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Abstract. Based on the contact characteristics of helical surfaces and the coex-
istence of rolling and sliding at the screw-roller interface, a forecast model of the
thread pair using Archard wear theory is proposed. To obtain the wear depth and
the wear volume of the screw raceway in the whole effective stroke, a test rig of
the thread wear is developed to obtain the wear rate that can be used to fit the
values of the stress index and speed index. The area coefficient is further deduced
to reflect the real wear condition. The calculation method of the relative sliding
speed, coordinate transformation and load distribution are provided, the finite ele-
ment (FE) model is established, and the transient dynamic simulation of the thread
wear is implemented to verify the correctness of the wear model. The relative error
is less than 9% between the FEmodel and proposed model by comparing the wear
depths and wear volumes, which indicates the wear model proposed in this paper
is valid and can be used to forecast the thread wear of the PRSM. Finally, the wear
behavior of the thread pair is preliminarily discussed based on the FE model.

Keywords: Planetary roller screw · Adhesive wear · Simulation analysis · Wear
depth · Sliding wear

1 Introduction

The planetary roller screw mechanism (PRSM) is a mechanical transmission device
used to convert rotary motion into linear motion (as shown in Fig. 1). It provides more
contact points than for the same size of ball screw mechanism. The PRSM has a higher
stiffness, a higher load capacity and 15 times the travel life of similarly sized ball screw.
These advantages make it a suitable device for feed-drive applications. In addition,
the PRSM offers a perfect replacement for hydraulics because of its load and cycle
capability [1]. Recently, increasing demands in precision engineering applications for
positioning systems have instigated research into the PRSM as it can be involved in
electromechanical actuators developed for all electric aircraft [2], thrust vector control
[3] and ship engineering [4].

As shown in Fig. 1, the principle components of the PRSM are screw, nut and equally
spaced rollers. The screw and nut with a multistart straight-shaped thread provide a
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Fig. 1. The planetary roller screw mechanism

helical raceway for the multiple rollers, and the roller is a singlestart rounded-shaped
thread that provides better contact characteristics. The rollers are rolling elements of
the PRSM and have small thread height and pitch to engage with the screw and nut
threads. Their threads are manufactured with a rounded half section to enhance the
contact characteristics. Such a robust design is particularly well suited for applications
that require very high positional accuracy, high loads and high speeds.

In the wear research of the thread transmissions, Aurégan et al. [5] investigated
the tribological behavior of a thread pair, and wear tests were performed on a rolling-
sliding test rig. The results reveal that adhesive wear occurrence is strongly influenced
by rolling speed and normal load. They also studied the tribological behavior of helical
surfaces with hard coatings. The wear state of hard coatings was further studied under
different working conditions, and the two damage modes were identified [6]. Xie et al.
[7] established a mixed lubrication model considering parameters such as contact load,
thread geometry and surface roughness. Zhou et al. [8] calculated the sliding velocity
of the contact point in PRSM, and studied the lubrication characteristics and transient
behavior of the PRSM based on the transient mixed elastohydrodynamic lubrication
model.

In the study of contact characteristics, rolling-sliding and load distributions are
related to wear. Sandu et al. [9] established a general model of the thread profile that can
be used to calculate the geometric profile of the threads with various configurations and
optimized thread profile parameterswere obtained based on themodel. Then, Sandu et al.
[10] deduced the calculation formula of the principal curvature of the helical surface,
presented the calculation method of the size, geometry and orientation of the contact
ellipse, and studied the kinematic characteristics of the local contact area. According to
the characteristics of helical surfaces of screw, rollers and nut, Qiao et al. [11] estab-
lished a general profile equation and helical surface equation of components in a normal
section, modified the calculation method of principal curvature and analyzed the contact
characteristics. Velinsky et al. [12] presented a kinematic model to reveal that there is
always slip between the screw and the roller in the axial direction. Furthermore, Jones
et al. [13] developed a kinematic model to predict the axial migration of rollers with
respect to nut in the PRSM. Ma et al. [14] studied the rolling-sliding characteristics by
calculating the relative velocities of contact points on screw-roller and nut-roller inter-
faces, and the nut side, and the influence of the contact angle, helix angle and thread
number of the roller on sliding-rolling ratios was considered. Abevi et al. [15] presented
a hybrid model using the bar, beam, and nonlinear spring elements to compute the load
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distribution and axial stiffness of the PRSM. Zhang et al. [16] proposed a model to cal-
culate load distributions over PRSM threads with pitch deviation, the influence of pitch
deviation on load distributions can be verified by comparing wear depths.

