
Order Reduction of Continuous Time Linear
Interval Systems Using Whale Optimization

Algorithm

G. Ramesh1(B), M. Siva Kumar1, B. Dasu1, and R. Srinivasa Rao2

1 Department of EEE, Seshadri Rao Gudlavalleru Engineering College, JNTUK,
Gudlavalleru, A.P., India

ganta.ramesh25@gmail.com
2 JNTUK, Kakinada, A.P., India

Abstract. TheWhale Optimization Algorithm (WOA) is a nature-inspired meta-
heuristic optimization algorithm that replicates humpback whale social behaviour.
Themethodof bubble-net hunting inspired the algorithm. In this paper, the decreas-
ing Order Interval System was acquired using WOA from a higher order linear
continuous time interval model. The lower order system denominator and numer-
ator polynomials are obtained in this suggested technique by applying WOA
to minimise the cost function of Integral Squared Error (ISE). The WOA algo-
rithm outperforms both state-of-the-art meta-heuristic algorithms and traditional
approaches in terms of optimization results. The WOA method has been deter-
mined to be straightforward, easy to use, and to deliver the best answer. A numeri-
cal example from the literature is used to demonstrate the feasibility and usefulness
of this WOA.

Keywords: Whale Optimization Algorithm · Reduced Order Interval Model ·
Integral Square Error · Impulse Response Energy

1 Introduction

Technology, as well as highly complex, large-scale, and unpredictable societal and envi-
ronmental systems, have created a host of problems. Most large-scale systems fail to
achieve centrality due to a lack of centralised computational capabilities or centralised
information. Many real-world problems have large scale dimensions by necessity rather
than choice. Large scale systems are significant because of their hierarchical (multilevel)
and a system of decentralisation, which depict systems dealing with society, business,
management, the economy, the environment, energy, power networks, transportation,
and aerospace. Many researchers around the world have devoted significant effort to
massive systems in the recent past due to the decentralised and hierarchical control
properties and potential applications.

Scientists and engineers have frequently had to analyse, design, and synthesise real-
world problems. The initial step in such studies is that development of a ‘mathematical
model’ that can be used to simulate the real-world problem.
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One of the most important subjects is the analysis of higher order systems. It is
an unarguable conclusion that the development of a mathematical model of a physical
system enabled it to be analysed and designed. When a physical system is represented
mathematically, it can produce a transfer function of very high order. When applied to
a higher-order system, available methods for analysis and design may become cumber-
some. At this point, it is unavoidable that the use of order reduction methods will result
in less computational effort and process time.

Simulating and designing complex models is made easier by approximating original
higher order processes to decreasing order models. The research area of order reduction
techniques has grown tremendously, resulting in the development of a diverse range of
techniques. Furthermore, uncertainty is expressed in a variety of ways in engineering
and scientific designs, such as convex or ambiguous descriptions to varying degrees,
necessitating a study to estimate the least andhighest boundaries of the systemparameters
for a thorough evaluation. So, Interval plants are those that have fixed coefficients but
are uncertainty within a specific range.

Interval systems have also been studied in the literature for their stability and transient
analysis [1–4]. Routh approximation [5], γ-δ Routh approximation [2], and a straight-
forward direct method using γ table have been put forward for getting decreasing order
continuous time interval systems.Toovercome the system’s instability,Dolgin andZeheb
[6] modified the Bandoypadhyay [7] method proposed a new hybrid method. Unfortu-
nately, Hwang et al. [8] made a point of saying on Dolgin’s method and demonstrated
its failure to achieve stability. Aside from these, a number of other mixed methods [9–
15] have recently been proposed to reduce system complexity while increasing system
accuracy.

This paper proposes and tests an order reduction method for continuous time linear
interval systems using WOA.

Seyedali Mirjalili developed WOA [16] by observing the foraging behaviour of
Humpback whales. Bubble-net feeding is a unique hunting methodology that are used
bywhales, inwhich thewhale creates two paths to the prey.WOAwas created in response
to the whales’ unique hunting method.

