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ABSTRACT 
The use of plant-based feed ingredients in aquaculture is expected to reduce feed costs. However, 
plant ingredients generally have a low protein content and are difficult to be digested by monogastric animals. The 
fermentation process is proven to increase the digestibility and nutritional value of plant ingredients. Previous research 
succeeded in isolating fibrolytic bacteria from buffalo rumen. The ability of microbes to degrade various 
macromolecules is crucial for their application in feed fermentation. Therefore, this research was conducted to 
determine the lipolytic and proteolytic activities of fibrolytic bacteria from buffalo rumen. A total of 30 fibrolytic 
bacterial isolates were tested for their lipolytic and proteolytic activities. The proteolytic activity was determined based 
on the ability to produce clear zones on the skim milk agar (SMA) medium. Lipolytic activity was determined by using 
a rhodamine B-olive oil agar medium. The results showed that all fibrolytic bacterial isolates had proteolytic and 
lipolytic activities.   The molecular identification results based on the 16S rRNA gene sequence showed that the bacterial 
isolates were members of the phylum Firmicutes, namely Bacillus, Paenibacillus and Exiguobacterium; phylum 
Proteobacteria, namely Acinetobacter, and Klebsiella; and the phylum Bacteroidetes, namely Chryseobacterium. 
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1. INTRODUCTION 

Feed cost is the largest component of production cost 
in aquaculture, reaching 50-60% of total production costs 
[1].  Reduction of feed costs will reduce production costs 
and increase profits significantly. The main component 
of fish feed that is needed in large quantities and is most 
expensive is the source of protein. Fish require 2-3 times 
more protein than other vertebrates or range from 30-
55% dry weight of feed [2].  Most commercial feeds on 

the market today use the fish meal as a protein source. 
The use of plant-based protein as a substitute for fish 
meals is expected to reduce feed costs.  However, due to 
the relatively low protein content, low palatability, the 
presence of anti-nutritional factors (ANFs), deficiency of 
various essential amino acids, and low nutrient 
digestibility, the use of plant-based protein sources is 
very limited in aquaculture [3][4]. Feed fermentation has 
been carried out to improve digestibility [5], nutritional 
value, and feed efficiency of plant-based feeds [4]. 
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During the fermentation process, carbohydrate and 
protein polymers are broken down into water-soluble low 
molecular weight peptides, oligosaccharides, and 
monosaccharides [5]. In addition, fermentation can 
trigger the production of antioxidants and antibacterial 
compounds that improve fish health [6].   

Previous studies have successfully isolated 34 
cellulolytic bacteria from the buffalo rumen, a ruminant 
that has superior ability in adapting to the diversity of 
plant-based feed [7].  Those bacterial isolates were 
known to have the ability to grow on palm kernel meal 
media. The main carbon source 
in palm meal comes from plant cell walls, 
which contain a lot of structural polysaccharides, 
including hemicellulose (61.5%) and cellulose (11.6%) 
[8][9]. In addition to 
polysaccharides, palm meal also contains a large amount 
of protein and lipid. Crude protein content in palm meal 
ranges from 14-21% while total lipids range from 8-17% 
[10]. Based on this, in addition to the cellulose and 
mannan-degrading capabilities, 
those fibrolytic bacteria grown in palm kernel media 
may be able to utilize protein or lipid as a carbon source 
or have proteolytic and lipolytic activities. Therefore, the 
purpose of this study was to evaluate the lipolytic and 
proteolytic abilities of fibrolytic bacterial which have 
been isolated from buffalo rumen in a previous study (7).   

2. MATERIALS AND METHODS 

2.1. Microorganism 

Fibrolytic bacterial isolates were obtained from 
previous research [7]. Those bacterial isolates were 
known to grow on palm kernel meal media.  

2.2. Media 

Culture regeneration and inoculum preparation used 
Nutrient Broth (NB) and Nutrient Agar (NA) media. 
Screening for proteolytic activity used protease skim 
milk agar (SMA) media containing: 0.1% peptone, 0.5% 
NaCl, 2% agar, and 2% Skim Milk (Oxoid). Screening 
for lipolytic activity used Rhodamine B-olive oil-agar 
(ROA) media with the composition: 0.8% NA, 0.4% 
NaCl, 2% agar, 31.25 mL/L Olive oil, and 500 µL 0.01% 
rhodamine B solution in distilled water. 

2.3. Screening for proteolytic and lipolytic 
activity 

Inoculum preparation was carried out by inoculating 
bacterial isolates into NB media and incubated at 34 oC 
with 120 rpm agitation for 18 hours.  A total of 10 µL of 
inoculum was taken with a micropipette, dripped on the 
surface of SMA media and then incubated at 34 oC for 18 
hours. Proteolytic activity was indicated by the formation 
of a clear zone around the colony [11].  

