
Tow-Phase Commit Rule for Blockchain
Consensus

Taining Cheng, Shilei Zhang, Jinhong Zhang, and Jing He(B)

School of Software, Yunnan University, Kunming, China
{tncheng,zsl_2019,zjhnova}@mail.ynu.edu.cn, hejing@ynu.edu.cn

Abstract. All Byzantine agreement protocol is widely used in the permissioned
blockchain as the core of consensus. At present, there are already many research
works on the agreement problem, such as the state-of-the-art HotStuff solves
the byzantine fault-tolerant problem with linear complexity. Still, it takes more
message round to commit a transaction. Therefore, we transform the agreement
problem as a broadcast problem and solve it with less round theoretically, also
proving its safety and liveness. Moreover, the experiments show that our protocol
has less latency under the same throughput performance as HotStuff.

Keywords: Byzantine fault-tolerance · Consensus · Blockchain

1 Introduction

The emergence of blockchain andmany decentralized applications has led researchers to
focus on secure and efficient Byzantine fault-tolerant protocols for large-scale networks
[9]. As a distributed ledger, blockchain maintains the consistency of the ledger by state
machine replica (the replicas from the same state and receives identical input sequences to
reach the same state), whichwas proposed byLampert [9]. Researchers have done a lot of
work from theory to practice. An unpredictable network condition and arbitrary behavior
of malicious makes reaching agreement more difficult; malicious can arbitrarily delay
message arrival time to interfacewith the entire system to reach consensus. Therefore, the
agreement protocol needs to ensure both safety and liveness under any network condition
[5], but the classical FLP “impossible” theory has proved that deterministic agreement
protocol does not exist under asynchronous network [6]. The researcher introduces the
timing assumption to constrain the network further to obtain a deterministic protocol
[13], asmuch state-of-the-art synchronous protocol raft [12],which assumes themessage
delay within a known upper bound�. Conversely, if the message delay can be arbitrarily
controlled bymalicious at most unknown bound, which is called asynchrony. Both above
assumptions are too extreme; generally, one typical compromise is partial synchrony that
assume the adversary can fully the network to be asynchrony before the event calledGST
(Global stabilization time) [13], after which the network becomes synchrony. Although
the partially synchronized PBFT protocol has proven to have a good performance after
GST [4], it lacks liveness before GST. This means that when the network is unstable and
rarely synchronized, the protocol stagnates and does not provide services. Worse more,

© The Author(s) 2023
Z. Zeng et al. (Eds.): ECIT 2022, AHE 11, pp. 531–541, 2023.
https://doi.org/10.2991/978-94-6463-005-3_53

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-005-3_53&domain=pdf
https://doi.org/10.2991/978-94-6463-005-3_53

532 T. Cheng et al.

the fragile liveness brought by timing assumptions remains theoretical (too small timeout
leads to trivial view-change, too large leads to lower TPS) [16]. Timing assumption
directly makes the agreement protocol lose the responsiveness (namely, the performance
depends on the real network latency) [1, 9].

In contrast, the random asynchronous protocol achieves strong robustness through
higher communication costs [2, 3]. This protocol does not depend on any timing assump-
tions, but can ensure liveness and responsiveness during running; such asHotStuff and its
variant requires only seven or more round message exchanges to reach agreement [17].
Consequently, asynchronous BFT tends to bypass the FLP “impossibility” by random-
ness, costing more communication rounds. Well, the study if asynchronous consensus
remained theoretical for a long time until HoneyBadgerBFT and Dumboo was proposed
by Miller [11], Bingyong, which provides practical usability and relatively low com-
plexity [7]. However, there is still a big gap between the best synchronous protocol.
Therefore, a combination of deterministic and random approaches is a natural way to
improve asynchronous protocol in optimistic times and robustness in pessimistic times
[10]. The previous work optimistic method in asynchronous network was given by Kur-
sawe attempted to switch the synchronous consensus to asynchronous by fall-back [8].
This approach is called view-change in PBFT, but with a difference, PBFT depends on
timing assumptions. The intuition behind this is that network can become unstable or
attacked in the real world, but there is enough time for the network to keep in sync,
message delay within �, the optimistic path can be used under stable.