2 Statement of the Problem

Consider the following higher order interval system that is asymptotically stable:
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where p−
i < pi < p+

i , for i = 0, 1, 2, 3, 4 . . . k − 1 and q−
i < qi < q+

i , for i =
0, 1, 2, 3, 4 . . . k are lower and upper bounds for numerator and denominator polynomial
parameters in reduced order interval models, respectively.

It is required to decrease the order of the system (1) into (2). Equation (1) represents
the Higher Order Interval System as 4 Kharitonov’s transfer functions with constant
parameters [9]. They have presented as:
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After getting parameters of the algorithm, the Kth order and Ith fixed parameter
decreasing order model can be constructed as follows:

RI
k(s) = nIk(s)

dI
k (s)

= pI k−1s
k−1 + pI k−2s

k−2 + · · · + pI 0
qI ksk + qI k−1sk−1 + qI k−2sk−2 + · · · + qI 0

(4)

Using the following equation, this procedure has used to all 4 Transfer functions of
Kharitonov, and the decreasing order interval model was obtained with the coefficients
of polynomials with numerator and denominator as:

Rk (s, p, q) =
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]
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(5)

2.1 Overview of Whale Optimization Algorithm (WOA)

WOA stands forWhale Optimization Algorithm. It is a meta-heuristics algorithm.WOA
was inspired by social behaviour as well as humpback whale bubble-net hunting in
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Fig. 1. Humpback whales eating with bubble nets.

the oceans. The bubble-net feeding strategy is a unique hunting mechanism used by
humpback whales. Humpback whales prefer to hunt for small fish at the water’s surface.

Foraging has been observed to be done by bubbles that are distinct along a
‘9’-shaped or circle-shaped path, as shown in Fig. 1. Upward spirals and double loops are
two bubble net feeding manoeuvres. In ‘upward-spirals’ maneuver Humpback whales
use the ‘upward-spirals’ move to descend roughly 12 m below the surface and then
build a spiral of bubbles around their meal before swimming all the way to the top. The
‘double-loops’ manoeuvre has three stages: the coral loop, the lobtail, and the catch loop.
Only humpback whales are known to engage in bubble-net feeding. The bubble-net spi-
ral feeding maneuver is explained mathematically in the whale optimization algorithm
(WOA) in order to accomplish optimization.

2.2 WOA Implementation for Order Reduction

The following is a step-by-step procedure for implementing WOA.
Step 1: Exploration Phase (Searching Model): The investigator (humpback whale)

searches for the most effective solution (prey) at random depends on the position of each
agent. Agent of discovery position will be updated during this phase by using a rather of
using the optimal search agent, a random search agent is used. Following that, if {|A| >
1}, as defined in Eq. 8, then divert the search agent away from the reference whale.

�D =
∣∣∣ �C ∗ �Xrand − �X

∣∣∣ (6)

�X (t + 1) = �Xrand − �A ∗ �D (7)

where �Xrand is a population-based random location vector, and �A, �C are vectors of
coefficients that are being used to discover the most effective search agents:

�A = 2 ∗ �a ∗ �r − �a (8)

�C = 2 ∗ �r (9)

where �r is a range of randomvectors [0, 1] and �a during the iterations, the value decreases
linearly from 2 to 0.
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Fig. 2. Different placements from {(X, Y)} to {({X′}, {Y′})}

Step 2: Surrounding Prey: The best candidate solution available right now is believed
to be close to the prey on the hunt, while other solutions adjust their positions in relation
to the best agent.

�D =
∣∣∣ �C ∗ �Xbest(t) − �X (t)

∣∣∣ (10)

�X (t + 1) = �Xbest(t) − �A ∗ �D (11)

where t is the current iteration, �Xbest is the best solution’s position, �X refers to the vector
of position of a solution.

