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ABSTRACT 
As a hot spot of marine diversity, between 150 – 400 phytoplankton species have been reported in various Indonesian 
marine ecosystems. However, phytoplankton identification in Indonesia is mainly made manually by a human expert, 
which is a time-consuming process with many limitations. Thus, this study aimed to develop automatic phytoplankton 
identification using Deep Machine Learning algorithms, such as Convolutional Neural Networks (CNNs), to help the 
identification process of the Indonesian phytoplankton. A pre-trained VGG-16 model was used to build a CNN model 
to identify phytoplankton up to genus level under five different model scenarios (S) based on curated phytoplankton 
images from the Plankton Image Database of RCO-BRIN. The cross-entropy loss analysis and confusion matrix 
showed the simple model (S1) and genus-level model (S4) have the best performance with low classification errors. In 
the application trial, the S1 model could differentiate diatoms and dinoflagellates group with up to 78% accuracy, 
while the S4 model could differentiate the target genus of Ceratium, Chaetoceros, Coscinodiscus, Protoperidinium, 
and Rhizosolenia up to 79% accuracy. However, the S4 model suffers from forced classification problems due to its 
inability to identify images of any non-target genus. Unfortunately, the S5 model created to solve the S4 problems has 
a much lower accuracy at 54% due to highly diverse data stored in the ‘Others’ category, which confuses the model. 
Although the CNNs models in this study can automatically identify phytoplankton up to genus level at accuracy 
>75%, the current limitations in all scenarios need to be solved before the model can be used in a real-world research 
scenario. 
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1. INTRODUCTION 

Phytoplankton is the most important foundation of life in 
the aquatic ecosystems and an essential component in energy 
transfer in the aquatic food web. Due to its rapid response and 
high sensitivity to any changes in the aquatic environment, 
many phytoplankton species have been used as indicators for 
the health of the environment. The cell shape, growth rate, and 
biochemical components, such as lipids, pigment, and other 
secondary metabolites, could signal to many anomalies in the 
water, such as eutrophication. Furthermore, some 
phytoplankton tends to grow rapidly under anomalous water 
condition and cause harmful algal blooms (HABs) events, 

which could cause a devastating impact on the ecosystem, 
particularly if the bloomed species was the toxin producers 
[1]. About 200 taxa of phytoplankton were estimated, which 
includes dinoflagellates, cyanobacteria, diatoms, 
raphidophytes, dictyochophytes, pelagophytes, and 
haptophytes, could produce a harmful toxin that could threaten 
the health and economy of many human societies in the 
coastal and inland water areas [2]. HABs events have 
increased incidence, duration, and frequency over the last few 
decades from the 1980s. Due to the many combined effects of 
anthropogenic activities along the world's coastlines and 
climate change, including ocean warming, acidification, and 
hypoxia [2,3]. Currently, between 20 to over 80 cases of 
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Diarrhetic Shellfish Poisoning (DSP) caused by Dinophysis 
species, Amnestic Shellfish Poisoning (ASP) caused by 
Pseudo-nitszchia species, and Paralytic Shellfish Poisoning 
(PSP) caused by Alexandrium species, have been reported for 
every year around the world [2]. Since phytoplankton species 
composition could indicate the environmental problem and 
early warning of the possible emergence of harmful blooms, 
accurate and fast identification of phytoplankton species has 
become increasingly important in this Anthropocene era. 