The existing research provides a theoretical basis for the modelling and analysis of
the thread wear. However, when the PRSM accelerates or decelerates, frictional heat will
result in the deterioration of lubrication, which will further lead to wear at the contact
area in the PRSM. Wear can increase the clearance of meshing threads and decrease the
PRSM’s transmission performance and lifespan. At present, research on wear mainly
focuses on experimental research, and few researchers have proposed models to inves-
tigate the wear behavior of the PRSM. In addition, the PRSM is a closed system, and
it is difficult to study wear when it is directly moving, especially multiple threads with
different contact conditions. Therefore, this paper provides a fundamental examination
of the thread wear based on the rolling and sliding at the screw-roller interface. First, in
Sect. 2, a new wear model is developed based on adhesive wear theory. Second, a test
rig of the thread wear is developed to obtain the wear rate that can be used to fit the
stress index and speed index. Third, the calculation method of the relative sliding speed,
coordinate transformation and load distribution are provided. To verify the correctness
of the wear model, the FE model is established, and the transient dynamic simulation
of the thread wear is implemented in Sect. 3. Finally, the correctness of the model is
verified by comparing the wear depth and wear volume calculated by the FE model.

2 Modelling

2.1 Modelling of Wear

The accuracy loss of the PRSM is mainly caused by the wear. The wear types of the
PRSMmainly include contact fatigue wear and adhesive wear. The contact fatigue wear
mainly reflects the fatigue damage in the thread raceway, which is usually used to predict
the service life. The adhesive wear is the main factor leading to accuracy degradation.
Because the helix angle of the roller thread is equal to that of the nut thread and the gear
teeth at both ends of the roller mesh with the internal gear ring, pure rolling between
the roller and the nut can be ensured. In contrast, the sliding exists at the screw-roller
interface [12]. The motion characteristic of the coexistence of rolling and sliding is the
main cause of wear. Therefore, the wear at the screw-roller interface is focused in this
paper.

In the PRSM, the hardness of the screw raceway (54–60 HRC) is lower than that of
the roller (60–64 HRC), which means that the screw raceway is prone to the adhesive
wear. Based on Archard wear theory, under the normal load Ni, the normal wear depth
of the contact position between the ith roller thread and screw raceway can be expressed
as:

�δi = Wi

Ai
= K

Ni

πHaibi
vt (1)

whereWi is the wear volume, Ai is the contact area, K is a dimensionless wear constant,
H is the hardness of the softer material, v is the relative sliding speed between the roller
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thread and screw raceway, t is the wear time, ai is the semimajor axis of the contact
ellipse, and bi is the semiminor axis of the contact ellipse.

The contact stress Pi at the contact point between the ith roller thread and the screw
raceway can be written as:

Pi = Ni

Ai
= Ni

πaibi
(2)

Substituting Eq. (2) into Eq. (1) yields the following form:

�δi = K
Piv

H
t (3)

Generally, the relationships between wear and that stress and between wear and
sliding speed are nonlinear. Considering the influence of sliding speed and contact stress
on the wear process, the stress index m and speed index n are introduced to modify
Eq. (3) Thus, Eq. (3) can be modified as [17]:

�δi = K
Pm
i v

n

H
t (4)

