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ABSTRACT 

As an important concept of artificial intelligence in the field of information mining and in the broader field of deep 

learning, clustering analysis has attracted a large number of researchers to think about and improve its research methods, 

application areas and disadvantage optimization to different degrees. The traditional K-means clustering algorithm 

suffers from the fact that the number of clusters required needs to be determined artificially, and therefore the clustering 

results can be influenced by the different initial cluster centers, and the computational complexity of the clustering 

iteration process. Especially when processing multi-dimensional or high-dimensional data, the number of iterations, the 

computational complexity and the long running time can affect the effectiveness and accuracy of the algorithm. Different 

researchers have proposed optimization solutions for this drawback based on different priorities. This paper provides a 

comparative analysis of these schemes to explore their feasibility and advantages and disadvantages. 

Keywords: Clustering algorithms, K-means algorithm, initial clustering centres, centre optimization, high-

dimensional data 

1. INTRODUCTION 

Clustering analysis is an important part of research in 

artificial intelligence and one of the most widely 

researched areas at present. It has been widely used in 

different research areas such as machine learning, 

statistical analysis of data, pattern recognition, database 

data mining, etc. In particular, the field of data mining, 

which extracts potentially useful information from a large 

number of fuzzy and irregular data samples, will have a 

broader research prospect in the future. 

As one of the main data mining methods, clustering 

algorithms use the characteristics of samples to compare 

the similarity of samples and place the similar samples 

into the same category, while the samples with greater 

differences are stored in different groups. The aim is to 

maximise the similarity of data objects in the same cluster 

and minimise the similarity of data objects in different 

classes. Unlike classification algorithms, clustering 

analysis algorithms do not require artificially set 

classification criteria for different classes, but are 

automatically classified by the program according to the 

characteristics of the data group. 

Clustering has a wide range of applications and has 

given rise to many clustering algorithms. This paper 

discusses the k-means algorithm, which has a wider range 

of applications and a simpler principle. 

The k-means algorithm is based on partitioning, 

determining the initial cluster centres and classifying the 

data by taking the mean. In fact, since MacQueen 

proposed the k-means algorithm, a large body of 

literature has been produced on his algorithm, including 

studies on the A-value of the number of clusters, 

similarity measures and clustering evaluation criteria, 

and the elimination of noise points and isolated points. 

For the selection of the initial clustering centre, the 

simplicity of the principle of the algorithm gives rise to 

many problems accordingly. For example, the initial 

clustering centres are chosen randomly by the program 

without any manual operation, which will lead to 

problems of locally optimal solutions and unstable 

clustering results. 

In response, different researchers have proposed 

solutions to optimise the clustering centres, including 

ideas such as the K -means++ algorithm, reference 

distance density values, outlier detection, the use of 
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outlier factors and the maximum-minimum algorithm. As 

different optimisation solutions have different focuses, 

the aim of this paper is to investigate the operational 

steps, feasibility as well as advantages and disadvantages 

of different optimisation algorithms through a 

comparative study, and to propose further optimisation 

directions and prospects for future research. At present, 

research on k-means algorithm also includes its 

application on clustering in business, industry, science 

and other fields, such as k-means algorithm in banking 

and telecommunication customer information clustering 

and data extraction. 

2. THEORETICAL BASE 

2.1 Clustering algorithms 

Clustering is an unsupervised learning method for 

machine learning in the field of artificial intelligence that 

divides a collection of physical or abstract objects into 

multiple classes consisting of similar objects. It is 

characterised by the fact that the clusters generated by 

clustering are a collection of data objects that are similar 

to each other and dissimilar to each other in the same 

cluster as the objects in other clusters. Cluster analysis, 

also known as cluster analysis, requires that the classes 

classified are unknown and has a wide range of 

applications. In business, clustering helps market analysts 

to analyse a base pool of customers to discover different 

customer groups; in biology it can be used to classify 

genes and derive classifications of plants and animals; 

and even in data mining clustering plays an important 

role. 

Traditional clustering analysis algorithms are 

generally divided into methods based on probabilistic 

models and non-parametric methods. For non-parametric 

methods, clustering is mostly based on the objective 

function of similarity or dissimilarity measures, and can 

be divided into hierarchical and partitioned methods, with 

the partitioned method being more commonly used. 

