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Abstract. The Cox-Ingersoll-Ross (CIR) model is a short-rate model and is
widely used in the finance field to predict the movement of interest rates in bond
pricing models. This paper exploited Lie symmetry analysis to solve the gener-
alized CIR model by determining the infinitesimal generators. Lie symmetry is
one of the powerful tools to solve the partial differential equation (PDE) ana-
lytically by reducing the PDE into a lower form. Besides, an optimal system of
one-dimensional subalgebras is constructed and then used to reduce the gener-
alized CIR equation by introducing the similarity variables. Lastly, the invariant
solutions are obtained by solving the reduced equation.
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1 Introduction

In modern financial analysis, partial differential equations (PDE) are often applied to
model a real-world problem. In 1973,Black andScholes [1] introduced the option pricing
model by partial differential equation also known as the Black-Scholes equation. Vasicek
[2] in 1977, described the movement of interest rates in bond pricing models as a PDE.
However, there is a limitation of the Vasicek model which allow negative interest rate
in the calculation which is an unforeseen situation in any economic field.

The Cox-Ingersoll-Ross (CIR) model [3] was derived to cover the shortcoming of
the Vasicek model. The CIR model only allows positive interest rates in the calculation.
The function u(x, t) define as the zero-coupon bond price and the PDE is given

ut + 1

2
σ 2xuxx + κ(θ − x)ux − xu = 0, (1)

where x is the interest rate, t is denoted as time. The volatility (σ ), rate of mean reversion
(κ) and long-term mean variance (θ) are real and positive constants. Khalique and
Motsepa [4] proposed new group invariant solutions of the generalized Vasicek model
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by changing α = σ 2

2 and γ = −1 in the Vasicek equation through the Lie symmetry
method. This paper will study the solutions of the generalized CIR equation. According
to the change of variables in [4], the generalized CIR equation is given as

ut + αxuxx + κ(θ − x)ux + γ xu = 0. (2)

There are many methods to solve PDE. Unfortunately, not all methods can obtain the
analytical solution of PDE. In this paper, Lie symmetry analysis is chosen to obtain the
exact solutions of Eq. (2). Lie symmetry is one of the most powerful methods to solve
ordinary differential equations (ODE) and PDE by reducing the differential equation
into a lower order [5, 6]. Plenty of researchers from various fields applied the symmetry
method to solve a particular differential equation and the results are convincing. The Lie
symmetry analysis was first introduced in the finance field to solve the Black-Scholes
(BS) equation and transform the BS equation into heat equations [7]. Liu and Wang
[8] applied the symmetry method to solve the BS equation with dividend yield. The
solutions of the Asian option which satisfies the terminal condition has been obtained
via Lie symmetry analysis [9]. In recent years, Kaibe and O’Hara [10] studied the zero-
couponpricing equation to determine the symmetries point to reduce the equation into the
ODE and hence, the solutions are obtained. Some works and examples of Lie symmetry
to solve nonlinear PDE and system of PDE can be obtained from [11–14].

The paper is organized as follows; In Sect. 2, the steps of the symmetry method and
symmetries point of the generalized CIR equation are presented. The derivation of the
optimal system of the generalized CIR equation by the symmetries point is discussed
in Sect. 3. In Sect. 4, the group invariant solutions of the generalized CIR equation are
obtained. Finally, Sect. 5 contains the conclusion.

2 Lie Symmetry of the Generalized CIR Equation

To solve Eq. (2) by Lie symmetry method, one must determine the symmetries point
of the Eq. (2). Finding the symmetries point is similar as determining the infinitesimal
generators of the equation. The general infinitesimal generators are given by

X = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u
, (3)

with infinitesimals ξ, τ and η are functions of variables x and t. These infinitesimal
generators (3) are obtained if and only if it satisfies the Lie’s invariance condition

�(2)� |�=0 = 0, (4)

where � is the PDE and �(2) is defined as

�(2) = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ ηx

∂

∂ux
+ ηt

∂

∂ut

+ ηxx
∂

∂uxx
+ ηtt

∂

∂utt
+ ηxt

∂

∂uxt
,
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and the ηx, ηt, ηxx, ηtt and ηxt represent the second prolongation