For the PRSM, the wear principle of the roller thread and screw raceway is shown in
Fig. 2. As shown in Fig. 2, LS is the effective stroke of the screw thread, and LRS is the
thread raceway length corresponding to the effective stroke of the screw and also the
total length of the corresponding wear area. In traditional Archard wear theory, the two
relative sliding contact surfaces are always in contact. However, for the point contact of
helical surfaces in the PRSM, the screw thread raceway can not participate in wear at
any time, and the wear area is only the contact ellipse area, as shown in Fig. 2. Therefore,
the traditional Archard wear model cannot be directly used to analyze the wear of the
PRSM. It is necessary to consider the local contact of the threads and establish a new
mathematical model of the thread wear. To more accurately calculate the wear depth and
the wear volume of the screw raceway in the whole effective stroke, based on Eq. (4),
this paper uses the experimental method to obtain the values of m and n and further
deduces the area coefficient f r to reflect the real wear of the roller thread and the screw
raceway in the PRSM.

Figure 3 shows the actual wear diagram of the screw raceway. The cross section of
the wear area can be approximately regarded as an elliptical arc. The maximum wear
depth is h0, the wear width is 2a, and a is the semimajor axis of the contact ellipse.
The total length of the wear area is the thread raceway length LRS corresponding to the
effective stroke of the screw.

The wear depth h at different section positions can be approximated as:

h = h0

√
1 − (

x

a
)2 (5)
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Fig. 2. The wear principle of roller thread and screw raceway

Fig. 3. The actual wear diagram of screw raceway

Then, the wear cross-sectional area can be represented as:

S =
∫ a

−a
h0

√
1 − (

x

a
)2dx (6)

The total wear volume can be expressed as:

W = LRS

∫ a

−a
h0

√
1 − (

x

a
)2dx = πah0LRS

2
(7)

When the actual wear of the screw raceway is not considered, the wear volume is
expressed as:

W = πab�δi (8)

Combining Eqs. (7) and (8) result in the following expression:

h0 = 2b

LRS
�δi (9)

Therefore, the area coefficient f r of the ith contact ellipse is expressed as:

fr = 2bi
LRS

= 2bi
nSLS/sinαS

(10)

where nS is the number of the thread raceways of screw thread, αS is the helix angle of
the screw thread and bi is the semiminor axis of the ith contact ellipse.
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Combining Eqs. (4) and (10), the wear depth of the contact area between the ith
roller thread and the screw raceway can be represented as:

�δnewi = fr�δi = 2K
biPm

i v
nt

nSLSH
sin αS (11)

According to Fig. 3 and combining Eqs. (4) and (9), the normalwear volume between
the ith roller thread and the screw raceway can be written as

Wi = πaih0LRS
2

= K
πaibipmi v

nt

H
(12)

If the number of roller threads meshed with the screw thread is τ , the normal wear
volume of a single roller on the screw raceway can be expressed as:

W roller
i =

τ∑
i=1

K
πaibipmi v

nt

H
(13)

Similarly, assuming that each roller carries the same load, when k rollers are meshed
with the screw raceway, the total normal wear volume of the PRSM can be expressed
as:

W PRSM
i = k

τ∑
i=1

K
πaibipmi v

nt

H
(14)

2.2 Analysis of the Relative Velocity at the Screw-Roller Interface

The contact location between the screw and roller in the plane projection is shown in
Fig. 6, where QSR is the contact point, rSc and rRSc are the radii to the contact point on
the screw and roller, respectively, and ϕSc and ϕRSc are the contact deviation angles to
the contact location on the screw and roller, respectively.

The kinematic relationship of the PRSM indicates that the contact point at the screw-
roller interface is not on the central axis of the cross-sectional plane, while the roller-
nut interface contact point lies on the central axis of the cross-sectional plane [18].
Therefore, to establish an accurate wear model, the relative velocity of the contact point
is very important, and the relative velocity can be obtained by determined the velocity
difference at the contact point between two contact surfaces. The relative positions of
the components in the PRSM are shown in Fig. 4.