Usually the partitioning method is based on the 

assumption that the data set can be represented by a 

number of cluster prototypes with their respective 

objective functions. It is therefore more important to 

determine the dissimilarity (or distance) between a point 

and a clustering prototype, of which the K-means 

algorithm is more popular and widely known, not only 

triggering research and extensions by many scholars, but 

also being used in various fields. 

2.2 K-means algorithm 

The K-means algorithm is a division-based clustering 

algorithm, which is based on Euclidean clustering and 

has the advantages of simplicity, ease of implementation, 

interpretability and fast convergence, making it a classic 

algorithm in data mining. There are three important 

parameters in the algorithm that need to be specified 

artificially, namely the number of clusters, the initial 

cluster centres and the similarity measure. In this case, 

the initial cluster centres are randomly generated from the 

dataset based on a user-defined number of K clusters. The 

choice of the initial cluster centres plays a crucial role in 

this algorithm. However, the simple principle also brings 

some shortcomings to the K-means algorithm. Firstly, the 

number of clusters, K, is generally unknown and needs to 

be determined artificially, and too large or too small a K 

value can affect the clustering effect. Secondly, the initial 

clustering centres are chosen randomly by the program 

without human control, and different initial clustering 

centres will produce different clustering results and 

different accuracy, which is prone to the problem of local 

optimal solutions and unstable clustering results. Thirdly, 

the K-means algorithm is an iterative method that 

eventually converges to a certain result, and when it 

converges, the distribution of data points to the cluster 

centre no longer changes, the distance is called the 

"fitting error", the fitting error is plotted as a function of 

the location of the cluster centre, this function has many 

local minima. In the program, it takes a lot of time and 

luck to reach the global minimum, so isolated points in 

the data have a greater impact on the results and the 

algorithm tends to get stuck on the local minimum. 

 
Figure 1 The diagram of K-means algorithm 

2.3 Subspace clustering algorithms 

Subspace clustering algorithm, as one of the key 

techniques of cluster analysis in the field of data mining, 

refers to dividing the original feature space of data into 

different feature subsets, studying the significance of 

observing the clustering of each data cluster from 

different subspace perspectives, while finding the 
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corresponding feature subspace for each data cluster in 

the process. In the field of data analysis, as high-

dimensional data clustering is a major challenge in cluster 

analysis techniques, the subspace clustering algorithm is 

an effective way to achieve clustering of high-

dimensional data sets based on an extension of the 

traditional clustering algorithm, the central idea of which 

is to localise the search in the relevant dimension. 

In general, there are two main tasks in subspace 

clustering: discovering subspaces that can be clustered 

and clustering on the corresponding subspaces. This 

algorithm actually combines traditional feature selection 

techniques with clustering algorithms to obtain the subset 

of features or weights corresponding to each data cluster 

in the process of clustering and dividing the data samples. 

Research to date has shown that subspace clustering can 

be divided into two forms: hard subspace clustering and 

soft subspace clustering. The difference is that hard 

subspace clustering algorithms identify the exact 

subspace in which different classes are located, while soft 

subspace clustering finds a soft subspace for each class. 

In simple terms, in hard subspace clustering, a subspace 

has one and only one attribute and the clustering process 

takes place in these subspaces, whereas soft subspace 

clustering clusters the entire data set in a full dimensional 

space with all attributes in each subspace and each 

attribute is given a different weight from 0 to 1. The 

higher the weight the more important the attribute is and 

the stronger the association with that subspace. 

2.4 Pearson's correlation coefficient 

Pearson's correlation coefficient is a measure of the 

similarity between two variables, with a value between -

1 and 1. A correlation coefficient greater than 0 indicates 

a positive correlation, while the opposite is true, and a 

value equal to 0 indicates no correlation. There are 

constraints on the Pearson correlation coefficient, which 

requires that both variables are continuous and 

independent, and that there is a linear relationship 

between the variables, which is normally distributed, and 

that their binary distribution is also normally distributed. 