Guiry [4] estimated that between 30,000 to 1 million species 
of phytoplankton are existed in freshwater and marine ecosystems 
around the world, with diatoms (Phylum: Bacillariophyta) and 
dinoflagellates (Phylum: Miozoa) as the two major phytoplankton 
groups. About 8,000 species of diatoms and 2,200 species of 
dinoflagellates have been named, cataloged, and described [4,5]. 
Despite being a hot spot for marine diversity, including 
phytoplankton, there were no official records or estimates of 
phytoplankton species in Indonesia. More than 150 to over 400 
species of phytoplankton have been reported from some studies in 
oceanic, coastal, and island ecosystems, such as Makassar Strait 
[6], Lembeh Strait [7], and Seribu Islands [8]. Some species 
among the known phytoplankton species in Indonesia, such as 
Pyrodinium bahamense, Margalefdinium (Cochlodinium) 
polykrikoides, and Noctiluca scintillans, have also been reported 
to cause recent harmful blooms, fish kills, and fatal human 
poisoning in some coastal areas, such as Lampung Bay, Cirebon, 
and Ambon Bay [9-11]. Currently, phytoplankton identification 
was made manually under a microscope by human expert or 
specialist, which were known to have limitations, such as (i) time-
consuming process, (ii) highly dependent on the expertise, 
experience, and skill of the expert, (iii) influenced by 
physiological and psychological conditions of the expert, and (iv) 
bias or misidentification caused by morphological variations in 
some species [12]. Due to the increasing problem of HABs in 
Indonesia, a rapid and reliable phytoplankton identification tool is 
required to be used in the monitoring and early warning system of 
HABs in the country.  

The development of computer technology has increased 
computers' computational power and enabled a much complex 
artificial intelligence (AI) and machine learning (ML). 
Machine learning is a type of AI that uses a complex 
algorithm to learn from the data to improve, describe, and 
predict on the outcomes of some input data [13]. This study 
uses Convolutional Neural Network (CNN). This specialized 
machine learning technique used convolution operation in a 
neural network to process any data which has a grid-like 
topology, such as in time-series data (single dimension) or 
image data (two dimensions) [14,15]. Several studies have 
used deep learning techniques, particularly CNN, to automate 
the plankton image acquisition, identification, and 
enumeration. For example, Schulze et al. [16] has developed 
an open-source automatic microscopy image recognition 
system, the PlanktoVision, using a neural network to perform 
segmentation and identification of 10 taxa of phytoplankton. 

Another study, such as Cheng et al. [17], has constructed an 
enhanced CNN model combined with Support Vector 
Machine (SVM) to conduct an in-situ automatic zooplankton 
identification and enumeration. On the other hand, Pedraza et 
al. [18] has used deep learning and CNN model to classify 80 
species of diatoms from an extensive dataset of 160,000 
brightfield image samples. Similarly, Kloster et al. [19] used a 
deep CNN based on VGG16 framework to perform a 
taxonomic identification of several diatoms taxa on 
‘digital/virtual slides’ up to species level. Related to the HABs 
mitigation and management, Henrichs et al. [20] have used a 
CNN to improve an early warning system to blooms of toxic 
dinoflagellate species, particularly Karenia brevis, Dinophysis 
ovum, and Prorocentrum texanum in the Texas coastal 
ecosystem. Furthermore, neural network techniques, such as 
CNN, FFNN (Feed-Forward Neural Network), RNN 
(Recurrent Neural Network), and LSTM (Long Short-Term 
Memory), have also been used to make a prediction or to 
forecast harmful algal blooms and phytotoxin contamination 
in the shellfish in the marine ecosystems [21].   

In Indonesia, machine learning and neural networks have 
been used in several ecological and biodiversity studies to help 
and perform taxonomic identification or taxa classification of 
plants, fishes, or habitat types. For example, a study by 
Yunandar et al. [22] uses a machine learning technique to 
classify the inundation typology of peatland to locate key 
sampling sites and help understand the plankton biodiversity 
in water bodies of the Paminggir peatland in South Borneo, 
Indonesia. On the other hand, Böhlen and Sujarwo [23] use 
five neural network architectures, Alexnet, Squeezenet, 
Resnet50, Resnext152, and Vanillanet, to automatically 
identify ethnobotanically important plants in Bali, Indonesia 
based on an image dataset consisting of 50,000 images from 
26 taxa. Another study by Liawatimena et al. [24] has 
explored the use of CNN to classify and identify three 
commercially important fish in Indonesia, such as Katsuwonus 
pelamis (cakalang), Euthynnus affinis (tongkol), and 
Coryphaena hippurus (mahi-mahi). Even so, study on the use 
or construction of machine learning models, such as CNN to 
study plankton in Indonesia, was rare, hard to find, or might 
have not yet been done. Accurate and fast identification of 
phytoplankton taxa is becoming more important to determine 
the status of the ecosystem or to detect the emergence of 
harmful algal blooms in Indonesia quickly. In that case, there 
is an urgent need to use machine learning to identify 
automatically and even enumerate the phytoplankton taxa in 
Indonesia.  Thus, this study aims to develop an automatic 
phytoplankton image identification based on a CNN model 
specifically trained to classify the phytoplankton species in 
Indonesia. Furthermore, the study also aims to test the 
usability of the developed CNN model with a real dataset or 
scenario, which will be used to determine the strength and 
limitations of the developed model.  
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2. METHODS 