As shown in Fig. 3, the coordinate system of a component oS−xSySzS denotes the
motion relationship of the screw relative to the fixed coordinate system o−xyz. The
angular velocity of the screw is denoted as ωS, the angular velocity of the roller is
denoted as ωR, and the roller’s revolution angular velocity is denoted as ωH.

PSR is the contact point at the screw-roller interface, and the relative position of the
screw and roller can be denoted with contact radii rSP and rRPS and contact deviation
angles ϕSP and ϕRPS.



Wear Modelling of the Thread Pair in a Planetary Roller Screw Mechanism 81

When the screw thread is meshed with the roller thread, the normal vectors of screw
thread NSP and roller thread NRPS at the contact point PSR can be written as [19]:

NSP =
⎡
⎣ cosϕSP tan βSP + sin ϕSP tan λSP

sin ϕSP tan βSP − cosϕSP tan λSP

1

⎤
⎦US (15)

NRPS =
⎡
⎣− cosϕRPS tan βRPS − sin ϕRPS tan λRPS

sin ϕRPS tan βRPS − cosϕRPS tan λRPS

−1

⎤
⎦US (16)

where βSP and βRPS are the flank angles of the screw thread and roller thread at contact
point PSR. λSP and λRPS are the helix angles of the screw thread and roller thread at
contact point PSR. US is the unit vector associated with the coordinate system of the
screw.

The parameters λSP, λRPS and βRPS in Eqs. (15) and (16) can be expressed as:

tan λSP = LS/(2πrSP) (17)

tan λRPS = LR/(2πrRPS) (18)

tan βRPS = rRPS − rR − uT√
r2T − (rRPS − rR − uT)2

(19)

where LS and LR are the leads of the screw and roller, respectively, rR is the nominal
radius of the roller, rT is the profile radius of the roller thread and uT is the coordinate
of any point on the threaded surface.

According to the motion relationship of the components shown in Fig. 4, the velocity
of contact point PSR on the screw VSP is calculated as follows:

VSP =
⎡
⎣−rSPωS sin(ϕSP + θH)

rSPωS cos(ϕSP + θH)

0

⎤
⎦
T

U (20)

where U is the unit vector associated with the fixed coordinate system o−xyz.
The velocity of contact point PSR on the roller is then calculated as follows:

VRPS =⎡
⎣ rRPSωR sin(ϕRPS − θH) − rSPωH sin(ϕSP + θH)

rRPSωR cos(ϕRPS − θH) + rSPωH cos(ϕSP + θH)

−ωSLS/2π

⎤
⎦
T

U
(21)

The velocity component of VSP in the direction of the normal vector at contact point
PSR is given as:

VSP · NSP = rSPωS tan λSP√
1 + tan2 λSP + tan2 βSP

(22)
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Similarly, the velocity component of VRPS in the direction of the normal vector at
contact point PSR is given as:

VRPS · NRPS =

− rRPSωR tan λRPS − rSPωH tan λRPS + ωSLS/2π√
1 + tan2 λRPS + tan2 βRPS

(23)

Based on the conditions of the principle of conjugate surfaces, that is:(1) the threaded
surfaces must share a common normal vector at the contact point, and (2) the relative
velocity of the screw and roller must be zero in the common normal direction at the
contact point. Therefore, we can obtainNSP = −NRPS and VSP ·NSP = −VRPS ·NRPS,
which are given as:

rSPωS tan λSP√
1 + tan2 λSP + tan2 βSP

= rRPSωR tan λRPS − rSPωH tan λSP + ωSLS/2π√
1 + tan2 λRPS + tan2 βRPS

(24)

and

ωH

ωR
= LR

LS
(25)

The leads of the roller and screw are given as:

LR = p (26)

LS = nSp (27)

where p is the pitch of the thread and nS is the number of starts of the screw thread.
Combining Eqs. (24)–(27), the relative velocity at the contact point PSR between the

screw and roller can be determined:

VSR = VSR − VRPS

=
⎡
⎣−rSR(ωS − ωH) sin(ϕSR + θH) − rRPSωR sin(ϕRPS − θH)

rSR(ωS − ωH) cos(ϕSR + θH) − rRPSωR cos(ϕRPS − θH)
ωSLS
2π

⎤
⎦
T

U

(28)

As shown in Fig. 4, the wear occurs in the contact area, and the relative velocity
of the contact point needs to be converted to the contact coordinate system, so that the
relative speed components in the contact area can be obtained. Therefore, the contact
coordinate system of the screw and roller needs to be established.

