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Abstract. Electric vehicles have become much more common in our daily lives
as a result of technological advancements. This may cause tremendous growth
in the consumption of electrical energy. The globe is moving toward the alterna-
tive energy generation as a result of global warming and the depletion of fossil
resources. Hence ingress of renewable energy into the power sector is inevitable
resulting in unavoidable power system uncertainty. Consequently, synchronous
generators must function in a wide range of unpredictably changing operational
conditions. Hence, tuning of Power System Stabilizer (PSS) parameters over a
wide range is required. This research provides a new way for constructing a lead-
lag PSS that can effectively stabilize the system under wide operational scenarios.
The PSS parameters are tuned using the simple stability conditions proposed to
ensure power system stability, and the interval coefficients quantify the uncertainty
in the system parameters under practical situations. To improve the proposed lead-
lag PSS’s performance, an objective function is defined. The Jaya algorithm is used
to fine-tune the PSS parameters. The robustness of the proposed PSS design is
confirmed by a case study of a single machine infinite bus (SMIB) power system.
Simulation results reveal that the suggested lead-lag PSS is more successful than
other well-known controllers in the literature when the system is induced with a
step load disturbance for a wide set of operational states.
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1 Introduction

Power engineers are concernedwith themitigation of LowFrequencyOscillations (LFO)
in a huge power system network. Because, the weak damping effect of the oscillations
restrict the tie-line power flows and can even induce blackouts. The net damping effect
is improved by adding an auxiliary device to the field system, such as a PSS [1]. The
change in speed, accelerating power [2], or a combination of these two can be used
as the stabilizer’s input, while the stabilizer’s output is the voltage provided to the
field system. Demello [3] provides a framework for designing PSS for many of the
existing approaches. On the other hand, classical PSS design is for a specific operating
condition, therefore change in the operating state can lead to poor PSS performance and
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even system instability. As a result of the varying system conditions, tuning the PSS
parameters over a wide range is required to assure power system stability. Furthermore,
the design techniquesmust result in acceptable PSSperformance for different operational
conditions. However there exist many methodologies to tune the PSS parameters using
linear control approaches such as linear quadratic regulator [4], pole placement [5],
sliding mode control [6], linear matrix inequalities [7], quantitative feedback theory [8],
H2 or H∞ [9] framework and non-linear methods like adaptive control [10], self-tuning
[11] and heuristic dynamic programming [12] methods. Also, artificial intelligence and
optimization techniques [13] were used to determine the PSS settings for wide range of
operational scenarios.

However, several of the suggested solutions require a large amount of systemvariable
data or extensive eigen value analysis. In addition, to deal with large load variation,
the system has a separate controller for each loading state, such as heavy, nominal, or
light to provide proper dynamic stability. As a result of this, the system’s costs may rise.
Artificial Intelligence approaches like fuzzy logic andneural networks provide promising
results for nonlinear power system stability. But the drawback of these methods include
the complexity of training for ANN and the need for extensive system knowledge for
Fuzzy logic. However, system uncertainties can be dealt with adaptive and robust control
techniques. In the adaptivemethod, system conditions are determined online and tune the
controller parameters. But PSS settings may be improperly tuned due to time delays in
the PSS, presence of noise, and loss of input data. However, in robust control, all possible
practical operating conditions are considered offline and design a fixed controller hence,
favourable in implementing for practical power systems. But, a robust control method
like H∞ attains a controller of higher-order and LMI technique needs to find the weight
functions.

Although interval systems absorb all system uncertainties and store them in trans-
fer function coefficients, this method has received little attention in the power systems
community. However, the present PSS design methodologies that use interval systems
employ kharitonov theorem [14]. But, according to it, the interval coefficients should be
independent of each other hence, resultsmay be conservative. On the other hand, stability
of interval system employing PSO, tune the poles of eight kharitonov polynomials [15]
necessitates a significant amount of calculation. To overcome the limitations and short-
comings of existing methodologies simplified inequality stability constraints are derived
directly from interval polynomial without the requirement to formulate the Kharitonov
polynomials in this research study. The Jaya optimization [16] algorithm is employed
to fine-tune the PSS parameters while meeting the inequality stability constraints and
reducing the stated objective function.

2 Problem Formulation

For small signal stability, the system dynamics can be given by the equations that are
linearized around the operational state, and Fig. 1 shows the block diagram of linearized
equations known as the Heffron-Pilliphs model [3]. With the exception of k3, all of the
model parameters from k1 to k6 depend on load, Manson’s rule can be used to compute
the plant’s transfer function G(s) without the controller and it is given as:
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Fig. 1. SMIB power system linearized model

G(s) = �ω(s)

�Vref (s)
= −bs

a4s4 + a3s3 + a2s2 + a1s + a0
(1)

The transfer function coefficients are:

a4 = MTTE; a3 = M (T + TE); a2 = M + 314k1TTE + kEk3k6M
a1 = 314k1(T + TE) − 314k2k3k4TE;
a0 = 314(k1 − k2k3k4 − kEk2k3k5 + kEk1k3k6) and b = kEk2k3

⎫
⎬

⎭
(2)

where T = k3T
′
do

The field time constant, machine inertia constant, exciter time constant, and machine
loading all influence the transfer function coefficients. As a result, as the system load
changes over time, so do the transfer function coefficients. The coefficient upper and
lower limits can be calculated by changing the loading condition throughout a specific
range, i.e. P ε [PL, PH ] and Q ε [QL, QH ]. Then the following polynomial in interval
form can be used to approximate the transfer function.