Whether it is deterministic or random scheme, the combination, the former in an
indispensable path for transaction commit, dramatically improves the overall perfor-
mance if the deterministic path can be optimized, because the efficiency is dominated
by it in most cases. In this paper, we make a small step on the road to deterministic
protocol. First, we formalize the consensus problem as a broadcast problem [8], namely,
a designated replica as proposer atomic broadcasts the transactions to all, and completes
the commit after completing two-phase (prepare, commit described below) consensus
with linear complexity under threshold signature scheme setting. The consistency under
same view and across-view are guaranteed by the prepare and commit phase respectively
[15]. Furthermore, protocol availability (liveness in agreement problem) is ensured via
“leader change”.

The reset of this work is organized as follows: the preliminary protocol and problem
definition are presented in Sect. 2. The detail of phases and proof of protocol is illustrated
in Sect. 3, and more experiments are given in Sect. 4.

2 Model

2.1 Notations and Data Structure

Following the solutions [4, 17], as a permissioned blockchain platform that consists of
n replicas, f of which are adversary and f < n/3, otherwise honest, the adversary may

Tow-Phase Commit Rule for Blockchain Consensus 533

corrupt replicas are Byzantine faults and deviate from the protocol; and they control the
message delivery times, but the message among honest replicas is eventually delivered.
In addition, each replica has a public key certified by a public-key infrastructure (PKI)
[15], the replicas have all-to-all reliable and authenticated communication channels.

2.1.1 Cryptographic Assumptions

We assume each replica has a public key provided by a trusted dealer; we do not con-
sider the security problem of cryptographic scheme in order to focus on the distributed
aspect of the problem. In this paper, we use threshold signature scheme, where a set of
signature shares for message from t (the threshold) distinct replicas among n parties can
be combined into one threshold signature of same length of common signature scheme,
we denote a threshold signature share of a message m signed by a replica i as < m >i.
For our protocol, once any of n replica has threshold signature, it means the owner of
threshold signature has seen enough votes for the proposal.

2.1.2 Collision-Resistance Hash

We assume a hash function H (·) that can map an input of arbitrary size to an out-
put of fixed size. Specifically, H (·) is Collision-resistance, no probabilistic polyno-
mial algorithm adversary can generate a couple of distinct inputs x1 and x2 subject to
H (x1) = H (x2).

2.1.3 View Number

View is the unit of protocol runs, specifically each replica commits at most once and
keeps store and update the current view number as v, which is initially set to 0.

2.1.4 Block Structure

The Block is represented by a tuple B = [
id , v, txs, proof

]
, where id = H (block) is the

digest of current block and identification, v is the view number of block, txs is a batch
of uncommitted transactions, proof is defined below.

2.1.5 Proof

A proof is evidence that there are enough replicas to receive the message from the pro-
poser; it is formed by a quorum of n− f “vote” message. According to the type of “vote”
message, There are two types of proof . First, The proof of block B is threshold signature

534 T. Cheng et al.

proof generated by the proposer, and denote by a tuple proof = [
type, id , v, ssig

]
, where

id , v, r is the same as block’s and ssig is threshold signature produced by combining
the distinct replica’s signature shares on the block identification(〈id〉), and type = vote,
we say a block is certified (it can be committed) if the proof is existed. Second, timeout
or blame proof of view v, denote by tuple proof = [

type, states, v, ssig
]
, containing a

threshold signature ssig on view v and type = blame. Same as above but slightly dif-
ferent, the signature can be generated once the proposer receives a quorum n− f blame
message, which is the threshold signature share(〈v〉) sent by replica, it also contains a
state set states = {proofn, 0 < n ≤ n − f } of n − f block certification, which is used
to synchronize the block cross-view, the element of set states is the most. Finally, we
will use x.y to denote the element y of x below.The Block is represented by a tuple
B = [

id , v, txs, proof
]
, where id = H (block) is the digest of current block and also

identification, v is the view number of block, txs is a batch of uncommitted transactions,
proof is defined below.

