option with multiple time periods 

In [4]:       # Define Functions 

  def stock(Y): 

  X = np.zeros(len(Y)); 

  for i in range(0,len(Y)): 

   X[i] = 1; 

  for j in range(0,len(Y[0])): 

              X[i]*=(Y[i])[j]; 

      return X; 

 

  def payoff_call_t(S, K): 

      return np.maximum(S-K, 0) 

 

 

  # Define Variables 

T = 2 

  n_simulation = 1_000_000 

  Y = 

np.random.choice([d,m,u],[n_simulation,T], 

replace=True, p=[pd,pm,pu]) 

  St = stock(Y) * S0 

  f = payoff_call_t(St, strike) 

  option_price = f.mean() / R**T 

 

 

  print(f'The Monte-Carlo estimate 

of the price equals {option_price}.') 

  print('Those are the shocks occur 

in each time periods: ') 

  print(Y)  

  print('By multipling all shocks in 

each simulation, the following values are obatined: ') 

  print(stock(Y)) 

  print('The stock price at the end 

of maturity in each simulations: ') 

  print ('St = ',St) 

  The Monte-Carlo estimate of the 

price equals 48.53913878941392. 

  Those are the shocks occur in 

each time periods:  

  [[0.5 2. ] 

   [0.5 0.5] 

  [2.  0.5] 

   ... 

   [0.5 2. ] 

   [2.  2. ] 

   [0.5 0.5]] 

  By multipling all shocks in each 

simulation, the following values are obatined:  

  [1.   0.25 1.   ... 1.   4.   0.25] 

  The stock price at the end of 

maturity in each simulations:  

  St =  [100.  25. 100. ... 100. 400.  25.] 

3.4.Ploting the error 

In [5]:       import matplotlib.pyplot as plt 

 

  # Define Functions 

  St.mean() / R**T # dummy check 

  rolling_average = 

(np.cumsum(f)/R) / (np.arange(n_simulation) + 1) 
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  plt.plot((np.arange(n_simulation) 

+ 1), rolling_average); 

  plt.xlabel('Number of samples') 

  plt.ylabel('Approximated call 

value') 

  plt.title('Monte-Carlo 

approximation'); 

 

  print('Assuming the option 

payoff is equal to the stock price at maturity, the value 

returned should be close to S0 ')  

  print('St.mean() / R**T ', 

St.mean() / R**T) 

  Assuming the option payoff is 

equal to the stock price at maturity, the value returned 

should be close to S0  

  St.mean() / R**T  

99.93685037994584 

 
Figure 2 Spread of the values of call options simulated by Monte-Carlo Method in multiple periods. With a flatter 

line, showing that the values gained are more accurate than the previous method. 

3.5.Replicating the call option using bonds and 

shares 

In [6]:# Define Variables 

  N_sim = 1000 

  Samples = [] 

  for i in range (N_sim): 

   X_j = option_price    

# Assume the initial portfolio value is equal to the 

option price 

   Sj = S0    # The initial 

stock price is S0 

   for t in range (T):      

           Y_j = 

np.random.choice([d,m,u], replace=True, 

p=[pd,pm,pu])   # Shock at time J 

           NS_j = 

(np.maximum(Sj * u - strike, 0) - np.maximum(Sj * d - 

strike, 0)) / (Sj * (u - d))   # Number of stock invested in 

time J 

           Sj *= Y_j     # Stock 

price at time J 

           X_j = R * X_j + NS_j 

* Sj * (Y_j - R)    # Portfolio value at time J 

   Replication_error = 

X_j - np.maximum(Sj - strike, 0) 

  

 Samples.append(Replication_error) 

  np.mean(Samples) 

  plt.hist(Samples, bins = 

100,density=True); 

  print('X_j = ',X_j) 

  print('oprtion_price = 

',option_price) 

  print('Y_j = ',Y_j) 

  print('NS_j = ',NS_j) 

  plt.xlabel('Error') 

  plt.ylabel('Frequency') 

  plt.title('Replication Error'); 

  X_j =  27.376459999999998 

  oprtion_price =  

48.53913878941392 

  Y_j =  0.5 

  NS_j =  0.26666666666666666 
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Figure 3 Frequency of replication errors. 

In [7]:       Replication_error 

  27.376459999999998 

4.DISCUSSION 

For the trinomial tree option pricing, the price values 

obtained are checked by assuming the option payoff is 

equal to the stock price at maturity, then divide it by R ** 

T, if a value close to the initial stock price is returned, 

then it proves the simulation of stock price in each three 

probability conditions in different time periods is correct 

[3]. 

In the simulation process of trinomial tree option 

pricing with two periods, the value is not close enough to 

S0; this is casued by model error, the mathmatical model 

in two-period-price calcuation is not fully presented with 

codes, and the method of Monte-Carlo simulation is not 

used. 

In the second attempt, again with a two period model, 

the changes in stock prices and shocks at each periods is 

not only better presented using matrix but also more 

accurate by using the Monte-Carlo simulation, and the 

option price calcualted is well improved compared to the 

firse attempmt, with a dummy check result very close to 

the initial stock price. By plotting the errors in the two 

attempts, it is clear that the second attempt has less error 

[4]. However, the error can be further reduced by 

increasing the number of simulations, in our model, only 

1,000,000 simulations are made due to limitions of 

computer, our results can be improved if number of 

simulations is more. 

In our final step of trying to replicate the option by 

finding a delta hedge stragety, it is hard to find a stragety 

to replicate an option with three probabilities [5]. We 

have used the following stragety, Number of stock 

invested = (payoff when stock goes up - payoff when 

stock goes down) / (Stock price * (u - d)). By plotting the 

error, this stragety is clearly not suitable for a trinomial 

tree option pricing. The replication would be better if an 

improved stragety is found. 

5.CONCLUSION 

We have successfully built up a model for trinomial 

tree option pricing with multiple time periods by using 

Monte-Carlo estimation and Python. However, the delta 

hedging strategy needs to be improved to minimize the 

replication error. 
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