Constructing an Abridged Life Table based on Estimator of the Probability of Death Using Maximum Likelihood Estimation

M. Hasbi Ramadhan ${ }^{1, *}$
${ }^{1}$ Mathematics Education Department, Universitas Sriwijaya, Palembang, Indonesia
*Corresponding author. Email: hasbi.ramadhan48@gmail.com

Abstract

This research aims to construct an abridged life table by estimating the probability of death using maximum likelihood estimation. This research is a descriptive research with a qualitative approach. The model used is Polya Model. Subjects in this research were five students of the Islamic Economics study program at UIN Sulthan Thaha Saifuddin Jambi. The Indonesian mortality data used is the Taspen Mortality Table 2012. Based on the constructing result of abridged life table using data of the Taspen Mortality Table 2012, the life expectancy for the population aged 0 is 75.25 years.

Keywords: Abridged Life Table, Maximum Likelihood Estimation, Polya Model.

1. INTRODUCTION

The high and low level of mortality in a country not only affects population growth, but can also be used as a barometer of the high and low level of health in that country [1]. Lower mortality rate will indicate that a society has a good survival rate and higher mortality rate will indicate otherwise [2]. Mortality data in a country is usually presented in a life table. Basically, life table is a hypothetical table that combines various mortality rates in different ages into a single statistical model [3]. Life table is not only designed to measure mortality rates, but can also be used in the health and insurance sectors [4].

There are four life table models that were developed based on the analysis of calculation of death rate in the real population. The four models include United Nations Model Life Tables, Coale and Demeny Regional Model Life Tables, Ledermann's System of Model Life Tables, and Brass Logit Life Table System [5]. Indonesia currently is still using the Coale-Demeny Model approach, especially Western Model of Coale-Demeny Life Table [1].

Life table can be constructed into two tabular forms i.e. complete life table and abridged life table. Complete life table is a table that containing data of death in a population which presented in one-year age intervals, while abridged life table is a table that containing data
of death in a population which grouped in five or ten age intervals [6]. Cohorts can be assumed started from a radix, such as $1,000,10,000$, or 100,000 [7].

The model used in this research is Polya Model. The stages in Polya Model are (1) understanding the problem, (2) planning a solution, (3) solving the problem, and (4) checking again [8]. In this research, life table that will be constructed is an abridged life table. By using Polya Model, students are expected to be able to construct an abridged life table based on mortality data in Indonesia.

2. METHOD

This research is a descriptive research with a qualitative approach. The strategy used is exploration of processes, activities, and events [9]. Subjects in this research were five students of the Islamic Economics study program at UIN Sulthan Thaha Saifuddin Jambi. In the implementation, by using Polya Model, students are given instructions i.e. steps that must be taken for constructing an abridged life table. The Indonesian mortality data used in this research is the values of probability of death in the Taspen Mortality Table 2012 which is presented in Table 1 [10].

Table 1. The Taspen Mortality Table 2012

Age (x)	TMT 2012	Live life Expectancy	Age (x)	TMT 2012	Live life Expectancy
0	0.00426377	7573	44	0.00315417	33.64
1	0.00049113	75.05	45	0.00343661	32.74
2	0.00038199	74.09	46	0.00374428	31.85
3	0.00090559	73.12	47	0.00407945	30.97
4	0.00025830	72.14	48	0.00444455	30.09
5	0.00023647	71.16	49	0.00484225	29.72
6	0.00023783	70.17	50	0.0052754	28.36
7	0.00027556	69.19	51	0.00574727	27.50
8	0.00021464	88.20	52	0.00626117	26.66
9	0.00020373	6722	53	0.00682046	25.18
10	0.00018918	66.73	54	0.0074 .099	24.99
11	0.00018554	65.24	55	0.00809417	24.17
12	0.00020218	64.26	56	0.00881699	23.36
13	0.00022031	63.27	57	0.00960404	27.56
14	0.00024007	62.28	58	0.01046098	21.77
15	0.00026160	61.30	59	0.01139393	20.99
16	0.00028507	60.31	60	0.01240957	20.22
17	0.00031063	59.33	61	0.01351512	19.46
18	0.00093849	58.35	62	0.01471843	18.71
19	0.00038884	57.37	63	0.01602809	17.98
20	0.00040192	56.39	64	0.01745305	17.25
21	0.00043797	55.41	65	0.01900158	16.54
22	0.00047724	54.44	66	0.02069040	15.84
23	0.00057004	53.46	67	0.02257572	15.15
24	0.00056667	52.49	68	0.02452070	14.48
25	0.00061748	51.57	69	0.02669054	1382
26	0.00067285	50.55	70	0.02904951	13.17
27	0.00073318	49.58	71	0.03172872	12.54
28	0.00079892	48.62	72	0.03505881	11.91
29	0.00087055	47.66	73	0.03857564	11.31
30	0.00094860	46.70	74	0.04233899	10.72
31	0.00109364	45.74	75	0.0404031	10.15
32	0.00112630	44.79	76	0.05099961	8.60
33	0.00122727	4384	77	0.056121413	9.06
34	0.00133728	4289	78	0.06197740	8.54
35	0.00145714	41.94	79	0.06860023	8.04
36	0.00158774	41.00	80	0.07583658	7.56
37	0.00173009	40.07	81	0.04465607	7.10
38	000188906	39.13	82	0.09406716	6.66
39	0.00205398	38.21	83	0.10390006	6.25
40	0.00273801	37.28	84	0.11475734	5.86
41	0.00247850	36.76	85	0.12690193	5.49
42	0.00265694	35.45	86	0.13941902	5.14
43	0.00289492	34.54	87	0.15481203	4.81