In practice, the correlation coefficient (i.e. the calculated 

value) and the independent sample test coefficient (which 

tests the consistency of the sample) are generally output. 

3. ANALYSIS 

The K-means algorithm has been developed to date, 

but due to limitations such as the initial clustering centres 

not being set artificially, the problems of stability, speed 

and accuracy of the results still exist and have not been 

completely solved. As the choice of the initial clustering 

centre is completely random, it may lead to a slow 

convergence of the algorithm, which has been studied by 

different researchers based on different algorithms and 

considerations for algorithm improvement when 

processing high-dimensional data. 

First of all, the main idea of the most widely known 

K-Means++ algorithm is to optimize the selection of the 

initial clustering centre points, so that the initial 

clustering centre points are spread out as much as 

possible, and its steps are mainly to select the initial 

clustering centre A1 randomly for the input data set, and 

then calculate the distance from each data point Xi to the 

nearest clustering center in the set according to the 

formula D(Xi) = argmin(|Xi − Ar|)2, (r =
1,2, …  selected k). The distance from each data point 

Xi in the set to the nearest cluster centre of the selected 

cluster centres is calculated, after which a new cluster 

centre is selected based on the principle that the point 

with the higher D(X) has a higher probability of being 

selected as the new cluster centre, and these two steps are 

repeated until k cluster centres are selected. Numerous 

experimental results have demonstrated that this 

algorithm can effectively improve the overall computing 

speed due to the reduced number of iterative operations. 

In addition, Ping Zong, Junyan Jiang and Jun Qin 

from Nanjing University of Posts and 

Telecommunications, China, proposed an EDK-means 

algorithm based on subspace clustering algorithm and 

traditional k-means algorithm, combined with distance 

optimization method and density method, to improve the 

effectiveness and feasibility when dealing with high-

dimensional data. The basic idea of the algorithm is as 

follows. 

The density parameters of all data points in the data 

set according to the distance density feature model 

formula are calculated. Given a set of m-dimensional data 

sets containing n data objects, the Euclidean distance 

between data objects and the Euclidean distance between 

any two data objects in this space can be defined by the 

following formula. 

d(xi, xj)

= √(xi1 − xj1)
2

+ (xi2 − xj2)
2

+ ⋯ + (xim − xjm)
2

(1) 

At this point the average distance d̅ of the data for 

the entire data set X can be defined as follows, where Cn
2 

is the number of pairwise combinations selected from the 

n data objects of the data set.  

d̅

=
1

Cn
2 ∑ d(xi, xj)

                                      (2) 

For a given data object, the density parameter can be 

defined as the number of data objects within a circle with 

centre xi and radius d̅. The following equations can be 

obtained from equations (1) and (2). 

D(xi) = ∑ f (d̅ − d(xi, xj))
n

j=1
             (3) 
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At this point, f(z) satisfies f(z) = {
0, z < 0
1, z ≥ 0

. The 

average density D̅(X) of the set X is obtained as follows. 

D̅(X) =
1

n
∑ D(xi)

n
i=1                (4) 

According to the formula D(xi) < αD̅(X) ,the 

isolated data points are judged and removed to obtain a 

new data set B1 with high-density parameters. 

10%-15% of the data samples in B1 are taken to form 

the sample set C1, the average distance of adjacent data 

objects is calculated in C1 and it is defined as the interval 

length LENGTH, and the relevant interval Ii according to 

the formula Ii = (i ∗ LENGTH, (i + 1) ∗ LENGTH)  is 

defined.  

The object is selected with the highest density 

parameter from B1 as the first cluster centre and it is 

removed from B1 and added to the empty set B2. 

Afterwards, selecting the data object furthest from B2 

in B1 as the next cluster centre, again removing it in B1 

and adding it to B2. Repeating this step until k cluster 

centres are found. 

According to the Euclidean distance formula, each 

data object in the boundary set is assigned to the nearest 

cluster and the safe distance ep for each data object in 

the boundary set is calculated according to the 

formulaep = min (dPCj
− dPCi

), which is mapped to the 

corresponding interval. 

The centre of each cluster is recalculated and the 

maximum offset of the centre ∆d, is obtained according 

to ∆d = max (dClC
l′) , (l = 1,2, … , k) . If the maximum 

offset is 0 or the maximum number of iterations is 

reached, the algorithm ends. 