2.1. Phytoplankton Data Curation 

This study used CNN models built based on high-resolution 
microscope images from the Plankton Image Database of the 
Plankton Laboratory, Research Center for oceanography, National 
Research and Innovation Agency (RCO-BRIN).  

The Plankton Image Database (cPID) contains more than 
6000 plankton images in several digital formats. In this study, 
2667 images were curated from cPID includes phytoplankton of 
diatoms, dinoflagellates, and cyanobacteria (Table 1). The images 
were collected during various research expeditions from 18 
different locations across Indonesian waters from 2011 – 2019 
(Figure 1, Table 1). The cPID was used to construct the scenario 
and model of this study. 2.2. Scenario Development. In this study, 
five different scenarios were constructed to test the ability of the 
models to identify and classify the phytoplankton images at 
different taxonomic levels (Table 2). The detailed description for 
each scenario was as follows:  

- Scenario 1 (S1) split the data into binary categories, diatoms 
(dia) and dinoflagellates (dino), and serve as the simplest 
model in this study.  

- Scenario 2 (S2) further differentiate the diatoms into two 
different classes, the Centric Diatoms (diaC) and Pennate 
Diatoms (diaP) based on the general cell morphology of the 
groups.  

- Scenario 3 (S3) was similar to Sc2, but the Centric Diatoms 
group were further differentiated into Circular Centric 
Diatoms (diaCC) and Rectangular Centric Diatoms (diaCR) 
based on the general cell’s shape or silhouette in 2D 
microscope images.  

- Scenario 4 (S4) was designed for the model to recognize and 
classify three genera of diatoms, Chaetoceros, Coscinodiscus, 
and Rhizosolenia, and two genera of dinoflagellates, Ceratium 
and Protoperidinium. As the CNN model requires different 
images used in the model training, validation, and test, only 
phytoplankton genus with >100 images were used. The 
minimum 100 images per class/categories/taxa were set based 
on the note in the deep learning study of Kloster et al. [19] and 
Pedraza et al. [18]. Furthermore, in this scenario, the selected 
target genus was considered a potentially harmful genus. Some 
of them, such as Chaetoceros and Ceratium, have been reported 
to cause Harmful Algal Blooms events in Indonesian waters 
[25,26].  

- Scenario 5 (S5) was identical to S4, but with an 
additional class of ‘Others’, which will serve as a 
placeholder for any phytoplankton images in the cPID 
that did not belong to the five targeted phytoplankton 
genus in this study.  

Table 1. Detail on the sampled year, location, and the number of phytoplankton images used in this study 

NO SAMPLED YEAR LOCATIONS NUMBER OF IMAGES 

1 2011 Jakarta Bay 97 

2 2012 West Bangka 97 

3 2013 Indian Ocean, off southern East Java 44 

4 2013 Makassar Strait 365 

5 2013 Komodo Islands 256 

6 2013 Bitung 278 

7 2014 Maluku Sea 92 

8 2014 Sulawesi Sea 69 

9 2014 Nias 56 

10 2014 Lembeh Strait & Likupang 132 

11 2016 Sumba 113 

12 2017 Eastern ITF Pathway (Maluku Sea) 430 

13 2018 Ancol 73 

14 2019 Pari Island 186 

15 2019 Belimbing Bay, Lampung 53 

16 2019 Lembeh Strait 73 

17 2019 Gili Islands 79 

18 2019 Jakarta Bay 174 
  Total 2667 

 

Figure 1. Distribution and number of phytoplankton images that were used in this study. 
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2.2. Image Pre-processing and Augmentation  

The CNN models in this study required the phytoplankton 
images to be divided into three datasets for each class within 
each scenario: the training, validation, and test datasets. The 
numbers of data for each dataset in each scenario are 
described in Table 3.  