Step 3: Attacking with a bubble net (exploitation phase): Two techniques to
statistically modelling humpback whale bubble-net behaviour are as follows:

i) The value of �A in this mechanism is a random value within the [−a, a] interval,
and over the course of iterations, �a is reduced from 2 to 0. Let define �A values at
random in [−1, 1]. A new search agent position can be created anywhere between the
current best agent’s position and the agent’s original position. The graph depicting
the different placements from {(X, Y)} to {({X′}, {Y′})} (Fig. 2).

ii) Position updating spiral: The separation between both the whale {(X, Y)} and the
prey {({X′}, {Y′})} is calculated first in this method.

The spiral equation underlying humpback whales’ helix-shaped movement to
describe the position among both whale and prey is:

�X (t + 1) = �D′′ ∗ ebl ∗ cos(2π l) + �X ′ (12)

where �D′′ =
∣∣∣ �X ′(t) − �X (t)

∣∣∣ represents the distinction between the whale and its prey

(best solution found here so far), l is a number at random between [−1, 1], and b is a
constant that defines the logarithmic spiral’s shape.

The mathematical model behind the humpback whale’s swimming style around the
prey using a shrinking circle and also following a spiral-shaped path at the same time:

�X (t + 1) =
{ �X ′

(t) − �A ∗ �D if p < 0.5
�D′′ ∗ ebl ∗ cos(2π l) + �X ′ if p ≥ 0.5

(13)
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Fig. 3. The spiral updating position

Table 1. WOA settings

Size of the group 20

Variable limitations [0–10]

Maximum no of Iterations 50

where p represents the probability of selecting one of these two methods to keep track
of the whereabouts of whales. Let’s say that the probability of choosing between the
two approaches is 50%. Then, p is a random number in [0, 1]. The graph that shows the
spiral updating position (Fig. 3).

The decreasing order model is created by minimising ISE with WOA and Table 1
summarizes the parameters.

3 Error in Integral Square

The integral square error (ISE) among both higher order interval system model and
decreasing order interval system transient responses is given by:

ISE =
∫ ∞

0

[
y(t) − yr(t)

]2 (14)

where y(t) and yr(t) are the original higher order interval model and decreasing order
interval system unit step responses, respectively.

4 Application of Proposed Method

This section contains an example to demonstrate the method.
Example: Consider an asymptotically stable Higher Order Interval System [4]

G(s)

= [1.9, 2.1]s6+[24.7, 27.3]s5+[157.7, 174.3]s4+[542, 599]s3+ [930, 1028]s2+[721.8, 797.8]s1+ [187.1, 206.7]
[0.95, 1.05]s7+[8.779, 9.703]s6+[52.23, 57.73]s5+[182.9, 202.1]s4+[429.1, 474.2]s3+ [572.5, 632.7]s2+[325.3, 359.5]s1+ [57.35, 63.93]
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Using the procedure given in (3), the four-fixed parameter Kharitonov transfer
functions are obtained as follows

G1(s) = 2.1s6 + 24.7s5 + 157.7s4 + 599s3 + 1028s2 + 721.8s + 187.1

1.05s7 + 9.703s6 + 52.23s5 + 182.9s4 + 474.2s3 + 632.7s2 + 325.3s + 57.35

G2(s) = 2.1s6 + 27.3s5 + 157.7s4 + 542s3 + 1028s2 + 797.8s + 187.1

0.95s7 + 9.703s6 + 57.73s5 + 182.9s4 + 429.1s3 + 632.7s2 + 359.5s + 57.35

G4(s) = 1.9s6 + 27.3s5 + 174.3s4 + 542s3 + 930s2 + 797.8s + 206.7

1.05s7 + 8.779s6 + 57.7s5 + 202.1s4 + 429s3 + 572.5s2 + 359.5s + 63.39

G3(s) = 1.9s6 + 24.7s5 + 174s4 + 599s3 + 930s2 + 721.8s + 206.7

1.05s7 + 8.779s6 + 52.23s5 + 202.1s4 + 474.2s3 + 572.5s2 + 325.3s + 63.39

The 2nd order reduced models are given by

R1
2(s) = 3.823s + 5.709

s2 + 4.347s + 1.75

R2
2(s) = 4.626s + 2.649

s2 + 3.045s + 0.8118

R3
2(s) = 4.142s + 3.967

s2 + 3.265s + 1.216

R4
2(s) = 3.961s + 2.178

s2 + 2.425s + 0.668

The decreasing order interval system can then be constructed using (5) and is
provided by

R2(s) = [3.823, 4.626]s1 + [2.178, 5.709]

[1, 1]s2 + [2.425, 4.347]s1 + [0.668, 1.75]

Integral Square Error (ISE) values of original higher order Interval system and
decreasing order interval system that are generated by suggested method are calculated
and Table 2 contains the results.

