
Using DQN and Double DQN to Play Flappy
Bird

Kun Yang(B)

School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
1051190130@stu.jiangnan.edu.cn

Abstract. Reinforcement Learning (RL), which is mainly used to solve sequen-
tial decision making problem, is an important branch in machine learning. Deep
Learning (DL) also plays a leading role in the field of artificial intelligence. It uses
neural network to approximate nonlinear functions. Deep Reinforcement Learn-
ing (DRL) is an algorithm framework combining reinforcement learning and deep
learning that absorbs both advantages, and this DRL is capable of helping train-
ing agent learn how to play video games. Among them, the Deep Q Network
(DQN) plays an important role. However, DQN will cause overestimation of val-
ues, and Double Deep Q Network (DoubleDQN) comes out and is used to fix this
problem. The author presents the study of how DQN and DoubleDQN work and
the difference between the result and training loss when these two algorithm were
implemented in a video game called FlappyBird in pycharmby usingKeras (a neu-
ral network API in Python designed for deep learning problems). The author also
adds improvement in DQN model to accelerate the training speed and compares
it with the results of other people’s experiments. After experiments, as expected,
the modified DQN works better than traditional DQN but not as good as Double
DQN. The training loss graph depicts that Double DQN decreases training loss
present it is a good way to solve the overestimation problem.

Keywords: Deep Reinforcement Learning · Deep Q Learning · Double Q
Learning · Artificial Intelligence

1 Introduction

Flappy bird is a video game which has some pipes preventing a bird from moving
forward. Players need to control the bird to fly through pipes (there is a gap between
the pipes) or the bird will die if it hits pipes. There are 2 actions that players can do:
clicking the screen or doing nothing. If players click the screen the bird will fly higher
a bit and if players do nothing, the bird will fall down a bit because of gravity. Players’
goal is to control the bird to stay alive and move forward as far as they could. Every time
players successfully fly through one pipe one score will be added on the scoreboard.
This game can be played in http://flappybird.io and the game screen capture shows it in
Fig. 1. Due to the fact that the agent can only do 2 actions and whether game over or not
is easy to conclude, flappy bird could be a fundamental research about training artificial
intelligence to play video game by deep reinforcement learning.

© The Author(s) 2023
N. Radojević et al. (Eds.): ICAID 2022, AHIS 7, pp. 1166–1174, 2023.
https://doi.org/10.2991/978-94-6463-010-7_120

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-010-7_120&domain=pdf
http://flappybird.io
https://doi.org/10.2991/978-94-6463-010-7_120

Using DQN and Double DQN to Play Flappy Bird 1167

Fig. 1. Screen capture of flappy bird [1]

2 Related Work

Training an agent to play video games which is designed for human and comparing the
level between agent and human is so fascinating that many people try to do this thing.
VMnih et al. has shown that agents can be trained to play the Atari 2600 games by
using deep reinforcement learning. DQN was used in their experiment [2, 3]. In DQN
algorithm, a Deep Q Network is used to evaluate the Q-function in Q learning. However,
using DQN will have an overestimation issue which may cause the convergence of
training in a low efficiency. Hado van Hasselt et al. [4] illustrate the overestimation in
the experiment training by DQN and modified DQN algorithm that turn it into Double
Deep Q-Network to resolve this issue. In this project, the author tries to claim how DQN
and DoubleDQN work, and uses these two algorithms to train agent to play flappy bird
and compare the performance and training loss. Some improvements of DQN are also
made.

3 Methodology

3.1 Reinforcement Learning

Reinforcement learning is a useful way for training an agent to act rationally in different
environments, which is comprised by some states (st). The agent has to choose actions
to interact with environment by observing the states and then it will get a reward or a
punishment (rt). Because of the actions did by agent, the environment might change, and
the agent needs to choose actions again due to the new state of environment (st+1) and
getting new reward or a punishment (rt+1). This process shows in Fig. 2 [5].

