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Abstract. Surrounding rock classification represents distinguishing the different
grades of surrounding rock according to the hardness and integrity of surrounding
rock. Accurately obtaining the surrounding rock grade of drill jumbo working
face is not only the basis for selecting the tunnel position and support type, but
also the key to ensure the safety of the drill jumbo’s construction site. As the
traditional classification methods, engineering drilling and geological mapping are
time-consuming and labor-intensive. Aiming at this situation, this paper proposes
an intelligent identification method of surrounding rock grade combine drilling
parameters with machine learning algorithm XGBoost. Firstly, adequately analyse
the correlation between drilling parameters and rock label, and select six drilling
parameters as feature vectors for surrounding rock grade recognition. Then outlier
processing and data screening are carried out on the data recorded by the drill
jumbo. Next, we construct a model based on XGBoost to realize the rapid and
accurate identification of surrounding rock grade. Finally, the effectiveness and
superiority of the proposed method are demonstrated by the actual data collected
by the drill jumbo in Gao Jiaping tunnel, and mix the partial data of Aliangiu
tunnel together to construct 5 datasets to compare the identification performance
of other classical algorithms. The results show that the recognition capability of
the proposed method is superior to those of other algorithms, and the recognition
accuracy of surrounding rock along the tunnel can reach 99.68%.

Keywords: drilling parameters - Surrounding rock grade - XGBoost - Intelligent
identification

1 Introduction

In China, the scale of railway construction is increasing year by year, and the demand for
ultra-long railway tunnels with high altitude and high burial depth increases as well. In
the early days of the founding of country, there were only 429 railway tunnels in China,
with a total length of 112 km. By 2020, China’s railway operating mileage reached
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145,000 km, among which 16,798 railway tunnels were in operation and the total length
reaches to 19,630 km. Drill jumbo is a kind of tunnelling engineering machinery con-
structed by drilling and blasting method, which is widely used in high-speed railway and
highway tunnel projects. With the continuous improvement of labour costs, intelligent
and unmanned tunnel construction is the inevitable trend of tunnel construction in the
future. At present, the intelligent level of drill jumbo is gradually improving, and more
data could be collected in the process of tunnel construction. However, the data collected
by projects has not been fully used to guide the construction, which has hindered the
further improvement of the tunnel construction level. In the construction process, the
surrounding rock grade is not only the basis for selecting the tunnel position and support
type, but also the key to ensure the safety of the drill jumbo’s construction site. In the
past, it was necessary to know the grade of surrounding rock by engineering drilling and
geological mapping, which will significantly decrease construction efficiency. Using
artificial intelligence to identify the surrounding rock grade of the working face can
reduce the time for geologists to judge during construction. In addition, it can find bad
geology in advance and warn to guarantee the safety of the construction site.

In the early stage, scholars mainly recognized the surrounding rock grade based
on the physical characteristics of surrounding rock. Ma [1] proposed the controllable
source audio-frequency magneto telluric method, which adopts the artificial source elec-
tromagnetic sounding method in the frequency domain. This method of classifying tun-
nel surrounding rock has strong applicability for deep and large tunnel investigation.
Wu et al. [2] found that though the strength of carbonate rock is greatly reduced due
to the recementation of calcite, the integrity of rock mass is still good. Therefore, the
classification of surrounding rock of carbonate rock can be improved compared with
that of non-soluble rock. Qiu et al. [3] selected the index of rock’s uniaxial compressive
strength, rock quality index, discontinuous structural plane state and filling condition
and so on as inputs to propose a classification method based on rough set and ideal point,
which was applied to actual engineering. Li [4] used the finite element numerical sim-
ulation method and ANSYS to simulate the process of tunnel construction, excavation
and support. He established a geological generalized model to accurately evaluate of
the deformation stability of surrounding rock and the effect of support measures. Liu
et al. [5] selected compressive strength of rock mass, rock quality index RQD, joint
spacing, joint condition, groundwater condition, influence of joint and fissure strike as
inputs to establish a fuzzy comprehensive evaluation model to distinguish the grade of
surrounding rock. Chen [6] designed and compiled an expert system applied to highway
tunnel according to the 04 edition of the standard method, RMR classification method,
Q classification method and fuzzy comprehensive evaluation method. The expert system
can identify the surrounding rock grade with multiple methods and angles and provide
effective reference for practical engineering. Xue et al. [7] applied the extension theory to
the surrounding rock classification, indicating that the extension surrounding rock clas-
sification method has good applicability and accuracy in the loess tunnel sur-rounding
rock classification. Rong et al. [8] used advanced geological prediction methods such
as TGP detection method, SIR-20 geological radar detection method and palm-surface
catalog method to dynamically predict the grade of tunnel surrounding rock.
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Compared with geological mapping or classification regression algorithm, machine
learning algorithm has high recognition accuracy and efficiency. Thus, Researchers are
gradually trying to apply machine learning to this task. Yao et al. [9, 10] studied the
correlation between various drilling parameters of drill jumbo and surrounding rock
grade, and then selected feed speed, strike pressure, propulsion pressure, rotary pressure
as inputs of SVM, which achieved good identification accuracy. Wen et al. [11] used
genetic algorithm (GA) to optimize the key parameter of support vector machine (SVM),
and took the extracted common factor as the input variable to establish a GA-SVM
model rely on factor analysis. B. Rajesh Kumar et al. [12] used artificial neural network
to predict the strength, intensity, dry density, p-wave velocity, tensile strength, Young’s
modulus and porosity of rock. Tian et al. [13] proposed that when drilling conditions
are determined, specific energy of drilling can be used to classify surrounding rock.
Yang et al. [14] selected RQD, Rc, rock integrity coefficient, structural plane strength
coefficient and groundwater seepage as inputs to establish a generalized neural network
(GRNN) model for the classification of tunnel surrounding rock.