Age (x)	$\begin{aligned} & \text { TMT } \\ & 2012 \end{aligned}$	Live life Expectancy
88	0.17113628	4.51
89	0.18841370	4.23
90	020541175	3.98
91	021046568	3.75
92	023527147	3.52
93	075573757	3.79
94	027936940	3.08
95	0.30069376	2.89
96	0.33209456	2.72
97	0.35075081	2.58
98	037353517	2.46
99	0.39535380	2.33
100	0.47297904	2.21
101	044870992	2.09
102	0.47665136	1.98
103	050701082	1.87
104	053995495	1.77
105	057534791	1.67
106	0.81216513	1.58
107	0.05047784	1.49
108	0.08992995	1.41
109	0.73138152	1.33
110	077448194	1.23
111	1.00000000	1.00

3. RESULT AND DISCUSSION

Suppose there are N independent observations $X_{1}, X_{2}, \ldots, X_{N}$ with the probability density function $f(x ; \theta), \theta \in \Omega$. Then the likelihood function for θ is defined as
$L(\theta ; x)=\prod_{i=1}^{N} f\left(x_{i} ; \theta\right), \theta \in \Omega$.
If likelihood function is differentiable in θ, then the value of $\hat{\theta}$ is the value that maximizing $L(\theta)$ function.

To make it easier to derive, in most cases, the likelihood function is transformed into a log-likelihood function as follows
$l(\theta)=\ln L(\theta)=\sum_{i=1}^{N} \ln f\left(x_{i} ; \theta\right), \theta \in \Omega$.
The value of $\hat{\theta}$ is obtained from solution of equation [11]
$\frac{\partial}{\partial \theta} l(\theta)=0$.