1168 K. Yang

Fig. 2. Reinforcement learning process [5]

Many reinforcement learning situation can be described asMarkov Decision Process
that a quintuple including S, A, P, R, γ. S is a states sequence extract from environment.
For example, the position of each Go chess piece can be the state when playing the game
of go. A is actions that an agent can select to do. P is the probability of one state turning
into another state. R is reward an agent can get when the transition is from one state
to another (the value of reward is negative representing punishment). Since immediate
reward is always important than future reward in real world situations, γ is set as discount
factor to adjust the influence caused by future reward so the cumulative reward can be
described rationally. γ equal to 1 means the author considers future reward as important
as immediate reward. In Makiov Decision Process, the next state only depend on the
previous state and the action, which is called Makrov property [5]. In order to compare
which state is better easily, a value function is defined as:

V π (s) = Eπ

[∞∑
i=0

γiri|s0 = s

]
(1)

It means by using a given policy π, the expectation of the cumulative reward in state
s as initial state s0. In most instances, the author wants agents to select the action that
can get the highest future cumulative reward so in the concepts of mathematics, the best
policy π∗ can be defined as:

π∗(st) = argmaxa∈A(st)

∑
st+1

P(st+1|st, a)V (st+1) (2)

After agent does an action a the st will change to st+1 in probability P (st+1|st, a),
the best policy π∗ guides the agent to choose the best action according to maximizing
the probability P (st+1|st, a) multiplying the next state value V(st+1).

Through mathematical manipulation the value function

V π (s) = Eπ

[∞∑
i=0

γiri|s0 = s

]
(3)

Using DQN and Double DQN to Play Flappy Bird 1169

can turn to

V π (s) = π(s)
∑
s′∈S

p
(
s, s′

)[
r0 + γV π

(
s′
)]

(4)

Which is called Bellman equation and the author gets

V (s) = r + γ
∑
s′S

p
(
s, s′

)
V

(
s′
)

(5)

when policy is stable. In fact, one policy can lead to many actions. In order to
describing cumulative reward on account of one action a and one states, theAction-Value
Function is defined as

Q(s, a) = ras + γ
∑
s∈S

p
(
s′|s) ∑

a′∈A
π

(
a|s′)Q(

s′, a′) (6)

from

V π (s) = π(s)
∑
s′∈S

p
(
s, s′

)[
r0 + γV π

(
s′
)]

(7)

In reinforcement learning issue, Q value of Action-Value Function can be an
important reference of agent to select a optimal action in certain states.

In our flappy bird game experiment, S is composed by series of four consecutive
screen capture as single state (since two consecutive screens capture show the bird’s
speed and direction, three tell us the bird’s acceleration, four consecutive screen capture
may be the best to describe the state in this game). [6] A is two actions the agent can
choose. The bird will flap when a = 1 or do nothing when a = 0. If agent successfully
goes through one pipe, reward is 1. However, if agent crushes the pipe or hits the ground
and causes game over, it will get −1 reward as punishment. In order to encourage agent
to stay alive longer, the author sets reward = 0.1 if agent survive in every time-step. γ is
set equal to 0.99. The agent does not know P in this game. Our goal is to train the agent
learn to select correct action by approximating the cumulative reward.

3.2 Q Learning

Q learning using a unique way to update Q function:

Q(s, a) ← Q(s, a) + α
[
r + γmaxQ

(
s′, a′) − Q(a, s)

]
(8)

α is a coefficient called appropriately decreasing learning rate. Using bellman equa-
tion, if the reward is known, in finite states the author can draw a Q value table which
depict convergence Q value in every action of every state and by choose the biggest Q
value the best action is found.

1170 K. Yang

3.3 Deep Q Network

The real world environment is complex, the possibility of state transition is unavailable,
and the state may be infinite. Making a Q value table for a simple reality situation may
be even impossible. Neural networks have proven to be a good tool to simulate nonlinear
functions so that it can be used in Q learning to simulate Q function in infinite states.
Combining neural network with Q-learning to realize deep Q-learning, a parameterized
value function from a common loss can be learnt:

Li(θ) = Es,a∼ρ(·)
[
1

2
(yt − Q(s, a; θt))

2
]

(9)

is used for function approximation,where define the parameters of the neural network
in time-step t as θt and define the target in time-step t value as yt. yt can be represented
as yt = Es′∼ε[r + γmaxQ

(
s′, a′, θt−1

)|s, a]
The gradient of the loss function with respect to the weights is

∇θt Lt(θt) = Es,a∼ρ(·);s′∼ε

[(
r + γmaxQ

(
s′, a′, θt−1

) − Q(s, a; θt)
)∇θtQ(s, a; θt)

]
(10)

So now the author could use stochastic gradient descent and back-propagation on the
above loss function to update the weights of the network to approximate the Q function.