2.2 Problem Formulation

Broadcast Problem. Here, we assume a designated replica, often called the leader that
has some input block b, A protocol that solves the Broadcast problem must have the
following properties [1, 14].

• (Agreement): No two honest replicas commit different blocks.
• (validity): If the leader is honest, then b must be the committed block.
• (termination): All honest replica must eventually commit a block terminate.

In this paper, we formalize the consensus algorithm as a Broadcast Problem. All
replicas vote on the proposal of the designated leader (proposer) view by view.

3 Protocol

In this section, we elaborate on the detail of the protocol below. To satisfy the property
of Broadcast Problem, the protocol can be separated into two parts, The first sub-
algorithm is running in a steady state, another sub-algorithm is used to ensure quorum
replicas “see” and commit the block when the network becomes asynchronous, or the
leader is malicious. This pattern has linear communication complexity equipped with
threshold signature scheme; it is like Hotstuff and originates from the PBFT.

Tow-Phase Commit Rule for Blockchain Consensus 535

3.1 Phase

To better understand the algorithm, Algorithms 1 and 2 presents the normal procedure
that makes progress when the leader is honest. Before the replica moves forward to the
next view, all replicas will send its local proofp in newView message. Specifically, the
proposer of each view can be elected following the order of replica id (it can be any
more safety scheme). Then the proposer proposes block B that extends a block certified
by the highest proof with the highest view number among they received n − f proofp
from other replicas. When a replica gets a proposal B, it first verifies the validity of
cryptography; for the agreement property, the view of proof in block is matched for the
local variable proofp if the proof .type = vote. For termination property, the replica also
needs to compute the highest proof among states set to matched the proof in block B
when proof .type = blame. In brief, before voting (sending prepare signature share to
proposer), it verifies that at least one of the following two conditions is satisfied:

• B.v = B.proof .v + 1

536 T. Cheng et al.

• B.v = B.proof .v + 1 and

B.proof .v ≥ max{proofm.v|proofm ∈ proof .states} if proof .type = Blame.

In other words, either proposal B contains a proof of the proposal in previous view
or a proof of previous view with a set of at least n− f proof , the replica can use the set
to verify the highest commit view of the whole system. After satisfying agreement and
termination, replica replies a signature share on the block to proposer, and receives the
Prepare proof once proposer collects the share on block from n − f replicas, Commit
proof is the same as Prepare proof . Finally, a replica can commit the transactions in
block B when it sees Commit proof , and advancing the view.

3.2 Proof of Protocol

3.2.1 Agreement Proof

Lemma 1. For any two proof within a view v, such as proof1, proof2, we have proof1.v =
proof2.v.

Proof: We proved by a contradiction, assume exist proof1.v �= proof2.v. Because at
least n− f = 2f + 1 share (threshold signature share) are required to form a proof . The

Tow-Phase Commit Rule for Blockchain Consensus 537

Table 1. Complexity of protocol.

Normal View Change Latency

HotStuff O(n) O(n) 7 round

PBFT O
(
n2

)
O

(
n2

)
3 round

Ours O(n) O
(
n2

)
5 round

equation 2f +1 + 2f + 1 − (3f + 1) = f + 1 must be true if exist two proof . We can
see that there must be an honest replica who send share for two different proposals, it’s
violating the assumption that Byzantine problem assume there only f adversarial.

3.2.2 Termination Proof

Lemma 2. At any view v, if the proposer is honest, a bounded time T must exist such
that a proposal is committed during the time interval T after GST. Otherwise, When the
replica enters the view with a malicious proposer, the replica will commit nothing until
its timeout to enter a view v′ with an honest proposer.

Proof: According theAlgorithm 2, a replica entering a new view v by send a newView
view message with proofp in view v−1, the proposer collects (n − f) newViewmessage
and finds the highest proofm as a proof in block to persuade other replicas in v. Thus, all
honest replicas will send share back to the proposer when a replica’s local proofp can
match proof in new block, because proof is formed by at least f + 1 honest replicas.
After the proposer collects n − f shares and generates Prepare proof for proposal, all
replicas will see proof and vote in the following phase and continue to advance the view
within time T . As for before GST, all replicas will trigger “leader change” once an honest
send Blamemessage to others because of timeout or suspicion of current leader, the new
proposer will follow algorithm 1 to combine n − f Blame to form proof of blame, and
then telling every other where to commit in view v′ if new proposer is honest after GST.
Finally, all honest replicas are synchronized in the global view and committed.