PRESS

Suppose there are N individuals whose mortality rate is to be observed in a one year period and assumed following the Binomial distribution. If D represents the number of individuals who death in one year period, with assuming that death of each individual to- i is independent and with same probability i.e. q, then
$D=\sum_{i=1}^{N} \delta_{i}$,
where $\delta_{i}=1$ if it's fail (death), $\delta_{i}=0$ otherwise (alive). Since it is assumed that $P\left(\delta_{i}=1\right)=q$, then the probability mass function is [12]
$P(D=k)=\binom{N}{k} q^{k}(1-q)^{N-k}$.
By using Equation (1), (2), and (3) for Equation (5), so the estimator of q-parameter for each interval of age $(x, x+1]$ using the maximum likelihood estimator is
$L\left(q_{x}\right)=\prod_{i=1}^{N_{x}}\left[\binom{N_{x}}{\delta_{i}} q_{x}^{\delta_{i}}\left(1-q_{x}\right)^{N_{x}-\delta_{i}}\right]$
$\leftrightarrow l\left(q_{x}\right)=\sum_{i=1}^{N_{x}}\left[\ln \left(N_{x}!\right)+\delta_{i} \ln \left(q_{x}\right)+\left(N_{x}-\right.\right.$
$\left.\left.\delta_{i}\right) \ln \left(1-q_{x}\right)-\ln \left(\delta_{i}!\right)-\ln \left(\left(N_{x}-\delta_{i}\right)!\right)\right]$
$\leftrightarrow l^{\prime}\left(q_{x}\right)=\frac{\sum_{i=1}^{N_{x}} \delta_{i}}{q_{x}}-\frac{N_{x}-\sum_{i=1}^{N_{x}} \delta_{i}}{1-q_{x}}=0$
$\leftrightarrow \hat{q}_{x}=\frac{D_{x}}{N_{x}}$.
In solving the problems, students are given notations, functions, and formulas of life table. The notations and functions in life table include x which represent the ages of the population, then l_{x} is number of individuals who survive at the exact age of x [13]. In this research, the radix used was 100,000 . The number of death of individuals between the age of x to $x+n$ is denoted by ${ }_{n} d_{x}$ and defined as
${ }_{n} d_{x}=l_{x}-l_{x+n}$.
The probability of survival of individuals of aged x will reach the exact aged $x+n$ is denoted by ${ }_{n} p_{x}$ and defined as
${ }_{n} p_{x}=\frac{l_{x+n}}{l_{x}}$.
While for special cases, the probability of survival of individuals of aged x will reach the exact aged $x+1$ is denoted by p_{x} and defined as [14]
$p_{x}=\frac{l_{x+1}}{l_{x}}$.
The probability of survival of individuals aged 0 will reach certain aged x is denoted by p_{x} and defined as
${ }_{x} p_{0}=\frac{l_{x}}{l_{0}}$.
So by using Equation (9), Equation (10) can also be expressed as
$p_{0}=\frac{l_{1}}{l_{0}} \cdot \frac{l_{2}}{l_{1}} \cdot \ldots \cdot \frac{l_{x}}{l_{x-1}}=p_{0} \cdot p_{1} \cdot \ldots \cdot p_{x-1}$.

Q	194	L_{2}	ndue n	$n<4$	T_{4}	e_{4}	$0^{m m}$
0	0.00426	100000	$426 \quad 9$	$99787 \quad 75$	7525060	75.25	0.00427
1	0.00149	99574	1433	3980107	7425273	74.57	0.00036
5	0.00112	99431	111	496818	2027263	70.69	0.00022
10	0.00104	99320	103	496343	6530385	65.75	0.00021
15	0.00159	99217	156	495695	6034043	60.82	0.00031
20	000240	99061	23.8	494710	5588348	55.91	0.00041
25	0.00368	98823	364	493205	5043638	5.04	0.00074
30	0.00567	gousg	558	408900	4550433	46.22	0.00114
35	0.00669	97901	OSI	487378	4059533	41.49	0.00175
40	0.01331	97050	1292	482020	3sauss	3681	0.00260
45	0.00036	95758	1950	473915	3090135°	32.27	0.00411
\$0	0.03115	93800	2022	461725	2616220	27.89	0.00633
55	0.04743	90886	4311	443653	2154.45	23.31	0.005972
60	0.07197	06575	6231	417298	1710833	19.76	60.01493
65	0.10842	Oosu4	O7,1	379943	1293535	16.10	0.02293
70	0.16474	11633	11801	301328663	913593	1275	(1) 0.03591
ts	0.23379	59032	15185	85 261198	584930	9.78	0.05814
80	0.39008	44647	17505	1905 T79y93	3323733	1.25	0.0975y
85	0.57280	27192	15547	1547 96843	3144260	5.32	
90	0.74532	11595	0642	42363 to	42418	4,0	0.23
gs	0.75178	2953	2220	920 9215	11048	374	0.24091
$100+$	1.00000	733	733	$33 \quad 1833$	1833	2.50	0.40000

Figure 1 Abridged life table using data of the Taspen Mortality Table 2012 with estimator of the probability of death using maximum likelihood estimation

Furthermore, the probability of death of individuals aged x will die before reaching the exact aged $x+n$ is denoted by ${ }_{n} q_{x}$ and defined as
${ }_{n} q_{x}=1-{ }_{n} p_{x}=\frac{n^{d_{x}}}{l_{x}}$.
The length of time spent by number of individuals $\left(l_{x}\right)$ in the interval of aged x to $x+n$ is denoted by ${ }_{n} L_{x}$ and defined as
${ }_{n} L_{x}=\int_{0}^{n} l_{x+s} d s$.
The remaining total of life time that will be passed by number of individuals of the exact aged x is denoted by T_{x} and defined as