Studies have shown that the drilling parameters are closely related to the grade of
surrounding rock on the working face. However, most of the existing researches on
the classification of surrounding rock are focused on the physical properties of rock
mass such as uniaxial compressive strength of rock mass, rock quality index RQD,
rock chemical composition and so on. Few people study the data recorded during the
construction of construction machinery. Yao et al. [9, 10] constructed an intelligent
identification model of surrounding rock grade based on drilling parameters of drill
jumbo, but the selected drilling parameters included only feed speed, strike pressure,
propulsive pressure and rotary pressure. In fact, more than four drilling parameters are
recorded, and there are still geological features hidden in the drilling parameters that
have not been excavated, leading to problems such as low model recognition accuracy
and poor generalization ability.

Therefore, in order to compensate for the above-mentioned shortcomings, this paper
proposes an intelligent identification method of surrounding rock grade based on drilling
parameters and machine learning algorithm XGBoost. Firstly, we use Pearson correla-
tion coefficient method to analyse the correlation between drilling parameters and rock
label, and calculate the correlation coefficient between each parameter and rock label.
The drilling parameters with strong correlation were selected as the input of intelligent
classification model. Then, we clear the abnormal data recorded during tunnel construc-
tion, screen the number of samples and split training set and test set. Next, we put the
selected characteristic parameters into proposed model to realize the classification of
tunnel surrounding rock. Finally, we use actual construction data with the Stochastic
Gradient Descent Classifier (SGDC), K Near Neighbor (KNN), Linear Support Vector
Classifier (LSVC), Multilayer Perceptron (MLP) and integrated classification model of
Random Forest and other existing models to verify the performance of proposed intelli-
gent recognition method of surrounding rock grade. The results verify that the proposed
method has high prediction accuracy, good robustness and fast training speed in the
intelligent identification task of tunnel surrounding rock grade.
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2 Materials

The drilling data of the drill jumbo used in this paper are from the Gao Jiaping tun-
nel project of Zheng-Wan High-speed Railway. Gao Jiaping tunnel is located in Lim-
iao Town, Nanzhang County, Xiangyang City. The central location of this tunnel is
DK451+786, and the starting to stopping location is DK449+037-DK454+535, with a
total length of 5498 m and a maximum burial depth of about 320 m. The tunnel adopts
import-export two-way tunneling, and the inlet location is DK449+037-DK452+300.
The inlet section is mostly v-class surrounding rock, mainly medium-strong weathered
shale, with soft rock broken and poor self-stability, which is a typical weak surrounding
rock tunnel with complicated engineering geology, difficult construction and high safety
risk. In the drilling process, Gao Jiaping tunnel project adopts a fully computer three-
arm wheeled drill jumbo, which is mainly driven by hydraulic motor or diesel engine.
As shown in Fig. 1, it has sensitive and rapid movement, sensitive steering and braking
adjustment. But its climbing ability is not strong, and it is difficult to pass complex road
surface.

Fig. 1. Wheeled Dirll Jumbo

Fig. 2. Construction site of rock drill jumbo in Gao Jiaping tunnel [16]
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At present, the application of automatic induction graphics technology and laser
scanning technology realizes the automatic orientation and automatic drilling of rock
drill jumbo according to the drilling map [15]. Figure 2 shows the construction site of
Gao Jiaping tunnel. The highly automated hydraulic drill jumbo realizes the automatic
acquisition and processing of intelligent drilling and drilling parameters, which provides
important conditions for the intelligent identification of surrounding rock grade based
on drilling parameters.