The contact coordinate systems of the components are shown in Fig. 5.
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Fig. 4. Position relationships of the components

Fig. 5. The contact coordinate systems of the components

According to coordinate transformation, the relative velocity VSP is transformed to
the oSP−xSPySPzSP coordinate system by the following equations:

VSR =
⎡
⎣−rSP(ωS − ωH) sin(ϕSP + θH) − rRPSωR sin(ϕRPS − θH)

rSP(ωS − ωH) cos(ϕSP + θH) − rRPSωR cos(ϕRPS − θH)
ωSLS
2π

⎤
⎦
T

·MU−1
S

U M
C−1
S

US
USP

(29)

where USP is the unit vector associated with contact coordinate system oSP−xSPySPzSP.

MUS
U =

⎡
⎣ cos θS sin θS 0

− sin θS − cos θS 0
0 0 1

⎤
⎦
T

(30)
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M
CN
UN

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(sin θNP tan βNP−cos θNP tan λNP)−cos θNP√
(1+tan2 λNP)(1+tan2 λNP+tan2 βNP)

− sin θNP√
(1+tan2 λNP)

cos θNP tan βNP+sin θNP tan λNP√
(1+tan2 λNP+tan2 βNP)

−(cos θNP tan βNP+sin θNP tan λNP) tan λNP+sin θNP√
(1+tan2 λNP)(1+tan2 λNP+tan2 βNP)

cos θNP√
1+tan2 λNP

cos θNP tan λNP−sin θNP tan βNP√
(1+tan2 λNP+tan2 βNP)

tan βNP√
(1+tan2 λNP)(1+tan2 λNP+tan2 βNP)

tan λNP√
1+tan2 λNP

−1√
(1+tan2 λNP+tan2 βNP)

⎤
⎥⎥⎥⎥⎥⎥⎦

(31)

where θSP is the relative rotation angle of the screw and roller on the screw thread at the
contact point.

2.3 Parameter Acquisition of the Stress Index and Speed Index

The experimental principle of wear test is shown in Fig. 6.
The difference in wear between the thread teeth of the planetary roller screw mech-

anism is only the difference in load distribution. Therefore, in order to simplify the
experiment, only a pair of the thread teeth are made for the experiment. Since the helix
angle will only affect the magnitude of the load and will not affect the position of the
contact point and wear characteristics, and if the helix angle is considered, the test bench
will be relatively large. In order to simplify the test bench, the test pieces processed in
this paper do not consider the helix angle. In the follow-up study, wewill further improve
the experiment.

During the test, the relative sliding speed is controlled by adjusting the speed of
screw drive shaft 7 and roller drive shaft 12. The axial force is applied by components
such as loading motor 16, active loading screw 3 and loading spring 4 to simulate the
loading on the thread pair. The torque sensor 9 is used to measure the friction torque of
the thread pair under the given axial load and speed.

The main parameters of screw test piece 8 and roller test piece 13 are shown in
Table 1.