And similarly ImpulseResponseEnergy (IRE)values of original higher order interval
model and decreasing order interval system that are generated by suggested Method are
calculated and Table 3 contains the results.

4.1 In Comparison to Another Method

To demonstrate the effectiveness of the suggested method, numerical examples are used
and compared to other methods (Gamma Delta [2], Mixed Method [3], and Mixed
Evolutionary Method [5]) presented in the literature.

i) Method in Gamma Delta [2] yields the 2nd order reduced interval model.

R2b(s) = [1.61, 1.84]s1 + [0.27, 0.53]

[1, 1]s2 + [0.52, 0.83]s1 + [0.08, 0.16]
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Fig. 4. Upper Bound Step Response
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Fig. 5. Lower Bound Step Response

Table 2. ISE Values in Comparison

Transfer function 1st Kharitonov
Transfer function

2nd Kharitonov
Transfer function

3rd Kharitonov
Transfer function

4th Kharitonov
Transfer function

Proposed method 0.55202 0.25644 0.14808 0.6586
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Table 3. IRE Values in Comparison

Transfer function 1st Kharitonov
Transfer function

2nd Kharitonov
Transfer function

3rd Kharitonov
Transfer function

4th Kharitonov
Transfer function

Proposed method 0.772 0.771 0.759 0.750
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Fig. 6. Comparison with Upper Bound Step Responses

ii) Method inMixedMethod [3] is used to obtain the 2nd order reduced interval model.

R2s(s) = [260.955, 861.331]s1 + [175.232, 218.581]

[364.72, 366.62]s2 + [281.08, 282.35]s1 + [59.74, 61]

iii) Method inMixed EvolutionaryMethod [5] is used to generate the 2nd order reduced
interval model.

R2s(s) = [562.4, 555.6]s1 + [181.6, 205.4]

[319.49, 406.63]s2 + [259.89, 300.36]s1 + [57.352, 63.389]

Comparison with other methods:
Figures 4, 5, 6 and 7 show comparison of step responses of decreasing order interval

model obtained by the suggested method and interval system getting fromGammaDelta
[2], MixedMethod [3], andMixed EvolutionaryMethod [5]. The simulated results show
that the ROIM responses obtained using the suggested technique closely approximate
the HOIS.
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Fig. 7. Lower Bound Step Response Comparison

5 Results and Discussion

The decreasing order interval model coefficients in the denominator and numerator
were obtained by minimization of a cost function ISE between the higher order interval
model and the decreasing order interval system in this suggested method. Because this
method avoids interval arithmetic, the computation complexity associated with interval
arithmetic is reduced. The acquired ISE and IRE values for original higher order interval
systems and decreasing order interval models are shown in Tables 2 and 3. The proposed
method’s transient and steady state responses of a lower order interval model are closely
matched. In order to solve complicated issues, the suggested method employs a new
optimization strategy based on nature-inspired meta-heuristics from social behaviour
and humpback whale bubble-net hunting in oceans. This approach tunes with a single
parameter, reducing computing time and making it simple and quick to apply.

6 Conclusion

This paper describes how toobtain a decreasingorder linear time invariant interval system
from a higher order interval model by minimising ISE with WOA. This optimization
technique has been demonstrated to produce a robustly stable decreasing order interval
system. It has the benefit of being mathematically simple. This technique produces an
acceptable step response by reducing a higher order interval model to a decreasing order
interval system. This method is simple and produces reliable decreasing order interval
systems. The efficiency of the suggested strategy is demonstrated in this paper through
a numerical example.
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