3 Methodology

3.1 Parameter Selection
3.1.1 Parameter Introduction

The highly intelligent drill jumbo can record various physical parameters in real time
through sensors in the process of drilling, and then automatically generate original data
sets. The drill jumbo used in Gao Jiaping tunnel records nine drilling parameters, i.e.,
drilling depth (m), feed speed (m/min), water flow rate (L /min), strike pressure (bar),
thrust pressure (bar), rotary pressure (bar), rotary speed (m/min), water pressure (bar)
and interval Time (ms).

Feeding speed refers to the movement speed of the drill bit along the direction of
the hole. After drilling begins, the photoelectric sensor is interrupted once every certain
distance. At the same time, the timer records the drilling time, and the feed speed can
be calculated. The hardness and strength of rock with different rock grades vary greatly,
so the resistance of drill bit will inevitably increase when working with high strength
rock. So, the feeding speed will decrease when the input power is the same. Therefore,
feeding speed is a drilling parameter that can reflect geological conditions.

Strike pressure refers to the oil pressure inside the hydraulic cylinder of drilling
arm when the drill jumbo breaks the surrounding rock, whose value is measured by
pressure sensors distributed in the hydraulic cylinder. Obviously, breaking rocks with
high strength and hardness requires higher strike pressure [17]. In addition, the better
the integrity of the rock mass is, the higher strike pressure will be needed. Strength,
hardness and rock integrity are the key factors to determine the rock grade. Therefore,
the strike pressure is closely related to the rock grade and it is a very common parameter
used in the identification task of surrounding rock.

Propulsive pressure refers to the oil pressure inside the hydraulic cylinder during the
propulsive movement of the drill jumbo, which is used to keep the drill bit in close contact
with the surrounding rock, whose value is measured by pressure sensors distributed in
the hydraulic cylinder. As the rock strength is positively correlated with the surface
hardness, the propulsive pressure required to keep in close contact when drilling the
rock with high strength and hardness will be larger. In addition, the higher the integrity
of the rock mass is, the greater the reverse impact on the bit and the greater the average
propulsive pressure required. Therefore, the propulsive pressure is closely related to the
rock grade, and it is a very common parameter used in the identification of surrounding
rock.

Rotary pressure refers to the oil pressure of hydraulic oil when the drill jumbo
performs rotary movement. After measuring the value of the strike pressure and the flow
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rate, rotary pressure could be calculated by the specified formula. The purpose of the
rotary movement is to cut the broken rock down. Because the percussion action of the
drill jumbo usually cannot completely break the rock, there are still broken rock attached
to the rock wall to be cut and broken. Due to the rock uniaxial compressive strength and
shear strength were positively related, the rotary pressure required must be higher when
drilling the surrounding rock with high strength and hardness. In addition, even if the
surrounding rock hardness is the same, more complete rock mass will produce more
rock blocks to be cut. Therefore, the rotary pressure value is closely related to the grade
of surrounding rock, and it is also a very common parameter used in the identification
of surrounding rock.

Rotary speed refers to the rotary speed at which the drill bit rotates to cut rock. The
drill pipe sends out a pulse for every turn, and the counter records the interrupt times of
the timer in one turn. Then the time taken for one turn of the drill bit can be calculated,
and take the inverse to get the rotary speed.

Water pressure refers to the pressure of water needed by drill jumbo to wash cuttings,
and its value can be measured directly by pressure sensor. Water flow rate refers to the
water flow rate of rock drill jumbo washing debris, and its value can be measured directly
through the flowmeter. In some cases, water pressure and flow rate are closely related
to geological conditions, when the drill jumbo replaces the rotary cutting movement
of drill pipe with high-pressure water flushing of crushed rock. Therefore, whether to
consider water pressure and water flow as effective characteristic parameters depends
on the actual situation.

Drilling depth is used to record the drilling depth of the drill bit, and its value is
measured by the displacement sensor. The depth of all holes in the same working face
varies very little, so the drilling depth is not correlated with geological conditions.

3.1.2 Parameter Selection

Pearson’s linear correlation coefficient can reflect the degree of linear correlation between
two variables. In supervised learning tasks, the correlation coefficients be-tween features
and labels can be calculated to determine whether the extracted features and categories
are positively correlated or negatively correlated. The Pearson correlation coefficient
between each characteristic parameter and label can be used as the basis for selecting
characteristic parameters in the intelligent identification task of surrounding rock grade.
Pearson linear correlation coefficient can be calculated by formula (1). The absolute
value of the correlation coefficient is close to 1 means that the correlation between this
parameter and surrounding rock type is strong; the closer it is to 0, the weaker the
correlation between this parameter and surrounding rock type is.