In this paper, the bearing steel material is selected as the case. The screw material is
14NiCrMo, and the roller material is GCr15, whose density is ρ = 7,810 kg/m3, elastic
modulus is E = 212 GPa and Poisson’s ratio is μ = 0.29. Before the test, the pieces are
measured by a profilometer and precision electronic balance to obtain the thread profile
size and weight for comparison after the wear test. To facilitate the thread wear test, a
pair of the threads are used as the test object, and the helix angle of the thread is set

Fig. 6. Structure diagram of test rig of the thread wear
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Table 1. The main parameters of tested pieces

Parameters Screw thread Roller thread

Flank angle β (°) 45 45

Profile radius of the roller thread R (mm) / 35.35

Thread thickness b (mm) 5 5

Roughness (μm) 0.06 0.29

Fig. 7. The pieces of the screw thread and roller thread

Table 2. Test scheme under different loads

Axial load/N Sample piece Material Angular
velocity/rpm

Sliding-rolling
ratio

Test time/min

100/200/300 Screw 14NiCrMo 300 0.3 300

Roller GCr15 271

to zero; that is, the contact of a pair of the threads is simplified into two rings with a
real profile, as shown in Fig. 7. Besides, the lubricant is applied only once on the thread
surface to reduce the starting friction torque, and the thread wear will be in a dry friction
state with the consumption of lubricating oil.

The test conditions are shown in Tables 2 and 3.
According to Sect. 2.1, the wear depth per unit time (i.e., wear rate) can be expressed

as:

dh

dt
= K

Pm
i v

n

H
(32)

The contact stress Pi can be solved according to Hertz contact theory, the relevant
calculation methods can be found in reference [19]. The helix angle is zero to ensure that
the theoretical calculation is consistent with the test. The dimensionless wear constant
K can be rewritten as:

K = H

Pm
i v

n

dh

dt
(33)
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Table 3. Test scheme under different angular speeds

Angular
velocity/rpm

Sample piece Material Axial load/N Sliding-rolling
ratio

Test time/min

300 Screw 14NiCrMo 300 0.3 300

271 Roller GCr15

200 Screw 14NiCrMo

181 Roller GCr15

100 Screw 14NiCrMo

90 Roller GCr15

Table 4. The calculation results based on Hertz contact theory

Parameters Axial load/N

100 200 300

a/mm 0.3508 0.4419 0.5059

b/mm 0.2355 0.2967 0.3396

A/mm2 0.2595 0.4119 0.5398

σmax/MPa 817.5 1029.9 1179.1

The relative sliding speed of tested pieces v is easily derived as:

v = vScrew − vRoller = π(nScrewdS − nRollerdR) (34)

where nScrew and nRoller are the angular speed of the screw and the roller, respectively,
and dS and dR are the nominal diameters of the screw thread and the roller thread.

Based on the parameters shown in Table 1, the results of the contact parameters
calculated according to Hertz theory are shown in Table 4.

Thewear amount is expressed by themass difference before and after the test. Before
eachmeasurement, the test piecemust be strictly cleaned andweighed after drying. After
the wear mass is measured, it can be determined by the material density ρ to calculate
the wear volume, i.e.

V = M

ρ
(35)

whereM is the measured wear amount,M = M0 − M1,M0 is the mass before the test,
and M1 is the mass after the test.
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Fig. 8. The wear of the screw thread (14NiCrMo)

Table 5. The wear rate under different axial loads at 300 rpm

Axial load/N 100 200 300

Wear rate/(mm/s) 1.94 × 10–5 2.36 × 10–5 2.68 × 10–5

Table 6. The wear rate under different angular velocities at 300 N

Angular velocity of the screw/(rpm) 100 200 300

Wear rate/(mm/s) 6.89 × 10–6 1.39 × 10–5 2.68 × 10–5

The wear rate can be described as:

dh

dt
= dV

dAdt
(36)

The screw test piece after the wear test is shown in Fig. 8.
The wear rate is calculated according to the wear amount, and the wear rate under

different axial loads at 300 rpm (screw angular velocity) can be obtained, as shown in
Table 5.

Similarly, the wear rate under different angular velocities at 300 N can be obtained,
as shown in Table 6.