In this study, the images in the Original Training dataset 
undergo a geometric transformation and segmentation process 
to expand the training dataset's size and enhance the 
constructed model's ability to recognize the object 
(phytoplankton cells) in the image. Geometric transformation 
of the original training images including (i) horizontal flip, (ii) 
vertical flip, (iii) resize, (iv) rotation, (v) width shift, (vi) 
height shift, (vii) shear, and (viii) zoom. On the other hand, the 
segmentation process used in this study was (i) adaptive 
gaussian thresholding and (ii) Histogram of Oriented 

Gradients (HOG). Adaptive gaussian thresholding was 
used to separate the background pixel and target object 
while dealing with various lighting conditions [27] in 
the microscope images due to various illumination 
techniques used to capture the image. On the other 
hand, HOG was used to quickly and accurately perform 
edge detection on the object in the images [28], which 
could improve the ability of the CNN model to 
recognize the objects in the images. 

2.3. Model Building 

Python language is used to build CNN models that 
run on an open-source cloud service, Google 
Colaboratory, using the KERAS library from the 
Tensorflow framework. The CNN model used in this 
study (Figure 2) was built based on a VGG16 CNN 
model, which was pre-trained with the ImageNet 
dataset. The VGG16 model was a 16 layers CNN model 
proposed by Simonyan and Zisserman [29] from the 
Visual Geometry Group, the University of Oxford, 
which was designed to perform image classification 
using a wide range of datasets with high accuracy. In 
this study, only the VGG16 convolutional part was 
imported without the 3 fully connected layers at the top 
of the network. Then, all of the VGG16 trainable layers 
were frozen, and additional two dense classifiers were 
added at the end of the layer, one with ReLu activation 
and softmax activation. The modified VGG16 
architecture used in this study can be found in Table 4. 
For each study scenario, a modified VGG16 model was 
created and then trained with the Augmented Training 
dataset for 50 epoch with 16 steps per epoch.   

2.4. Validation, Evaluation, and Application 

Dataset 
Scenario 

1 2 3 4 5 

Original Training 1355 891 1043 248 891 

Augmented Training 2048 2048 2048 512 512 

Validation 32 32 32 32 32 

Test 32 32 32 32 32 
 

Table 3. The number of phytoplankton images in each dataset for each scenario. Original Training dataset consists of the 
curated images split into different classes/categories according to the scenario design. The Augmented Training dataset 
resulted from pre-processing and augmentation, which increased the number of available images for model training 

Table 2. Detail on the output (model classes) and 
availability of image data for each scenario for the 
model in this study 

Scenario Output (Model Classes) 
Availabl
e Image 

Data* 

1 
Diatoms (dia) 1419 

Dinoflagellates (dino) 955 

2 

Centric Diatoms (diaC) 1107 

Pennate Diatoms (diaP) 312 

Dinoflagellates (dino) 955 

3 

Circular Centric Diatoms (diaCC) 434 

Rectangular Centric Diatoms (diaCR) 673 

Pennate Diatoms (diaP) 312 

Dinoflagellates (dino) 955 

4 

Ceratium (cer) 297 

Chaetoceros (chae) 220 

Coscinodiscus (cosc) 144 

Protoperidinium (pro) 153 

Rhizosolenia (rhizo) 116 

5 

Ceratium (cer) 297 

Chaetoceros (chae) 220 

Coscinodiscus (cosc) 144 

Protoperidinium (pro) 153 

Rhizosolenia (rhizo) 116 

Others 1444 
*Total available image data for each scenario = 2667 images. 
Data was curated and sorted according to the model classes  
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In this study, the trained model for each scenario 
was validated using the validation dataset to test its 
accuracy and correctly identify the classes or categories 
in the model’s scenario. Each model was then evaluated 
using two different metrics: categorical cross-entropy 

loss and accuracy test using a confusion matrix. The 
categorical cross-entropy loss was used to quantify the 
rate of error in predicting the correct categories of the 
target images [30]. The categorical cross-entropy loss 
was used in this study as the CNN models in each 
scenario used a ‘Softmax’ activation layer. On the other 
hand, the confusion matrix will show the proportion of 
success and failure to predict the true classes, which 
also indicate the complete performance of each 
classification model constructed in this study. 