G(s) = N (s, b)

D(s, a)
= −[

b−, b+]
s

[
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4

]
s4 + [

a−
3 , a+

3

]
s3 + [

a−
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]
s2 + [

a−
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]
s + [

a−
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0

]

(3)

where a−
i = min

P,Q(ai); a+
i = max

P,Q(ai); b− = min
P,Q(b); b+ = max

P,Q(b) for i = 1, 2, 3, 4.
The open loop system is unstable at particular operational points. As a result, a

controller must be developed to keep the system stable under all operating conditions.
This research work presents how to construct a fixed parameter robust Lead Lag PSS,
as the operational state varies over a specific bound, such as P ε [PL, PH ] and Q ε [QL,
QH ]. The fixed polynomial stability conditions given by Nie and Xie [17] are used to
develop the new simple stability conditions. The robust controller parameters are then
designed for a specific bound of operational states for the SMIB system using the newly
developed necessary and sufficient conditions.
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3 Development of New Stability Constraints

Consider a real polynomial of nth order in interval form:

P(s, p) = pns
n + pn−1s

n−1 + −− + p1s + p0 (4)

where the coefficient pj defined in terms of system parameters is always within the lower
and higher limits as the variables changes due to system uncertainty as:

pj =
[
p−
j , p+

j

]
for j = 1, 2, 3 . . . n.

The polynomial degree is considered to be constant throughout the interval family
and referred as an interval polynomial. If the family of polynomials given by Eq. (4) is
Hurwitz then the interval polynomial is said to be stable. The new stability constraints
for this interval polynomial (4) are constructed using the simple stability conditions of
a fixed polynomial developed by Nie and Xie [17]. They are as follows:

3.1 Lemma 1: The polynomial P(s, p) in interval form as given in Eq. (4) is Hurwitz

for all pj ∈
[
p−
j p

+
j

]
where j = 0, 1, 2, 3 . . . n if and only if they satisfy the following

necessary conditions.

pj > 0 and pjpj+1 > pj−1pj+2 (5)

The above necessary conditions are further simplified into fixed coefficients as
follows:

p+
j ≥ p−

j > 0 for j = 0, 1, 2, 3 . . . n

p−
j p

−
j+1 > p+

j−1p
+
j+2 for j = 1, 2, 3 . . . n − 2

}

(6)

3.2 Lemma 2: The polynomial P(s, p) in interval form as given in Eq. (4) is Hurwitz

for all pj ∈
[
p−
j p

+
j

]
where j = 0, 1, 2, 3 . . . n if and only if they satisfy the following

sufficient conditions.

pj > 0 and 0.4655pjpj+1 > pj−1pj+2 (7)

The above sufficient conditions in interval form are further simplified into the fixed
coefficients as follows:

p+
j ≥ p−

j > 0 for j = 0, 1, 2, 3 . . . n

0.4655p−
j p

−
j+1 > p+

j−1p
+
j+2 for j = 1, 2, . . . n − 2

}

(8)

Hence, the robust stability conditions for a fifth order SMIB power system are as
follows:
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⎫
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⎪⎭
(9)

The newly obtained necessary and sufficient stability conditions, given by Eq. (9) are
applied to design an optimal Lead Lag PSS for a wide operating SMIB power system.
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4 Designing a Lead Lag PSS for a Wide Operating SMIB Power
System

As a case study the SMIB power system is taken with the machine data from [18]. Over
the following ranges, the active power (P) and reactive power (Q) are considered to alter
independently. i.e.,P ε [0.4, 1.0] andQ ε [−0.1, 0.5],with the desired step size to get 1024
operational states. This includes almost all commonly seen operating circumstances. The
interval coefficients are obtained fromminimumandmaximumvalues of each coefficient
and are given by:

a4 = [1, 1]; a3 = [22, 22]; a2 = [80, 106];
a1 = [574, 996]; a0 = [1030, 2550]; b = [4.6, 11.55]

}

(10)

The plant’s open-loop interval transfer function is determined by substitutingEq. (10)
into Eq. (3) as follows:

G(s) = [−4.6,−11.55]s

[1, 1]s4 + [22, 22]s3 + [80, 106]s2 + [574, 996]s + [1030, 2550]
(11)

The minimum damping ratio (ζmin) is computed for 1024 operational states to
demonstrate the open-loop system’s damping characteristics and it is presented in Fig. 2.

ζmin is very low for certain operational states illustrating the weak dampening, caus-
ing the system to unstable in the face of uncertainty. To robustly stabilize the system for
1024 operational states a lead lag PSS as given by Eq. (12) is considered in this research
study.