The culture from NA agar slant (18 hours of age) was 
taken with the nidle and then inoculated on ROA media 
streak plate technique. Incubation was carried out at 34 
oC for 24 hours. Lipolytic activity was indicated by the 
presence of a red-orange color under UV light with a 
wavelength of 350 nM [12].2.4. Identification of   
bacterial isolates based on 16S rRNA gene sequence 

Genomic DNA extraction was done by using Presto
™ Mini gDNA Bacteria Kit (Genaid, Taiwan) according 
to the manufacturer’s guide. Amplification of 16S rRNA 
gene was conducted with universal primers for bacteria, 
namely 63F (5’- CAGGCCTAACACATGCAAGTC-3
’) and 1387R (5’- CCCGGGAACGTATTCACCGC-
3’) [13]. The PCR reaction with a total volume of 50 
ml, consisting of 21 µL ddH2O, 25 µL of 2x MyTaqTM 
HS Red Mix, 1 µL of 10 pmol 63F primers, 1 µL of 10 
pmol 1387R primers, and 2 µL DNA template. PCR was 
done using a Thermo Cycler (Applied Biosystem) 
machine with the following steps: 3 minutes of pre-PCR 
at 95˚C, 30 cycles (denaturation at 94˚C for 15 seconds, 
annealing at 56˚C for 15 seconds, and elongation at 72˚C 
30 seconds), and final elongation at 72˚C for 2 minutes.  
PCR product purification and sequencing were 
conducted by 1st BASE (Singapore). 16S rRNA gene 
sequence was compared with data available at GenBank 
by using the BLAST program of the National Center for 
Biotechnology Information 
(http://www.ncbi.nlm.nih.gov).  

3. RESULT AND DISCUSSION 

3.1. Screening for proteolytic and lipolytic 
activity 

A total of 30 fibrolytic bacterial isolates were tested 
for their lipolytic and proteolytic activities. Proteolytic 
activity was indicated by the formation of a clear zone 
around the colony (Figure 1A). Those bacterial isolates 
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Figure 1. Isolate BR23 (A1), BR24(A2), and BR25 (A3) 
on skim milk agar media, age 18 hours. The clear zones 
around the colony indicate proteolytic activities. Isolate 
BR25 (B1), BR34 (B2), and BR30 (B3) in rhodamine B-
olive oil media, aged 24 hours, under UV exposure at 350 
nM wavelength. The glowing orange color indicates 
lipolytic activity. 
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produced extracellular proteases that hydrolyze proteins 
in the media to form a clear zone around the colony. 
Lipolytic activity was indicated by the presence of an 
orange fluorescent under UV light at 350 nM wavelength 
(Figure 1B). Lipid hydrolysis produces free fatty acids 
which will interact with   Rhodamine B to produce an 
orange, fluorescent complex with an excitation 
wavelength of 350nm [14] [15]. The orange color 
intensity increased along with the increase of lipolytic 
activity [16]. 

The results showed that all fibrolytic bacterial isolates 
had lipolytic and proteolytic abilities (Table 1).  
Ruminants are a group of herbivorous animals that use 
rumen fermentation to help the process of digestion of 
feed ingredients. Therefore, ruminants build symbiosis 
with microbes, including bacteria, protozoa, fungi, 
archaea, and bacteriophages, in their rumen [17]. Rumen 
microbes produce a wide variety of enzymes, including 
cellulase and hemicellulase [18], lipase [19], and protease 
[20] [21], that play an important role in feed digestion 
process. Among the various types of ruminal 

Table 1. Screening results for Proteolytic and lipolytic 
activities of fibrolytic bacterial isolates from buffalo 
rumen  

Code 
of 
Isolate 

Proteo- 
lytic 
activity 
(dz/dz) 

Lipo- 
lytic 
Activity 

Code 
of 
Isolate 

Proteo- 
lytic 
activity 
(dz/dz 

Lipo- 
lytic 
Activity 

BR1 0.48 √ BR16 0.50 √ 
BR2 0.48 √ BR17 0.45 √ 
BR3 0.50 √ BR18 0.50 √ 
BR4 0.48 √ BR19 0.47 √ 
BR5 0.50 √ BR20 0.45 √ 
BR6 0.55 √ BR23 0.50 √ 
BR7 0.55 √ BR24 0.50 √ 
BR8 0.63 √ BR25 0.67 √ 
BR9 0.50 √ BR26 0.58 √ 
BR10 0.52 √ BR27 0.52 √ 
BR11 0.48 √ BR28 0.90 √ 
BR12 0.55 √ BR29 0.89 √ 
BR13 0.48 √ BR30 0.53 √ 
BR14 0.43 √ BR33 0.45 √ 
BR15 0.55 √ BR34 0.43 √ 

 
Table 2. Identification results based on 16S rRNA gene sequences [7]. 