This study also incorporated an application trial for 
each trained CNN model by using a new image dataset 
obtained from phytoplankton net samples collected from 
a study in Jakarta Bay in 2019 [31]. The new image 
dataset consists of 32 high-resolution phytoplankton 
images that were not included in the curated dataset 
(Table 1) that were used to construct the CNN models. 
The application trial was conducted to determine the 
usability of each CNN model in simulated real-life 
scenarios and to identify the weakness and strengths of 
each model. 

3. RESULTS & DISCUSSIONS 

3.1. Loss and Accuracy 

Each constructed CNN model with different 
categorical scenarios in this study did show a different 
rate of loss and identification accuracy (Figure 3). The 
detail on the cross-entropy loss value and accuracy of 
the model for each scenario during model training and 
validation are shown in Table 5. Based on the research 
result, the CNN model with the simplest scenario (S1), 
was the best model with minimal loss and highest 
accuracy, both in the training and validation test (Figure 
3). During the training, the CNN S1 model starts with 
the lowest loss of 0.95 and ends with a loss of 0.14 after 
50 epochs (Figure 3A). On the other hand, the S1 CNN 
model started with >50% accuracy during the training 
test and reached 94% accuracy after 50 epoch (Figure 
3C). High accuracy and low loss for the S1 CNN model 
were expected as the model only deals with binary 
categories, diatoms, or dinoflagellates. On the other 
hand, it was interesting to find that the S4 CNN model 
with a complex model and five categories could achieve 
the second-highest accuracy (>90%) during the training 
(Figure 3C), while much lower loss compared to other 
simpler models, such as CNN S3 and S2 (Figure 3A). 
Generally, the model accuracy would be lower while the 
loss value would be higher along with the increasingly 

Table 4. The base architecture of the VGG16 model 
was used to identify the phytoplankton images in this 
study. 

Layer (type) Size 

Input Image 128 x 128 x 3 

1 2 x Conv_2D 128 x 128 x 64 

 Max Pooling 64 x 64 x 64 

3 2 x Conv_2D 64 x 64 x 128 

 Max Pooling 32 x 32 x 128 

5 2 x Conv_2D 32 x 32 x 256 

 Max Pooling 16 x 16 x 256 

7 3 x Conv_2D 16 x 16 x 512 

 Max Pooling 8 x 8 x 512 

10 3 x Conv_2D 8 x 8 x 512 

 Max Pooling 4 x 4 x 512 

13 Fully Connected Layer 8192 

14 Fully Connected Layer 256 

Output Fully Connected Layer 6 
 

Table 5. The accuracy and cross-entropy loss values for model training and validation for each scenario in this study. 

Scenario 
Cross-Entropy Loss Accuracy (%) 

1st Epoch 50th Epoch Difference (∆) 1st Epoch 50th Epoch Difference (∆) 

Training 

1 0,9543 0,1366 0,8177 55,16 93,95 38,79 

2 1,8196 0,4376 1,3820 34,05 81,63 47,58 

3 1,6747 0,4423 1,2324 25,09 82,48 57,39 

4 1,8429 0,2313 1,6116 21,52 91,22 69,70 

5 1,8917 0,4136 1,4781 23,05 83,59 60,54 

Validation 

1 0.7088 0.4048 0.304 53.12 87.50 34.38 

2 1.065 0.5901 0.4749 43.75 65.62 21.87 

3 1.3732 0.4341 0.9391 34.38 81.25 46.87 

4 1.5497 0.4902 1.0595 28.12 81.25 53.13 

5 1.6792 0.9206 0.7586 25.00 62.50 37.50 
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complex scenario. But, that was not the case in this 
study. The most complex model in this study, the CNN 
S5, perform quite well in training, with an accuracy of 
83.5% after 50 epochs (Figure 3C). However, the CNN 
S5 model was the worst model during the validation 
test, with accuracy <65% (Figure 3B) and has the 
highest loss value compared to the other CNN models 
(Figure 3D). Note that in the validation test, the CNN 
S1 and CNN S4 models remain as the 1st and 2nd best 
models based on their loss values and accuracy (Figure 

3B & 3D).  