The boundaries of the relevant interval are updated by 

reducing the size of 2*∆d, taking out all data objects 

corresponding to the lower edge of the relevant interval 

that are less than or equal to 0 and mark them as the new 

set of boundaries, and returning to step v.  

Experimental results on accuracy and recall analysis 

show that the algorithm improves accuracy and 

completeness over the k-means algorithm, and reduces 

the extra computational process of the iterative process, 

with a corresponding reduction in computation time. 

In addition, a novel algorithm based on the ant 

algorithm, Pearson's correlation and density ideas was 

proposed by Qingqing Xie and He Jiang from Qilu 

University, improving the problem of randomness in the 

selection of initial clustering centres in the traditional k-

means algorithm. 

The principle is to select the clustering centres 

uniformly while avoiding the selection of initial 

clustering centres as far as possible. The basic steps are 

shown below. 

For a set D containing n data objects, selecting the 

smallest data object min(D) and calculating the Pearson 

correlation coefficient r between all data objects and the 

smallest data object, sorting r in descending order from 

the largest to smallest. 

It is grouped according to the above arrangement at a 

length of m/k, where m denotes the total number of data 

objects and k denotes the total number of clusters. 

For data objects that are not specified to be grouped, 

the similarity between them and the grouped data objects 

are calculated and grouped into the group with the 

greatest similarity. The initial cluster centroids are 

calculated based on the groupings. At this point the initial 

clustering centroids are represented as follows. 

                                Mi

=
∑ Tj

n
j−1

n
, TjMi                             (5) 

At this point Mi denotes the initial cluster centre, Tj 

denotes the data belonging to cluster Mi, and n denotes 

the number of data in Mi. 

The experimental data show that this algorithm has 

improved in varying degrees over the original k-means 

algorithm in terms of precision, accuracy and accuracy. 

4. CONCLUSION 

From the previous analysis, it can be seen that the 

upgraded k-means++ algorithm, despite the extra time 

required for initial selection, can effectively reduce the 

number of iterations and converge quickly at a later stage, 

resulting in faster operations overall, but the algorithm 

only samples one sample per traversal, which means it is 

difficult to achieve parallelism. It does not change the 

clustering criterion function  E =
∑ ∑ dist(p, Ci)

2
p∈Ci

k
i=1 , (p is the point in the space that 

represents the specified data object, and Ci  represents 

the cluster centre) so it is still a convergent algorithm.  

For the EDK-means algorithm, the advantages of the 

algorithm are, obviously, faster convergence, optimised 

execution efficiency and reduced time to select the initial 

clustering centres. However, despite its many optimally 

tuned advantages in terms of accuracy, completeness and 

iteration time, the algorithm does not show an advantage 

over the traditional K-means algorithm as it focuses on 

reducing the time to select the initial clustering centres 

when the clustering centres of the data points are better 

found. Therefore, this algorithm is only useful for more 

complex data sets where local optimisation exists. 

As for the third algorithm discussed, the one based on 

the "Pearson correlation coefficient", it takes into account 

that the random selection of the initial clustering centres 

can have a significant impact on the data results and 

therefore chooses to select the clustering centres evenly 

rather than circumventing the selection of the initial 
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clustering centres. The result is a significant 

improvement over the traditional k-means algorithm in 

terms of accuracy and stability, avoiding the randomness 

and unevenness found in traditional algorithms and 

improving the quality of the clusters. The algorithm 

circumvents the problem of randomly selecting initial 

clustering centres, reducing the sensitivity of the input 

sequence and the possibility of local optima to a greater 

extent. However, there is no significant improvement or 

advantage in reducing the number of iterations to reduce 

computation time for all databases, but it does not show 

unique advantages for high-dimensional data. 

Therefore, in summary, for different algorithms, how 

to improve accuracy while eliminating the effect of 

randomly selected clustering centres on the stability of 

the results, reduce the number of iterations to save more 

running time and improve the efficiency of the algorithm 

will be the focus and centre of future research to further 

explore optimisation options and retain as many 

advantages as possible. 
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