The stress indexm and velocity index n are obtained by fitting the wear rate obtained
from the test (Table 4 andTable 5). Then, the dimensionlesswear constantK is calculated
from Eq. (33). The fitting results are m = 0.723 and n = 1.237. The value range of the
dimensionless wear constantK at different angular velocities and is ranged between 8.76
× 10–8–1.02 × 10–7 under different loads.
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2.4 Load Distribution of the Threads

The load distribution on the thread can be obtained by the deformation coordination
relationship between the screw-roller and nut-roller interfaces. The following equations
can be used to calculate the load distribution, and the detailed calculation method can
be found in references [15, 16].

∑i
j=1 FSRj

kSB
+ FSRi − FSRi+1

kST
+ FSRi + FSRi+1

kRSC

−
∑i

j=1 FSRj − ∑i
j=1 FNRj

kRB
− FSRi+1 − FSRi

kRT
= 0

(37)

∑i
j=1 FNRj

kNB
+ FNRi − FNRi+1

kNT
+ FNRi + FNRi+1

kRNC

−
∑i

j=1 FSRj − ∑i
j=1 FNRj

kRB
− FNRi+1 − FNRi

kRT
= 0

(38)

where kSB, kNB and kRB are the shaft section stiffness of the screw, nut and roller,
respectively; kRSC and kRNC are the contact stiffnesses at the screw-roller interface and
nut-roller interface, respectively; and kST, kNT and kRT are the thread stiffnesses of the
screw thread, nut thread and roller thread, respectively.

According to Eqs. (37) and (38), the axial load FSRi of each pair of contact threads
of the screw and roller can be calculated. The ellipse parameters and contact ellipse area
at the contact point can be obtained based on the Hertz contact theory.

3 Model Validation

3.1 Numerical Model Based on the FE Method

To verify the correctness of the wear model, the FEmethod is used for transient dynamic
simulation of the thread wear. The contact pairs are created and assembled through the
SolidWorks 2016, and the 3D FE model is developed using the ANSYS Workbench
19.2. Since the FE wear analysis is highly nonlinear and requires a long time for iterative
calculation, it is assumed that the wear of the thread pair is uniform, and a section of
the thread is taken for wear calculation. According to the parameters of the thread pair
listed in Table 1, the contact model of the thread pairs at the screw-roller interface is
established, as shown in Figs. 9 and 10. Meshing is based on the 10-node tetrahedral
solid element 187. The contact model of the thread pair has 467,999 elements and 90,244
nodes. The material parameters of the screw thread and roller thread are consistent with
those described in Sect. 2.3.
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Circumferential 
symmetry constraint 

Fig. 9. The 3D model of the thread pair

Fig. 10. The 3D FE model of the thread pair

The mechanical constraints are as follows: Fan-shaped end faces on both sides are
a circumferential symmetry constraint based on the cyclic symmetric structure. The
rotational freedom around the x-axis and the displacement freedom along the x-direction
of the roller are released. The rotational freedom of the screw around the x-axis is
released, the axial load applied on the roller thread along the x-axis is 300 N, and the
angular velocity of the screw is 300 rpm, as shown in Fig. 9. The augmented Lagrange
algorithm is adopted to obtain more accurate calculation results.

In addition, to simulate the coexistence of rolling and sliding during actual operation,
the periodic step function is used to set the angular velocity of the thread pair, which is
given as follows:

ω′ = (−1)[2t/T ]ω (39)

where ω′ is the angular velocity in the simulation, t is the simulation time, T is the
period, the symbol [] is the rounding symbol, and ω is the angular velocity under the
test condition.

The angular velocity of the screw is 300 rpm (i.e., 31.4 rad/s), and the angular
velocity of the roller can be calculated as −28.4 rad/s, while the sliding-rolling ratio is
0.3. The simulation time t = 0.03 s, and the period T = 0.01 s. The variation curves
of the angular velocities of the screw and the roller with time are shown in Fig. 11 and
Fig. 12, respectively. In Figs. 11 and 12, every change in the angular velocity direction
is defined as one wear cycle of the thread pair, i.e., there are six wear cycles.
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Fig. 11. The variation curve of the screw angular velocity

Fig. 12. The variation curve of the roller angular velocity

3.2 Model Validation and FE Simulation Results

The simulation results of the wear depth for different wear cycles are shown in Fig. 13.
Figures 13 show that the wear shape from the simulation is a wear band, which

is close to the theoretical analysis and test results. The wear depth presents a gradient
distribution, the wear amount at the center of the contact ellipse is the largest, the wear
amount far from the center of the contact ellipse decreases in turn. This is because the
wear depth increases gradually with the increase in wear cycles and the contact stress
distribution. The maximum wear depth after six wear cycles can be extracted from the
simulation results.