Code of 
isolate 

Description Per. Ident Query 
cover 

E Value 
 

Accession 

BR1 Bacillus aryabhattai 99.19 99 0.0 MN181350.1 
BR2 Bacillus cereus 99.49 99 0.0 MN752435.1 
BR3 Bacillus cereus 99.75 100 0.0 MK045762.1 
BR4 Bacillus aryabhattai 99.71 99 0.0 KY622236.1 
BR5 Bacillus cereus 98.81 99 0.0 LC189362.1 
BR6 Bacillus cereus  99.91 100 0.0 MK045762.1 
BR7 Bacillus cereus 100 100 0.0 KU510086.1 
BR8 Acinetobacter baumannii 99.19 100 0.0 MN749520.1 
BR9 Bacillus cereus 99.13 98 0.0 MH399242.1 
BR10 Bacillus thuringiensis 99.37 99 0.0 MK026865.1 
BR11 Bacillus megaterium 99.89 99 0.0 MK934384.1 
BR12 Bacillus cereus 99.32 99 0.0 KY777580.1 
BR13 Bacillus cereus 99.73 99 0.0 KP813794.1 
BR14 Exiguobacterium acetylicum* 98.98 99 0.0 MN650223.1 
BR15 Acinetobacter baumannii 99.83 99 0.0 CP042931.1 
BR16 Bacillus paramycoides* 99.58 99 0.0 MH734764.1 
BR17 Bacillus megaterium 100 100 0.0 MK934384.1 
BR18 Bacillus zanthoxyli 99.41 100 0.0 NR_164882.1 
BR19 Bacillus cereus 100 99 0.0 MN733060.1 
BR20 Bacillus Sp. 96.58 100 0.0 MK490763.1 
BR23 Klebsiella quasipneumoniae* 100 100 0.0 CP045641.1 
BR24 Chryseobacterium bernardetii 96.69 100 0.0 CP033931.1 
BR25 Paenibacillus polymyxa* 98.57 99 0.0 KR780413.1 
BR26 Acinetobacter baumannii 98.86 100 0.0 CP040041.1 
BR27 Bacillus cereus 99.66 100 0.0 KY777580.1 
BR28 Bacillus koreensis 99.75 100 0.0 MH169307.1 
BR29 Bacillus koreensis 97.95 99 0.0 MK618615.1 
BR30 Acinetobacter baumannii* 99.57 100 0.0 CP042556.1 
BR33 Klebsiella quasipneumoniae 99.01 99 0.0 CP045641.1 
BR34 Klebsiella pneumoniae 99.57 100 0.0 CP042620.1 
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microorganisms, the bacteria are considered to be most 
active in lipolysis [22].  

The ability of bacteria to break down a wide variety 
of macromolecules is very beneficial for its application 
to the feed fermentation process. The main purpose of 
fermentation is to break down complex macromolecules 
into simpler molecules and increase the digestibility and 
nutrient availability of feed ingredients. Feed 
fermentation could increase nutrient efficiency and 
nutritional value of aquafeed, has beneficial effects on 
gastrointestinal tract (GIT) ecosystems and morphology, 
minimize colonization of GIT pathogens and improve 
immune response [4]. In addition to the ability to 
hydrolyze polysaccharides, proteolytic and lipolytic 
abilities are important in improving aquafeed 
digestibility. The main applications of proteases in 
animal nutrition are during the processing of feed 
ingredients or direct application of exogenous proteases 
as supplements to feed [23].  Protease breaks down 
proteins into simple peptides that are more available and 
easier to digest. Fermentation of plant-based feed could 
increase protein solubility up to 2-fold [24] Dietary lipids 
play a crucial role in the fish diet, both as energy and 
essential fatty acid resource of energy and essential fatty 
acids that are essential for fish growth but cannot be 
synthesized on their own [25][26]. Supplementation of 
lipase significantly improved the gut and hepatopancreas 
lipase activity, feed conversion ratio, and growth 
performance of fish fed with palm oil diet [27]. 

Bacterial isolates that have not been identified in 
previous studies were further identified based on the 16S 
rRNA gene sequences. The identification results showed 
that almost all isolates had similarities to the database in 
the gene bank with similarities above 98% except BR 24 
which was closely related to Chryseobacterium 
bernardetii with a similarity rate of 96.58% (Table 2). A 
total of 7 isolates belonged to the phylum proteobacteria, 
an isolate belonged to the phylum bacteriodates, and 22 
isolates belonged to the phylum firmicutes. 

In general, Firmicutes, Bacteroidetes, and 
Proteobacteria are the dominant bacteria in cow rumen of 
various ages [28].  Bacteroidetes and Firmicutes were the 
dominant phyla in buffalo and cow rumen but in buffalo 
rumen, the abundance of firmicutes was higher than in 
cow rumen.  The population of bacteriodates and 
firmicutes in the rumen involve in the degradation of 
organic matter into simpler forms [29]. The higher 
abundance of firmicutes in buffalo rumen indicates the 
higher ability to digest plant-based feed [30]. The higher 
abundance of firmicutes in the rumen is also associated 
with carbohydrate fermentation in the rumen [31], feed 
efficiency, and daily weight gain [32]. 

These fibrolytic bacteria had the potential to be 
applied to the fermentation of plant-based feed 
ingredients because apart from being able to hydrolyze 
fibre, they were also able to hydrolyze proteins and lipids. 

The ability to break down various kinds of 
macromolecules is very beneficial in its application in the 
feed fermentation process. However, further research is 
needed regarding its effectiveness and safety for the 
animal. 
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