3.4 Double Deep Q Network

Though DQN performs well in the deep reinforcement learning which uses high dimen-
sional as input to help agent make decision in large-scale problems, DQN has problems
about overestimation of approximate function. In DQN, the agent chooses the action by

aopt = argmaxQ(s, a; θt) (11)

In addition, it finds target network yt by

yt = Es′∼ε[r + γmaxQ
(
s′, a′, θt−1

)|s, a] (12)

Time-step t − 1 is compare with time-step t when updating the neural network
parameters, so actually the time-step that the agent chooses is the same as finding target
network, which means that θt is equal to θt−1 in the formula above. So the author
actually chooses and evaluates actions in the same sets of weights θ. The author uses it
to maximize the Q value twice. This leads the network resulting in overoptimistic value
estimates, which may cause insufficiently flexible function approximation and noise [4].
In simple terms, it is dispensable for the best action of the next state which has the highest
Q value [7]. In order to solve this issue, two parameters are used in DoubleDQN. One
parameter θ is used to select action and the other parameter θ′ is used to evaluate target
network. The target network in DoubleDQN is:

YDoubleQ
t = r + γQ

(
st+1, argmaxQ(st+1, a; θt); θ

′
t

)
(13)

Using DQN and Double DQN to Play Flappy Bird 1171

After choosing the best action according to the main network with parameter θt,
target network with parameter θ

′
t calculate the Q value due to this best action. Since Q

value calculated by target network is not necessarily the highest one, Double DQN can
decrease the probability of making sub-optimal overoptimistic choice.

Hado van Hasselt and Arthur Guez and David Silver make experiments to demon-
strates that DoubleDQN indeed can successfully reduce the overoptimism of Q-learning
[4].

4 Experiment and Discussion

The author implements DQN and Double DQN by in pycharm by using Keras.

4.1 Experience Replay

In videogames, consecutive frames aremuch correlated. If neural networkgets correlated
information as input, the training of neural network will be inefficient. So experience
replay should be used to de-correlate this situation [8]. Each (s, a, r, st+ 1) as experience
was stored in replay memory which has a certain size to only save the most recent
experiences. The author uses a mini-batch comprised of certain size uniformly selecting
experiences to train the neural network so the input correlation can successfully be
reduced.

4.2 ε-greedy Approach

Due to the fact that if concentrating in exploration, it may wastes too much time to find
a good action or if focusing on exploitation it may stuck into local optimum, there is an
exploration-exploitation trades off which needs to handle. Thus the author chooses a ran-
dom action with probability ε and chooses the optimal action aopt = argmaxQ(s, a; θt).
Since the agent will be able to choose rational action after a large number of transtep,
the ε will reduce from 0.1 to 0.0001 asymptotically in our experiment.

4.3 Model Architectures

The convolutional neural network used is learned fromMnih et al. [2],which is composed
by three convolution layers and amaximumpooling layer and two fully connected layers.
The input of the network is a 80 * 80 * 4 tensor from image captured from the game
screen which is removed unnecessary background and converted to grayscale in order to
train the network effectively. The input tensor is convolved with 32 filters of size 8 (stride
4) in the first convolution layer and then put into 2 * 2 max pooling layer. The second
convolution layer is composed of 64 filters of size 4 (stride 2) and the final convolution
layer has 64 filters of size 3 (stride 1). All these layers are separated by Rectifier Linear
Units (ReLU). After that, the tensor is sent to fully connected layers successively, then
the network exports the Q value of each action as its output. The author used Adma as
the optimization methods to train the network.