;= Y (X —-X)(Yi—Y)
\/Z?:l (Xi —7)2\/2?:1 (vi - 7)2

Put the measured data into formula (1) to calculate the results, which are showed in
Table 1. As can be seen from Table 1: Drilling depth, rotation speed and interval time
have little or even no correlation with the type of surrounding rock. The feed speed is pos-
itively correlated with surrounding rock class, while the percussive pressure, propulsion

D
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Table 1. Correlation coefficient between drilling parameters and surrounding rock types

drilling | feed strike thrust rotary rotary | water water interval

depth speed pressure | pressure | pressure | speed pressure | flow rate | time

(m) (m/min) | (bar) (bar) (bar) (m/min) | (bar) (L /min) | (ms)
correlation | —0.0427 | 0.2142 | —0.4341 | —0.4780 | —0.1022 | 0 —0.7695 | —0.3294 | —0.0097
coefficient

pressure, rotation pressure, water pressure and water flow rate are negatively correlated
with surrounding rock class, which is consistent with the previous analysis results. The
correlation between water pressure and surrounding rock type is the strongest. The cor-
relation is ranked as: water pressure > propulsion pressure > strike pressure > water
flow rate > feed speed > depth of drilling > interval time > rotary speed.

According to TB-10003-2005 railway tunnel design code, the grade of surrounding
rock is a comprehensive index, which mainly reflects the uniaxial saturation compressive
strength of surrounding rock and the integrity of surrounding rock. The basic quality
index of surrounding rock mass [BQ] from large to small is: I-grade > II-grade >
[II-grade > IV-grade > V-grade [18]; Therefore, the comprehensive strength of the
surrounding rock will decrease when it transitions from III-grade to V-grade, and the
corresponding strike pressure, propulsion pressure, rotary pressure, pressure, water pres-
sure, water flow will decrease, so they are a negative correlation. On the contrary, the
feed speed will increase, so it is a positive correlation. The conclusions obtained are
consistent with the theoretical analysis results. Further analysis of the data shows that
the values of rotation speed are all 0, so it has nothing to do with the type of sur-rounding
rock. The correlation coefficient is 0. There is little difference in the drilling depth of
each type of surrounding rock, and also little difference in the average drilling depth
of three types of surrounding rock, so the correlation is very low. As for the interval
time t, it can be found that there is a strong mapping relationship between the two by
studying the distribution of feed speed and interval time, as shown in Fig. 3. According
to literature research, it is found that the feed speed is calculated by re-cording the time
taken by drill jumbo for each 0.02 m, which is interval time t. The relation between feed
speed Vj and interval time t satisfies Formula (2). Therefore, in parameter selection, feed
speed with higher correlation coefficient can be selected and redundant interval time of
drilling parameters can be abandoned.

Vixt=0.02m 2)

From the perspective of parameter acquisition, water pressure and water flow rate
reflect the machine state of the drill jumbo itself, which has nothing to do with geological
conditions. However, the quantity, shape and even physical properties of cut-tings pro-
duced after drilling in different grades of surrounding rock are completely different, and
the pressure and flow of flushing water required for cleaning cuttings will obviously be
different. In Gao Jiaping tunnel engineering, the correlation between water pressure and
surrounding rock grade is the highest among all drilling parameters, and the correlation
between water flow and surrounding rock grade is also higher than the feed speed and
rotary pressure. Therefore, water pressure and water flow must be regarded as important
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Fig. 3. The distribution of interval time and feed speed

parameters for surrounding rock grade identification when considering the input of the
model.

3.2 Drilling Data Pre-processing

The drilling process of a single borehole includes two stages: pre-drilling and normal
drilling. The pre-drilling stage has three characteristics: The drilling depth does not
exceed 1 m; The propulsion pressure and strike pressure are less than the normal drilling
stage; The propulsion pressure gradually increases to normal working pressure from
artificial control. The propulsion pressure and strike pressure are relatively constant in
the normal drilling stage. Some abnormal data will be generated during the pre-drilling
stage, such as a feed speed of 40 m/min, 60 m/min or even 120 m/min. Therefore, before
dividing the data set, it is necessary to clear the abnormal data in the sample data set.
First of all, calculate the data average value of each parameter separately. Then, visualize
the data distribution of each drilling parameter and observe the numerical distribution
of each drilling parameter, clear sample data that deviates too much from the average
value so that the data distribution of each feature parameter is relatively centralized. The
degree of concentration can be compared by the sample standard deviation. The smaller
the standard deviation, the more centralized the data distribution, which also indicates
that the rock drill jumbo is in a normal state of drilling. Formula (3) and (4) can be used
to calculate the data average value and standard deviation of each drilling parameter
respectively.