PRESS
$T_{x}=\sum_{a=0}^{\omega}{ }_{n} L_{x+a n}$.
Where ω is the maximum age of the population. Then the life expectancy of the population aged x is denoted by \dot{e}_{x} and defined as
$\dot{e}_{x}=\frac{T_{x}}{l_{x}}$.
Next, the death rate of the population between the aged x to $x+n$ is denoted by ${ }_{n} m_{x}$ and defined as [15] ${ }_{n} m_{x}=\frac{n^{d_{x}}}{n^{L_{x}}}$.

The following is an abridged life table made by students based on the Polya Model with estimator of the probability of death using the maximum likelihood estimation using data of the Taspen Mortality Table 2012.

4. CONCLUSION

Based on Polya Model, students understand how to construct an abridged life table based on Indonesian mortality data. Based on estimator of the probability of death using maximum likelihood estimation, with assuming follows the Binomial distribution, we get the estimator of the probability of death is the number of deaths compared all individuals observed in that period. Based on the constructing result of abridged life table using data of the Taspen Mortality Table 2012, the life expectancy for the population aged 0 is 75.25 years. That result is not significantly different from the life expectancy of the population aged 0 in the Taspen Mortality Table 2012 (in Table 1) i.e. 75.73 years.

ACKNOWLEDGMENTS

The author would like to thank to my beloved wife dr. Resty Mauliana and my beloved son Muhammad Syamil Al Fatih who always support and pray for me. The author also thanks to students of Ekonomi Syariah UIN STS Jambi who were involved in this research. And also thanks to all committees of the National Conference on Mathematics Education Universitas Sriwijaya for comments and corrections for greatly improved the manuscript.

REFERENCES

[1] Badan Pusat Statistik (BPS), Pengembangan Model Life Table Indonesia, Badan Pusat Statistik RI, 2011.
[2] M. S. Siran, M. M. Yusuf, Y.S. Yusoff, M. Y. A. Basah, Expanding Abridge Life Table by Using Heligman Pollard Method: Malaysian Experience 2010-2013, International Journal of Business and

Social Science 6 (7) (2015) 133-138. DOI: https://doi.org/10.30845/ijbss
[3] Badan Pusat Statistik (BPS), Kajian Life Table Indonesia Berdasarkan Hasil SP2010, Badan Pusat Statistik RI, 2015.
[4] M. H. Ramadhan, H. Sumarno, I G. P. Purnaba, Metode Perhitungan Peluang Kematian untuk Data Sampel Sebagai Dasar Penyusunan Life Tabel, Thesis, Institut Pertanian Bogor, Indonesia, 2018.
[5] Department of International Economic and Social Affairs (DIESA), Manual X: Indirect techniques for demographic estimation, United Nations Publication, 1983.
[6] J. S. Siegel, D. A. Swanson, The Methods and Materials of Demography (Second Edition), Elsevier Academic Press, 2004.
[7] S. Rusli, Pengantar Ilmu Kependudukan, LP3ES, 1989.
[8] G. Polya, How to solve it.: A New Aspect of Mathematical Method, Princeton University Press, 2004.
[9] J. W. Creswell, Research Design Pendekatan Kualitatif, Kuantitaf, dan Mixed (Edisi Ketiga), Pustaka Pelajar, 2017.
[10] Biro Pusat Aktuaria (BPA), Tabel Mortalita Taspen 2012, PT Taspen RI, 2012.
[11]R.V. Hogg, J.W. McKean, A.T. Craig, Introduction to Mathematical Statistics (Seventh Edition), Pearson Education Inc, 2013.
[12]T. Konstantopoulos, Notes on Survival Models, Heriot-Watt University, 2006.
[13]N. L. Bowers, H. U. Gerber, J. C. Hickman, D. A. Jones, C. J. Nesbitt, Actuarial Mathematics (Second Edition), The Society of Actuaries, 1997.
[14] R. Cunningham, T. Herzog, R. L. London, Models for Quantifying Risk (Second Edition), ACTEX Publication, 2006.
[15] R. L. Brown, Introduction to The Mathematics of Demography (Third Edition), ACTEX Publication, 1997.