1172 K. Yang

Table 1. Time step and average score

Modified DQN Double DQN

Average score when 50000 training iterations 1.5 14.13

Average score when 100000 training iterations 84.6 102.17

Table 2. Time step and average score in [8]

Average score when 99000 training iterations 0.3

Average score when 199000 training iterations 11.6

4.4 Improvement

There are some reasons that may affect the training time so the author makes some
additional improvement to accelerate the training speed. First, the author separately save
the experiencewhich reward equal to 1 in order to keep it when the replaymemory is full.
Because agent merely passes the pipe at the start of training, the successful experience
to guide the agent is saved to choose the right action. Second, the agent chooses action
every 5 frame rather than every frame. This implement has two reasons: one is choosing
action in every 5 frame is more rational when comparing the result with human level
because human can not choose action every frame with human reflexes; other is doing
nothing in 4 frames in every 5make agent easily to stay in the middle of the screen where
the gap between the pipes appear in large probability so more successful experience in
a faster speed can be obtained. Third, due to the previous experiment the author finds
that agent always flies to the top of the screen and die. This may result of 0.1 reward
that is set to encourage agent to stay alive. In the beginning of training, the agent will
stay alive longer and get more reward if it always chooses fly action before it meets the
first pipe. So the author sets more −0.5 reward if the agent touch the top of the screen
as punishment to encourage the agent to get out of this dilemma.

5 Result

The experiment result implemented is much better than result in [8] shown in Table 1.
The overestimation problem in DQN is successfully solved when implementing

DoubleDQN.Loss is defined as the difference value between the simulateQ network and
Q target network. Two graphics are shown in Fig. 3 and Fig. 4 to intuitively understand
the difference between implement Double DQN or not (Table 2).

As can be seen in Fig. 3, red line which represents the loss of training implemented
Double DQN is manifestly lower than blue line which represent the loss of training
implemented DQN. The loss data is logged to see the result more obviously which is
shown in Fig. 4.

Using DQN and Double DQN to Play Flappy Bird 1173

Fig. 3. Convergent loss in experiment

Fig. 4. Logarithmic loss in experiment

6 Conclusion

In this project the author illustrates the theory ofDQNandDoubleDQNand successfully
implement them to train an agent playing flappy bird. The improvement the authormakes
in traditional DQN accelerates training speed and the result of experiment shows Double
DQN successfully settle overestimation problem inDQN.As for further study, the author
separately saves the experience which successfully passes pipes as improvement to
accelerate training speed but the fail experiences are also important to teach agent so it is
interesting to find out that the appropriate number of successful experience should be set
in experiment to minimize training time. Moreover, the author expects DQN and Double
DQN could implement in more complex action choosing games rather than flappy bird
whose agent has only two actions to choose. Overall, the author’s experiment shows
that the capacity and potential of deep reinforcement learning is implemented in video
games.

1174 K. Yang

References

1. 24 May 2018. http://flappybird.io/
2. Mnih V et al (2015) Human-level control through deep reinforcement learning. Nature

518(7540):529–533
3. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013)

Playing Atari with deep reinforcement learning. In NIPS deep learning workshop
4. van Hasselt H, Guez A, Silver D (2015) Deep reinforcement learning with double q-learning.

CoRR, abs/1509.06461
5. Rosset C, Cevallos C, Mukherjee I (2016) Cooperative multi-agent reinforcement learning for

Flappy Bird
6. Pilcer L-S, Hoorelbeke A, D’andigne A (2018) Playing Flappy Bird with deep reinforcement

learning. https://doi.org/10.13140/RG.2.2.13159.96165
7. Kong J, Shukla N (2018) Flappy Bird Hack using deep reinforcement learning with double

Q-learning
8. Chen K (2015) Deep reinforcement learning for Flappy Bird

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://flappybird.io/
https://doi.org/10.13140/RG.2.2.13159.96165
http://creativecommons.org/licenses/by-nc/4.0/

	Using DQN and Double DQN to Play Flappy Bird
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Reinforcement Learning
	3.2 Q Learning
	3.3 Deep Q Network
	3.4 Double Deep Q Network

	4 Experiment and Discussion
	4.1 Experience Replay
	4.2 ε-greedy Approach
	4.3 Model Architectures
	4.4 Improvement

	5 Result
	6 Conclusion
	References