On the other hand, erratic patterns in the cross-
entropy loss and accuracy graph during validation test 
(Figure 3B & 3D), along with relatively large 
differences between those values compared to the model 
training (Figure 3A & 3C), might indicate a problem of 
overfitting during the model training. This problem 
might occur because all CNN models in this study did 
not use any regularization techniques, such as early stop 

Figure 2. Illustration of the base architecture of the VGG16 model used in this study. 

Figure 3. Graphic showing the cross-entropy loss of (A) training data and (B) validation data, and model accuracy 
of (C) training and (D) validation data. Each model run consists of 50 epochs in 16 steps per epoch. 
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or dropout, which usually was used to avoid overfitting 
in deep learning models [30].  

3.2. Test Performance 

The confusion matrix showed the overall model 
performance during the model test to classify the 
categories or classes in each scenario of this study 
(Figure 4). Interestingly, the accuracy of the S1 CNN 
model was slightly lower than the accuracy of the S4 
CNN model during the model testing (Table 6). CNN 
S1 was 87.5%, while CNN S4 accuracy reached 88.8%. 
Similar to what has been shown in the training and 
validation test (Table 5), the most complex model, CNN 
S5, has the lowest performance (Figure 4) and accuracy 
compared to the other CNN models (Table 6). 

The confusion matrix also shows which 
categories/classes are less likely to be classified 
correctly by each CNN model in each scenario (Figure 
4). It was unexpected to see the S4 model, with its 

rather complex classification categories, managed to 
perform well in identifying most categories. However, it 
seems to have problems 
identifying Ceratium and Chaetoceros (Figure 4). As 
shown in the confusion matrix, the model predicted the 
images as Chaetoceros six times, although the true label 
of the image was Rhizosolenia (Figure 4). It also failed 
to predict the Ceratium images correctly and 
classify Ceratium images as other categories or genus 
(Figure 4). It also failed to correctly predict the 
Ceratium images and classify Ceratium images as other 
categories or genus (Figure 4). The problem in the S4 
CNN model was carried over and amplified in the S5 
CNN model. The error rate in identifying Ceratium and 
Rhizosolenia was much higher in the S5 model than the 
S4 model (Figure 4). The S5 CNN model was only able 
to correctly classify 10 Ceratium images and 12 
Rhizosolenia images out of 32 images in the test dataset, 
and it often misclassifies those two categories/classes as 
Others (Figure 4). 

Figure 4. Confusion matrix of the CNN model for each scenario during the model testing of this study. Darker colors 
signify more images that the model correctly or incorrectly predicted either. In the test dataset, each category/class 
contains unique 32 phytoplankton images different from the one in training and validation datasets. Note: dia = 
diatoms, dino = dinoflagellates, diaC = centric diatoms, diaP = pennate diatoms, diaCR = rectangular centric 
diatoms, diaCC = circular centric diatoms, cer = Ceratium, chae = Chaetoceros, cosc = Coscinodiscus, pro = 
Protoperidinium, rhizo = Rhizosolenia. 

Table 6. The accuracy of the CNN model in each scenario during the model test.  