Gc(s) = K
(1 + sT 1)

(1 + sT 2)
(12)

Fig. 2. The open loop system minimum damping ratio of 1024 operational states
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where K is the controller gain and T1, T2 are the time constants. However, from [3],
T2 is taken as 0.05 to give satisfactory dynamic response. Consequently, the following
equation gives the plant’s closed-loop transfer function:

T (s)
= [−4.6,−11.55] ∗ (1+0.05s) ∗ s

[1, 1] ∗ 0.05 ∗ s5 + ([22, 22] ∗ 0.05 + [1, 1])s4 + ([80, 106] ∗ 0.05 + [22, 22])s3

+ ([574, 996] ∗ 0.05 + ([80, 106] + [4.6, 11.55] ∗ K ∗ T1)s2

+ ([1030, 2550] ∗ 0.05 + [574, 996] + [4.6, 11.55]K)s + [1030, 2550]
(13)

The closed-loop transfer function characteristic equation is obtained from above as
follows:

D(s, a) = [0.05, 0.05]s5 + [2.1, 2.1]s4 + [26, 27.3]s3

+ [108.7 + 4.6 ∗ K ∗ T1, 155.8 + 11.55 ∗ K ∗ T1]s
2

+ [625.5 + 4.6 ∗ K, 1123.5 + 11.55 ∗ K]s + [1030, 2550] (14)

Apply the new stability conditions fromEqs. (9) toEq. (14), the inequality constraints
are determined as follows:

Constraint 1: (2550) ∗ (27.3)

[(625.5 + 4.6 ∗ K) ∗ (108.7 + 4.6 ∗ K ∗ T1)]
− 0.4655 < 0 (15)

Constraint 2: [1123.5 + 11.55 ∗ K] ∗ 2.1

[108.7 + 4.6 ∗ K ∗ T1] ∗ 26
− 0.4655 < 0 (16)

Constraint 3: [155.8 + 11.55 ∗ K ∗ T1] ∗ 0.05

26 ∗ 2.1
− 0.4655 < 0 (17)

Constraint 4: − 625.5 − 4.6 ∗ K < 0 (18)

Constraint 5: − 108.7 − 4.6 ∗ K ∗ T1 < 0 (19)

The parameters of the lead lag PSS are minimized using the below objective function
as:

Jmin = abs(K) + abs(T1) (20)

The optimum parameters are found by minimizing Eq. (20) while meeting the set of
inequality constraints defined by Eqs. (15)–(19). To compute the parameters of lead lag
PSS, the proposed algorithm is constructed in MATLAB and uses the Jaya optimization
technique. The following are the PSS parameters:

K = 5.3164, and T1 = 4.9624 (21)
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5 Jaya Optimization Technique

Design variables are more prevalent in real time design challenges and settings. Further-
more, the impact of them to achieve the target is substantial and the program developer
demands for global minima, even though the objective function may stick in local min-
ima. Hence conventional approaches are inefficient for tackling such issues since they
only compute local optima. As a result, an intelligent strategy is necessary for efficiently
handling limited design problems. In this research work Jaya Optimization algorithm

Fig. 3. Jaya Algorithm Flow Chart
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is employed since it is free of algorithm specific parameters and reduces the compu-
tational efforts. Constraints handling was done by adopting penalty method. The flow
chart shown in Fig. 3 presents the algorithm steps to attain the optimal solution.

6 Simulation Results and Discussions

For heavy, nominal and light operating states, the system is simulated using the Heffron-
Philiphs model as given by Fig. 1 in MATLAB-SIMULINK. The efficiency of the pro-
posed methodology is evaluated for each of the three scenarios by subjecting the system
to 10% mechanical step disruptions. Figures 4, 5, and 6 depict the plant’s speed devia-
tion responses, respectively. The addition of PSS to the machine improves its dynamic
stability.

The proposed lead lag PSS has a shorter settling time than the other prominent
controllers in the literature even though peak values more or less same. Therefore, under
various loading situations, the proposed Lead Lag PSS effectively dampens system
oscillation for the provided disturbance. Therefore, under all operational situations, the
proposed method outperforms the other controllers in terms of dynamic performance
for the system’s uncertainties.

Fig. 4. Speed deviation response at heavy load for 10% step mechanical disturbance
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Fig. 5. Speed deviation response at nominal load for 10% step mechanical disturbance

Fig. 6. Speed deviation response at light load for 10% step mechanical disturbance

7 Conclusion

In the proposed control scheme the PSS parameters are attained by satisfying the five
simple stability constraints and minimizing the stated objective function using the JAYA
optimization algorithm. Robust stability conditions are obtained directly from the closed
loop transfer function of SMIBpower systemgiven in interval polynomial form.Whereas
for PSS [15] the controllers parameters are tuned using the objective function that com-
prises eight kharitonov polynomials. The PSO optimization technique was employed
to determine the design variables. Moreover for PSS [14], the root locus is obtained
for eight extreme kharitonov polynomial and controller values are determined. Hence
computational efforts reduce greatly with the proposed control scheme since there is no
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need of formulating the kharitonov polynomials and tuning the PSS parameters. The
attained PSS parameters stabilizes the system for wide operational states and simulation
results exhibit the efficiency of the proposed lead lag PSS compared to the notable PSS
techniques.
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