_ IS
X = - in'j 3)
i=1

1 n
- > (i — %)’ 4)
i=1
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Table 2. Part of drilling data of drill jumbo after screening

number | drilling | feed strike thrust rotary rotary water water | interval | grade
depth | speed pressure | pressure | pressure | speed pressure | flow | time
(m) (m/min) | (bar) (bar) (bar) (m/min) | (bar) rate | (ms)
(L
/min)
1 0472 |2.105 134 37 39 0 27 89 57 I
2 2472 2927 142 46 64 0 29 90 41 111
3 3532 2927 144 49 72 0 29 90 41 111
4 3.552 | 2.857 147 52 70 0 29 90 42 I
5 3.572 | 2.857 149 54 78 0 29 90 42 I
6 3.592 | 2.857 150 58 82 0 29 90 42 111
7 3.612 | 2.857 150 57 82 0 29 90 42 111
73436 | 3.973 | 2.611 117 65 107 0 27 69 46 \%
73437 3993 2401 119 65 109 0 27 69 50 v
73438 |4.013 | 2.611 117 64 105 0 27 70 46 \%
73439 4.033 |2.731 117 65 107 0 27 70 44 \%
73440 |4.053 | 2.501 118 64 108 0 27 70 48 v
73441 |4.073 | 2.501 117 64 104 0 27 69 48 A%
73442 1 4.093 |2.931 117 64 104 0 27 69 41 \%

where n represents the amount of data, x;; represents the ith data in the jth drilling
parameter, and X; represents the average value of the jth drilling parameter.

According to the location mileage of the obtained data files, corresponding to the
original geological prospecting information map of Gao Jiaping tunnel construction
drawing design (vertical section information), the corresponding surrounding rock grade
of each borehole data can be obtained. The drilling data of the working face with the
location of 450824 m—451060 m and 451700 m—451813 m correspond to the III-grade,
with the location of 449250 m—449666 m correspond to the V-grade, with the location
of 449889 m—449902 m correspond to the IV-grade. These three types of surrounding
rock are also the most common types of rock in practical engineering, and accurate
identification of these three types of surrounding rock contributes greatly to the actual
construction of the project. In addition to data outlier elimination, it is also necessary
to reduce the variance in the amount of data available for the various labels, which can
reduce the impact of unbalanced sample data and improve the identification effect of
the model. In the data obtained, the number of grade 4 surrounding rock samples is the
least, so the number of I'V-grade surrounding rock samples after screening is taken as the
benchmark, and then selecting the suitable number of III-grade and V-grade surrounding
rock to form a high-quality data set. Table 2 shows part of the drilling data in the data.

Table 3 records the mean and standard deviation (std) of drilling parameters for each
rock class before screening, those of drilling parameters after the removal of abnormal
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Table 3. Comparison of surrounding rock samples before and after screening

grade number feed strike thrust rotary water water
speed pressure | pressure | pressure | pressure | flow

(m/min) | (bar) (bar) (bar) (bar) rate

(L
/min)
IIT |original | 348332 | mean |2.84 14529 | 75.32 80.68 27.34 88.23
std 1.78 13.14 | 22.62 25.38 1.815 5.28
normal | 347402 | mean |2.82 145.40 | 75.38 80.73 27.38 88.34
std 0.99 12.67 | 22.59 25.34 1.55 4.72
screened | 23975 | mean |2.90 14292 | 78.34 84.01 27.68 89.75
std 0.93 14.17 |20.97 23.13 1.39 4.37
IV | original 55689 | mean | 3.94 135.40 |45.27 64.13 28.42 76.51
std 2.98 20.58 |14.84 17.79 15.66 10.19
screened | 26324 | mean |3.76 140.92 | 48.45 55.41 25.88 76.87
std 0.86 14.45 |13.35 12.85 1.66 10.89
V |original |109092 | mean |3.41 117.46 | 50.78 79.44 6.57 80.39
std 3.01 20.05 |14.19 16.36 9.85 18.60
normal | 107609 | mean |3.32 118.43 | 50.82 79.63 6.47 80.86
std 1.54 17.77 | 14.15 15.69 9.80 17.80
screened | 23143 | mean | 3.51 122.67 |53.46 78.80 6.54 77.96
std 1.45 19.89 | 14.20 15.64145 | 9.68 19.98

data, and those of drilling parameters after screening. By observing the data in the table,
it can be found that the standard deviation of the data after screening is lower than that
before screening, which indicates that the distribution of the screened borehole data is
more concentrated, so as to avoid abnormal data affecting the training effect of the model
and reducing the recognition performance.