3.3 Complexity Analysis

It can be seen from the phase of protocol that the communication complexity is linear
when normal commit is in progress (the proposer is honest and after GST), because the
pattern of communication is all to one or one to all and the message complexity within
1 round is constant. Furthermore, we use threshold signature to decompose one all to
all message exchange round into two rounds, and every message contains n proof to
satisfy safety. Finally, we get 5 round latency and quadratic “view change” complexity.
The comparison of PBFT and HotStuff with ours is shown in Table 1.

538 T. Cheng et al.

4 Copyright Form

In this section, we evaluate the throughput and latency of our protocol, which is imple-
mented by Golang; we deploy it to different numbers of instances to measure the scala-
bility and robustness. In addition, we conduct faulty attack on the protocol and measure
the performance and latency. Specifically, our latency measurement is end-to-end that
the time elapsed from a transaction sending until safe commit, shown as Eq. (1):

latency = Tc − Tp = Tbtx + Tctx + Tbb (1)

where Tc, Tp respectively denote time of commit and proposal, it can be further decom-
posed into three stages: transaction broadcast, transaction consensus, block broadcast.
The throughput is calculated as Eq. (2):

tps = |txs|�t
�t (2)

where |txs| is total number of transactions committed during time interval �t.

4.1 Best Performance

As we can see from Fig. 1, it shows the performance of ours and several classical
protocols with varying number of replicas (4, 8, 16, 32, 64), and there is no one replica
be malicious.

Fig. 1. Scalability of different protocol

Tow-Phase Commit Rule for Blockchain Consensus 539

Fig. 2. Throughput-latency performance with different replica size of 8, 16, 32

Obviously, our protocol’s latency is gradually better than other two as the number of
replicas increases. The PBFT’s latency is the best since PBFT requires fewer message
round to reach agreement than other two, and the total messages do not reach the band-
width’s upper limit. After the number of replicas increases, protocol (ours) that requires
fewer message rounds performs best. At the same time, our throughput is close to the
best HotStuff under any network condition, but also definitely better than PBFT.

Figure 2 illustrate the throughput-latency performance under different replica size.
The overall performance of Ours and the state-of-the-art HotStuff is ahead of classical
PBFT. Particularly, latency increases with the increase of TPS until it reaches the upper
limit, an external component that provides necessary services, such as the bandwidth
limit and transaction buffer size, etc.

4.2 Faulty Attack

In this setting, we run these protocols with a fixed total size of replicas and varying
faulty replicas. The results of performance are presented in Fig. 3. Clearly, we can
conclude that the performance of all protocols has a certain degree of loss, HotStuff has
the best performance, ours is a little bit worse, PBFT is the worst, Because the timeout
occurs when proposer is adversarial, all replicas performance will be lost due to “view
synchronized” phase. Surprisingly, we have the best performance in terms of latency
and throughput when a small number of replicas is faulty. The reason is that the honest
is proposer most of time; it only needs n − f vote from all replicas, the fault tolerance
threshold is much larger than actual adversarial, it doesn’t take long to recover.

540 T. Cheng et al.

Fig. 3. Throughput-latency performance with replica size of 16 and adversarial size of 1, 3.

5 Conclusions

In this paper, we present an optimized agreement protocol with threshold signature; it
takes less time to commit transactions with higher throughput under moderate network
conditions. We implement and experimentally measure the performance of our protocol
with classical scheme to validate our theoretical analysis. However, there is still some
exploration work in the future, such as further reducing the complexity of agreement
when the network is asynchronous or proposer is malicious.

Acknowledgements. This work was supported in part by the National Natural Science Founda-
tion of China under Grant 62162067, 62101480, 61762089, 61763048 and in part by the Yunnan
Province Science Foundation for Youths under Grant No. 202005AC160007.