Scenario 1 2 3 4 5 

Test Accuracy (%) 87,50 82,29 77,34 88,75 75,00 
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The classification mistake in the CNN model could 
occur due to several factors, such as (i) image noise due 
to low light or other non-ideal imaging situations, (ii) 
feature problem due to unclear or ambiguous internal 
features, boundaries, or descriptors within the images, 
(iii) incomplete cell frustule (diatoms) or theca 
(dinoflagellates) in the image, and (iv) multiple and/or 
overlapping objects (cells) within an image [17,19]. 
Two possible explanations for misclassification or low 
performance in genus-level models could be due to high 
variation in the cell forms within Ceratium genus 
(Figure 5D & 5F), which often have a similar shape 
to Rhizosolenia (Figure 5Ai & 5E) 
or Protoperdinium (Figure 5G-H). In addition, many 
images from the cPID contain more than one genus in 
an image or include multiple genera other than the 
labeled genus (Figure 5A). The microscope image, 
which has complex and overlapping cells (Figure 5A) 
could confuse the model as the current model could not 
recognize multiple objects in a 2D photo. In this study, 
that image (Figure 5A) was not used in the CNN model 
training, validating, or testing, as it could confuse the 
model and reduce its performance. It was not clear why 

the S4 and S5 models have difficulties 
identifying Rhizosolenia and often make mistakes in 
classifying it as Chaetoceros (Figure 4). Although both 
Rhizosolenia and Chaetoceros belong to the same form 
group, the centric diatoms, Chaetoceros cells (Figure 
5B), have distinct morphological characters that could 
be easily differentiated from Rhizosolenia (Figure 5Ai 
& 5E).  

3.3. Application Trial 

In this study, the application trial was conducted 
using all CNN models to identify an entirely new 
dataset consisting of random 32 phytoplankton images 
from the Jakarta Bay 2019 study [31] that were not 
included in the training or test dataset. The trial was 
done as a simulation to test how the model behaves 
under a completely new dataset and apply the model in 
a pseudo-real-world scenario. As seen in the examples 
within Figure 6A, all CNN models generally have good 
performance and managed to identify and classify the 
phytoplankton image that exists as a category within the 
model. In this case, the five-target genus in S4 and S5 
CNN models, Ceratium, Chaetoceros, Rhizosolenia, 
Coscinodiscus, and Protoperidinium (Figure 6A), were 
used as a benchmark for phytoplankton cell 
identification of all models. The detailed result of the 
correct prediction and accuracy was summarized in 
Table 7.  

Simpler models, such as S1 and S2, correctly 
identified the categories in the examples images of the 
application trial dataset (Figure 6). However, it started 
to have problems when identifying phytoplankton that 
might not be included in the training, validation, and 
test dataset of S1 and S2 CNN models, such as 
Amphisolenia and Pyrophacus (Figure 6B). On the other 
hand, a more complex model, particularly the S4 CNN 
model, managed to correctly identify all cells in the 

Figure 5. Example of phytoplankton images in cPID 
used to construct and test the CNN models. These 
examples emphasize similarities in cell forms of 
several species and complexity in some labeled 
images in cPID. (A) image labeled as Rhizosolenia 
setigera (i) but contain overlapping cells of 
Eucampia cornuta (ii), Pseudo-nitzschia sp (iii) and 
other hard to identified species, (B) Chaetoceros 
distans, (C) Amphisolenia bidentata, (D) Ceratium 
fusus, (E) Rhizosolenia hebetata, (F) Ceratium furca, 
(G) Protoperidinium oceanicum, and (H) 
Protoperidinium elegans.   

Table 7. Summary of the number of correct predictions 
and accuracy for each category in each CNN model. The 
prediction was made from a new dataset consisting of 
32 random phytoplankton images from the Jakarta Bay 
2019 study [31], which is different from the images in 
the training, validation, and test dataset used to build the 
models. 

Scenario 
Category 

1 2 3 4 5 

Ceratium 7 7 7 11 1 

Chaetoceros 12 12 9 12 10 

Coscinodiscus 10 11 12 12 12 

Protoperidinium 6 10 10 11 7 

Rhizosolenia 12 5 2 11 3 

Others 9 6 6 0 6 

Total Accuracy 
(%) 

77,78 70,83 63,89 79,17 54,17 
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application trial image examples (Figure 6A) with high 
accuracy (79%) (Table 7). 