4 The Proposed Method

4.1 Principle of XGBoost

XGBoost algorithm, also known as limit gradient lifting algorithm [19], is a typical
ensemble learning algorithm. A strong classifier is formed by integrating several weak
classifiers. XGBoost based on tree model is suitable for scenarios with low dimension of
input data, such as monitoring data of various sensors of small devices. It can automati-
cally make use of CPU multithreading for parallel computation, which is fast. In addition,
XGBoost can effectively prevent over-fitting by adding regularization items to the algo-
rithm, making the training results more stable. Therefore, this paper adopts XGBoost



106 G. Huang et al.

algorithm as the classification algorithm for surrounding rock grade recognition. The
principle of XGBoost algorithm is as follows:
Set the maximum number of iterations as K, and XGBoost can be stated as:

fO =Y s 5)

where g;(x) is the basic classifier model generated during each iteration, and
the CART tree selected as the basic classifier training set samples are I =
{(xi, y,')}(|l |=nxieR.,ye R). In each iteration, defining the optimization objective
function for training the basic classifier:

n A(t—
L0 =3 L3307+ gi00) + Q00 + ¢ ©)

where c is a constant, t is the number of current iterations, ﬁgt_l) is the prediction result

of strong classifier during t-1 iterations, and £2(ft) is the regularization term, which can
be expressed as:

|
Q) = yT + Exzjzle (7)

where T means the number of leaf nodes, and wj means the weight of the jth leaf node.
For the decision tree Q (x) with T leaf nodes, let the weight of each leaf node be w; (j
=1, 2..., T). Using Taylor’s expansion formula (8) to expand optimization objective
function formula (6), formula (9) is obtained.

fa+Ax) ~fx) +f Dax+ %f”(x)sz (8)

“ . 1
LY ~ Z[L(yi’yt ) + st + Ehiff(x,»)] +Q(f) +c ©)
i=1

where g; = 8},(,_1)1(%', yi(lil)), hi = 82(,,1)1()71‘, y,-(tfl)) are the first-step and second-
i Vi

(1=

order gradients of loss functions L(yi, ?t_l) to y; 1); The optimal weight solution wf

is shown in Formula (10):
* Gj

g 10
" Hj+ 2 10

where Gj = 3, 8i» Hj = )i/ hi- Substitute wi' into the simplified formula of the

objective function to obtain the optimal loss function L¥*, as shown in Formula (11).

2
L(”*z—lZT i +yT +c (11)
24—j=1H; + A
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In order to generate the optimal decision tree in each round of training, the loss
function value should be minimized when the left and right subtrees I, and Ir are
generated. Define the evaluation function as:

(12)

Lsplitz_ -
2|HL+A Hgp+X HL+Hrp+A

1[ Gl . G <GL+GR>2}_

If all Lgpiie < 0, stop generating subtrees, then this round of training ends, otherwise
continue to split subtrees. When the number of repeated training iterations reaches K,
the training ends.

4.2 Identification Process

Aiming at the identification task of surrounding rock grade in tunnel construction by
drill jumbo, this paper proposes an intelligent identification method of surrounding rock
grade combined drilling parameters of drill jumbo with XGBoost algorithm. Firstly,
collect the drilling parameters of multiple channels in real time by the drill jumbo data
acquisition system. Then, select strong correlation parameters screened out by Pearson
correlation coefficient method: feed speed, strike pressure, propulsion pressure, rotary
pressure, water pressure, water flow rate to form the feature vector of surrounding rock
grade recognition. Next, preprocess the data recorded during tunnel construction, remove
the data of pre-drilling stage and the abnormal data under the normal drilling condition.
After that, screen the number of samples and divide the training set and test set. Finally,
normalize the data as input to the XGBoost model, the output result of the model is the
grade of surrounding rock on the working face of the drill jumbo. The whole intelligent
identification process is shown in Fig. 4.