Equation (11) and Eq. (12) can be used to calculate the wear depth and wear volume,
and the results are used as analytical solutions to compare with the numerical solutions.
The wear depth and wear volume from the numerical solution and the analytical solution
are compared in Table 7 and Table 8.

As shown in Table 7 and Table 8, the relative error between the two sets of results is
less than 9%, and the error is acceptable. Therefore, the analytical wear model proposed
in this paper is valid and can be used for wear analysis of tthread pair in the PRSM.
The wear depth and wear volume tend to increase linearly with increasing wear cycles.
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(c) The wear depth under 3 numbers of cycles (t =0.015s) 

(a) The wear depth under first cycle (t =0.005s)  

(b) The wear depth under 2 numbers of cycles (t =0.01s) 

Fig. 13. The simulation results of the wear depth for different wear cycles
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(d) The wear depth under 4 numbers of cycles (t =0.02s) 

(e) The wear depth under 5 numbers of cycles (t=0.025s) 

(f) The wear depth under 6 numbers of cycles (t =0.03s) 

Fig. 13. (continued)

With the increase in wear cycles, the relative error also increases gradually. This is
because the contact stress in the actual contact changes with the variation in movement
and wear, i.e., the dynamic change in contact stress is not considered in the theoretical
calculation. Thus, the contact stress is calculated as a constant. In contrast, the finite
element simulation can automatically adjust the benchmark of the surface morphology
and update the geometric morphology of the contact surface according to the changes
in the geometry of the contact surface. Table 7 and Table 8 show that the analytical
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Table 7. Comparison of cumulative wear depth between the analytical solution and numerical
solution under different wear cycles

Cumulative
Wear depth (×10–8 mm)

Wear cycles

1 2 3 4 5 6

Numerical solution 0.97 1.94 2.93 3.87 4.89 5.80

Analytical solution 1.06 2.12 3.17 4.23 5.29 6.35

Relative error 8.5% 8.5% 7.6% 8.5% 7.6% 8.7%

Table 8. Comparison of cumulative wear volume between the analytical solution and numerical
solution under different wear cycles

Cumulative
Wear volume (×10–8 mm)

Wear cycles

1 2 3 4 5 6

Numerical solution 4.81 9.54 14.23 18.96 23.69 28.48

Analytical solution 5.15 10.30 15.45 20.60 25.76 30.90

Relative error 6.6% 7.4% 7.9% 8.0% 8.0% 7.8%

solutions are larger than the numerical solutions. By comparing the contact area, the
meshing size causes the contact area in the FE model to be slightly larger than that of
the analytical model, resulting in a smaller numerical solution.

4 Conclusions

In this paper, based on the point contact characteristics of helical surfaces, the adhesive
wear model of the thread pair in a PRSM is developed based on adhesive wear theory. To
more accurately calculate the wear depth and the wear volume of the screw raceway in
the whole effective stroke, a test rig of the thread wear is established to obtain the values
of the stress index and speed index and further deduce the area coefficient to reflect the
real wear condition of the thread pair. The stress index and velocity index are obtained
by fitting the wear rate under different axial loads and at different angular velocities. To
verify the correctness of the wear model, the transient dynamic simulation of the thread
wear based on the FE model is performed. The relative error is less than 9%, which
indicates the wear model proposed in this paper is correct and can be used to forecast
the thread wear of the PRSM. The presented work has significance in the wear behavior
of the PRSM and is benefit to enhance its positional accuracy and carrying capacity.
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