However, the S4 CNN model was built only to 
identify five target genera. Thus, it could not correctly 
identify any phytoplankton cells outside its built-in 
categories (genus) (Figure 6A). Despite its best 

performance, whether in training, validation, test, and 
application trial (Table 7), the S4 CNN model has a 
problem of forced classification. Due to its limited 
ability to classify only five classes/categories, the S4 
CNN model will forcefully classify any phytoplankton 
images outside its categories into one of the categories 
within the model. This problem would cause 

Figure 6. Results of application trial using new image dataset from Jakarta Bay 2019 study [31]. The images in this 
real-world simulation trial were not included in the dataset used to train, validate, and test the CNN models of this 
study. Result of identification using (A) images that exist as a category or class in the model, and (B) images that do 
not exist as a category or class in the model, except the S5 model in the ‘Others’ category. In this test, the result of 
model prediction or classification was checked and corrected manually by a human expert. The green color signifies 
correct prediction, while the red color signifies incorrect prediction after a manual taxonomic check 
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phytoplankton genus, such as the dinoflagellates 
Amphisolenia and Pyrophacus, to be classified or 
identified by the S4 CNN model as Rhizosolenia or 
Coscinodiscus (Figure 6B), which would be a 
classification error according to a manual taxonomic 
identification by a human expert. 

The forced classification problem with the S4 CNN 
model was the reason to build the S5 CNN model in this 
study. The S5 model contains the ‘Others’ 
class/category as a placeholder for any phytoplankton 
images that did not belong to the five target genus of the 
S4 CNN model. That solves the problem of forced 
classification as any images that were not Ceratium, 
Chaetoceros, Rhizosolenia, Coscinodiscus, and 
Protoperidinium, will now be classified as ‘Others’ in 
the S5 CNN model. However, the vastly diverse cell’s 
shapes of many genera in the ‘Others’ might be the 
reason for the poor performance of the S5 CNN model 
in all stages, including the model building stages 
(training, validating, testing) (Table 5 & Table 6) and 
the application trial (Table 7). The accuracy of the S5 
CNN model was only 54% during the application trial 
(Table 7). Still, it managed to correctly identify the non-
five-target genus, such as Amphisolenia, Pyrophacus, 
and Pleurosigma as ‘Others’. Those non-target genera 
were unable to be identified correctly by the better 
performed S4 CNN model (Figure 6B). Even so, the 
low accuracy of the S5 CNN model of this study still 
prevents it from being used in a real-world scenario to 
identify the phytoplankton genus in Indonesia.  

The CNN models of this study were capable of 
automatically identifying phytoplankton images up to 
genus level at accuracy >75% in some model scenarios. 
Among the five CNN model scenarios, the simplest 
model (S1) and the genus-level model (S4) performed 
well in all testing stages and have low classification 
errors. The S1 model could differentiate diatoms and 
dinoflagellates groups with up to 78% accuracy in the 
application trial. In contrast, S4 model could 
differentiate the target genus of Ceratium, Chaetoceros, 
Coscinodiscus, Protoperidinium, and Rhizosolenia up to 
79% accuracy. 

However, the S4 model suffers from forced 
classification problems due to its inability to identify 
images of any non-target genus. Therefore, any non-
target-genus, such as Amphisolenia and Pyrophacus in 
the application trial dataset, will be incorrectly classified 
as one among the five target genus. Unfortunately, the 
S5 CNN model created to solve the S4 problems has a 
much lower accuracy at 54% due to highly diverse data 
stored in the ‘Others’ category, which often confuses 
the model. Even so, the S5 CNN model managed to 
classify non-target-genus, such as Amphisolenia, 
Pyrophacus, and Pleurosigma, into the ‘Others’ 
category. 

Despite the success of all CNN’s models in this 
study to automatically identify phytoplankton up to 
genus level at accuracy > 75%, the current limitations in 
all scenarios need to be solved before the model can be 
used in a real-world research scenario. Some of the 
solutions to solve the problem in the current CNN 
models including (i) expanding the dataset to include 
more images, (ii) optimizing the pre-processing and 
augmentation process, and (iii) fine-tuning the model. 
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