Data set
 — G4)
B abnom aldata
O redundantparem eter| | | | | | |
6+n)

Nom aldata

atnom al 6% )
drilling stage nom alization o
XGBoost

surrounding
ock grade

-

Fig. 4. Intelligent identification flow chart of surrounding rock grade
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5 Validation and Analysis

5.1 Dataset Construction

The identification performance of the proposed method was verified by drilling data
of Gao Jiaping tunnel with location of 449208 m, 449250 m, 449666 m, 449889 m—
449902 m, 450824 m—451060 m and 451700 m—451813 m. After all the sample data
were preprocessed, combine the surrounding rock data of grade III, IV and V after
screening to form a total data set. The total number of samples was 73450. According to
engineering experience, training set and test set were divided by 9:1, that means, 66105
samples were used to construct training set, and 7345 samples were used to construct
test set. To test the generalization ability of the proposed model, the training set and
the test set should not be in the same hole, so they should be randomly divided when
dividing the data set. The specific partition results are shown in Table 4.

Feed speed, strike pressure, propulsive pressure, rotary pressure, water pressure and
water flow rate were selected as the input of XGBoost, and surrounding rock grade was
used as the classification label of XGBoost classifier. Import sample data of training
set into the model for training. After the training, import the data in the test set into the
trained model for prediction, and compare the prediction results with the real surrounding
rock grade to obtain the performance indexes of XGBoost classifier in the intelligent
recognition of surrounding rock grade.

5.2 Model Evaluation Index

Accuracy, Recall, Precision and F-1 score are four commonly used evaluation indexes
in supervised learning tasks, and their calculation formulas are as follows:

Accuracy = %ZL 1 I(ylpredict _ y:_mtual) (13)
Recall = Y (14)
Precision = Y T (1)
e lye i

Table 4. The composition of the sample library (9:1)

grade training set test set total

I 21879 2431 24310
v 23697 2633 26330
\Y% 20529 2281 22810
total 66105 7345 73450
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where n represents the total number of samples, m represents the number of labeled
species, y?redwt is the grade of surrounding rock predicted by the model, y?“t“"‘l is the
actual grade of surrounding rock, TP; represents the number of correctly predicted i-
grade surrounding rock samples, FN; is the number of i-grade surrounding rock samples
predicted to be other types, FP; is the number of other types of rock samples predicted
to be i-grade surrounding rock. Accuracy is a common index in classification problems,
that is, the proportion of correctly classified samples to total samples. However, accu-
racy often cannot effectively assess model performance over extremely unbalanced data
sets. In a balanced dataset, the accuracy and recall are equal. This study considers four
parameters as model evaluation indexes to validate the identification effectiveness of the
proposed method.

5.2.1 Results and Discussion

The performance of the trained model to identify the test set is shown in Table 5. From
the data in the table we can see that the average prediction accuracy of this method is
very high, and the other three performance indexes are close to 1, which indicates that
the proposed method can be used for the intelligent identification task of surrounding
rock grade of drill jumbo tunnel construction.

In order to confirm the superiority of proposed method in the surrounding rock
classification identification task, The identification performance of six intelligent iden-
tification algorithms including SGDC, LSVC [20], KNN, MLP, integrated classification
model RFC and XGBoost were compared on the test set. Select the same drilling param-
eters as the input of the model, and train all methods for 10 times. Figure 5 shows the
mean values of 4 indexes of all algorithms. From the figure we can see that XGBoost
classifier get the highest value in all four indicators, which proves the effectiveness and
superiority of XGBoost algorithm for classification of tunnel surrounding rock.

The confusion matrix of the six algorithms on the test set is shown in Fig. 6. The
x-axis represents the rock grade predicted by the trained model and the y-axis represents
the true surrounding rock grade. The correct prediction data for each type of surrounding
rock is the most to XGBoost, which indicates that XGBoost not only has higher overall
prediction accuracy than other algorithms, but also has the highest identification accuracy
for each type of surrounding rock, indicating that XGBoost has the best comprehensive
performance in surrounding rock identification task of drill jumbo.

To further evaluate generalization effectiveness and robustness of the proposed
method in tunnel surrounding rock grade recognition task, this paper combines the

Table 5. Prediction results of XGBoost classifier

Precision (%) |Recall (%) |F-1score (%) | Accuracy (%) |total

11 99.79 99.71 99.75 99.69 2431
v 99.66 99.51 99.58 2633
v 99.61 99.87 99.74 2281

Macro average | 99.69 99.70 99.69 7345
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Fig. 5. Performance indicators of SGD, LSVC, KNN, MLP, RF and XGBoost classifiers
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Fig. 6. The confusion matrix of each algorithm on the test set: (a) SGD; (b) LSVC; (¢) KNN;
(d) MLP; (e) Random Forest; (f) XGBoost classifier.

II-grade surrounding rock sample data from the Alianqgiu tunnel, and constructs 5 data
sets of tunnel surrounding rock grade identification with different orders of magnitude
of sample data. Eventually test the comprehensive performance of six algorithms in all

the data sets. Table 6 shows the sample quantity of 5 data sets and the division of training
set and test set.