References

1. Abraham I, Malkhi D, Spiegelman A (2019, July). Asymptotically optimal validated asyn-
chronous byzantine agreement. In: Proceedings of the 2019 ACM symposium on principles
of distributed computing, pp 337–346

2. Bracha G (1987) Asynchronous Byzantine agreement protocols. Inf Comput 75(2):130–143
3. Cachin C, Kursawe K, Petzold F, Shoup V (2001) Secure and efficient asynchronous broad-

cast protocols. In: Kilian J (eds) Annual international cryptology conference, pp 524–541.
Springer, Heidelberg. https://doi.org/10.1007/3-540-44647-8_31

4. Castro M, Liskov, B (1999, February) Practical byzantine fault tolerance. In: OsDI, vol 99,
No 1999, pp 173–186

5. Défago X, Schiper A, Urbán P (2004) Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Computing Surveys (CSUR) 36(4):372–421

6. Fischer MJ, Lynch NA, Paterson MS (1985) Impossibility of distributed consensus with one
faulty process. J ACM (JACM) 32(2):374–382

7. Guo B, Lu Z, Tang Q, Xu J, Zhang Z (2020, October) Dumbo: Faster asynchronous bft proto-
cols. In: Proceedings of the 2020ACMSIGSACconference on computer and communications
security, pp 803–818

8. Kursawe K, Shoup V (2005) Optimistic asynchronous atomic broadcast. In: Caires L, Ital-
iano GF, Monteiro L, Palamidessi C, Yung M (eds) International colloquium on automata,
languages, and programming, pp 204–215. Springer, Heidelberg. https://doi.org/10.1007/115
23468_17

https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.1007/11523468_17

Tow-Phase Commit Rule for Blockchain Consensus 541

9. Lamport L, Shostak R, Pease M (2019) The Byzantine generals problem. In: Concurrency:
the works of Leslie Lamport, pp 203–226

10. Lu Y, Lu Z, Tang Q (2021) Bolt-dumbo transformer: asynchronous consensus as fast as
pipelined BFT. arXiv preprint arXiv:2103.09425

11. Miller A, Xia Y, Croman K, Shi E, Song D (2016) The honey badger of BFT protocols.
In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security, pp 31–42

12. Ongaro D, Ousterhout J (2014). In search of an understandable consensus algorithm. In: 2014
USENIX annual technical conference (Usenix ATC 2014), pp 305–319

13. Pease M, Shostak R, Lamport L (1980) Reaching agreement in the presence of faults. J ACM
(JACM) 27(2):228–234

14. Rodrigues L, Raynal, M (2000) Atomic broadcast in asynchronous crash-recovery distributed
systems. In: Proceedings 20th IEEE international conference on distributed computing
systems, pp 288–295. IEEE

15. Shoup V (2000) Practical threshold signatures. In: Preneel Bart (ed) EUROCRYPT 2000, vol
1807. LNCS. Springer, Heidelberg, pp 207–220. https://doi.org/10.1007/3-540-45539-6_15

16. Spiegelman A (2020). In search for an optimal authenticated byzantine agreement. arXiv
preprint arXiv:2002.06993

17. Yin M, Malkhi D, Reiter MK, Gueta GG, Abraham I (2019) Hotstuff: BFT consensus with
linearity and responsiveness. In: Proceedings of the 2019 ACM symposium on principles of
distributed computing, pp 347–356, July 2019

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://arxiv.org/abs/2103.09425
https://doi.org/10.1007/3-540-45539-6_15
http://arxiv.org/abs/2002.06993
http://creativecommons.org/licenses/by-nc/4.0/

	Tow-Phase Commit Rule for Blockchain Consensus
	1 Introduction
	2 Model
	2.1 Notations and Data Structure
	2.2 Problem Formulation

	3 Protocol
	3.1 Phase
	3.2 Proof of Protocol
	3.3 Complexity Analysis

	4 Copyright Form
	4.1 Best Performance
	4.2 Faulty Attack

	5 Conclusions
	References