5 data sets represent:

DSI is the original data of the drill jumbo during the construction of Gao Jiaping
tunnel. The total amount of data is 302436, and the partition ratio is 9:1. The charac-
teristics of DS1 are that the sample data are not cleaned and the amount of sample data
of different types of surrounding rock varies greatly. DS2 is the data set used to test the
identification performance of the proposed method before. The total data was 73450,
and the partition ratio is 9:1. DS2 is characterized by the fact that abnormal data have
been deleted and there is little difference in the number of samples of grade III, IV and
V surrounding rocks, so it is a relatively high-quality data set. On the basis of DS2, DS3
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Table 6. The division of Training set and Test set

Data set surrounding rock grade training set samples test set samples total
DS1 3 124200 13800 301070
©:1) 4 49662 5518

5 97101 10789
DS2 3 21879 2431 73450
©:1) 4 23697 2633

5 20529 2281
DS3 2 19701 2189 95540
©:) 3 21672 2408

4 23166 2574

5 21447 2383
DS4 2 168 42 800
8:2) 3 152 38

4 176 44

5 144 36
DS5 2 1124 281 5000
8:2) 3 1044 261

4 896 224

5 936 234

integrates borehole data of II-grade rock of Alianqiu Tunnel, and the volume of II-grade
rock sample data is similar to that of IV-grade surrounding rock of Gao Jiaping tunnel.
The total data was 95,540, and the partition ratio is 9:1. DS3 is characterized by the
integration of the II-grade surrounding rock data of another project and the addition of
label types. Because the surrounding rock category may not only be grade III, IV or V
in the construction process, the trained classification model can adapt to the engineering
practice of more scenarios. Moreover, there is little difference in the sample data of
the four types of surrounding rocks. DS4 is composed of 800 sample data randomly
selected from the DS3, and the partition ratio 8:2. There are210 II-grade rock samples,
190 III-grade rock samples, 220 I'V-grade rock samples and 180 V-grade rock samples
in DS4. DS5 is composed of 5000 sample data randomly selected from the DS3, and the
partition ratio is 8:2. There are 1405 II-grade rock samples, 1305 III-grade rock samples,
1120 I'V-grade rock samples and 1170 V-grade rock samples in DSS5.

Similarly, train all models and test for 10 times on these 5 datasets, and take the
mean values as the final performance results. The recognition performance of the six
classifiers on the test set is shown in Fig. 7.

Firstly, by comparing the prediction performance of each algorithm on DS1 and DS2,
it can be seen that sample data screening helps to improve significantly the recognition
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Fig. 7. Prediction accuracy of SGD, LSVC, KNN, Random Forest and Proposed method on
different data sets

accuracy of intelligent classifier. Secondly, from the prediction performance of each
classifier in DS2, DS4 and DSS5, the number of samples in the dataset has impact on
the prediction accuracy, but the XGBoost classifier can still maintain the recognition
accuracy of more than 90% in the case of small sample data. Thirdly, the recognition
rate of the proposed method reaches 99.17% on the DS3 which combines surrounding
rock samples from different tunnel projects. It further verifies the comprehensive ability
of the proposed method. Finally, the prediction accuracy of the proposed method in 5
data sets is more than 90%, which indicates that compared with the existing algorithm,
it can be better qualified for the intelligent classification task of tunnel surrounding rock
during the construction of drill jumbo.

6 Conclusions

Based on the research on the identification of surrounding rock grade in tunnel con-
struction, this paper proposes an intelligent identification method of surrounding rock
grade combined drilling parameters with machine learning algorithm XGBoost. Using
Gao Jiaping tunnel engineering data to verify the superiority of this method. The main
conclusions and contributions made are as follows:

Comprehensively analyze and excavate the correlation between rock grade and
drilling parameters, and fully consider the strong correlation between water pressure,
water flow rate and surrounding rock grade. Finally, select six drilling parameters as the
input of the intelligent classification model, compared with the conventional method of
using four drilling parameters, the identification accuracy of surrounding rock grade is
greatly improved.

Establish an intelligent recognition model of surrounding rock grade based on
XGBoost. Using 5 data sets to evaluate the comprehensive effectiveness of the pro-
posed method on surrounding rock recognition tasks under different conditions, and the
comprehensive comparison was made with existing models. The results show that the
recognition effectiveness of the proposed method is superior to those of existing algo-
rithm models, and the recognition accuracy of surrounding rock along the tunnel can
reach 99.68%. In the Alianqiu tunnel data set, the proposed method still achieves high
recognition accuracy, which further verifies the robustness and generalization ability of
the proposed method.
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