ηx = Dx(η) − uxDx(ξ) − utDx(τ ),

ηt = Dt(η) − uxDt(ξ) − utDt(τ ),

ηxx = Dx
(
ηx

) − uxxDx(ξ) − uxtDx(τ ),

ηtt = Dt
(
ηt

) − uxtDt(ξ) − uttDt(τ ),

ηxt = Dx
(
ηt

) − uxtDx(ξ) − uttDx(τ ),

with the total differential operators

Dx = ∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
,

Dt = ∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ uxt

∂

∂ux
.

Substituting all the prolongations formula in the Eq. (4) and comparing the coefficients
of u will lead to a system of determining equations. Solving the determining equations
will yield the infinitesimal generators.

The manual calculation of calculating the infinitesimals ξ, τ and η in Eq. (3) are
difficult and require much works. Some researchers had proposed some packages to
compute the symmetries point for differential equations through various mathematics
software, see [15–18]. In this paper, theMathLie inMathematica software [16] is utilized
to determine the infinitesimal generators of Eq. (2). The infinitesimal generators are

ξ = x
(
etβc1 + e−tβc2

)
,

τ = c3 + etβc1
β

− e−tβc2
β

,

η = u
(
c4 + etβc1(Px + Q) + e−tβc2(Rx + S)

) + φ(x, t) (5)

where c1, c2, c3, c4 are any random constants, φ is any function that satisfies Eq. (2) and

β =
√

κ2 − 4αγ , P = κ + β

2α
,

Q = −κθ(κ + β)

2αβ
, R = β − κ

−2α
,

S = κθ(κ − β)

2αβ
. (6)

Separating constants c1 to c4 and rearrange Eq. (5) into the form of Eq. (3) gives the
following generators,

X1 = etβ
(
x∂x + 1

β
∂t + u(Px + Q)∂u

)
,
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X2 = e−tβ
(
x∂x − 1

β
∂t + u(Rx + S)∂u

)
,

X3 = ∂t,

X4 = u∂u,

Xφ = ∂u. (7)

3 Optimal System of the Generalized CIR Equation

Different linear combinations of Eq. (7) will give various solutions and it is impossible
to list down all the group invariant solutions. Several works of constructing an optimal
system of one-dimensional subalgebras by Olver’s method [6] can be read from [4, 19–
21]. These involve calculating the commutator and adjoint representations tables of the
differential equation.

3.1 Computation of Commutator Table

A commutator of symmetries group is also known as Lie bracket. Consider two symme-
tries group Xi and Xj for a one-dimensional PDE, where i, j = 1, 2, 3, . . . . The formula
of computing the commutator provided by Olver [6] is given by

[
Xi,Xj

] = (
Xiξj − Xjξi

)
∂x + (

Xiτj − Xjτi
)
∂t + (

Xiηj − Xjηi
)
∂u,

where ξi, ξj, τi, τj, ηi and ηj are derivatives of the infinitesimals. The Lie bracket has
some properties such that it is skew-symmetric,

[
Xi,Xj

] = −[Xj,Xi] and the diagonal
elements in the commutator table are all zero, [Xi,Xi] = 0. The commutator table of
Eq. (2) is shown in Table 1.

Table 1. Commutator table of the generalized CIR equation

[Xi,Xj] X1 X2 X3 X4

X1 0 2
β X3 − κ2θ

αβ X4 −βX1 0

X2 − 2
β X3 + κ2θ

αβ X4 0 βX2 0

X3 βX1 −βX2 0 0

X4 0 0 0 0
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3.2 Adjoint Representations

The adjoint representation of the Eq. (2) is given by

Ad(exp(εXi))Xj =
∑∞

n=0

εn

n! (adXi)
n(Xj

)

= Xj − ε
[
Xi,Xj

] + ε2

2!
[
Xi,

[
Xi,Xj

]] − . . . ,

The adjoint representation table of Eq. (2) is displayed in Table 2.

3.3 Construction of the Optimal System

To construct the optimal system set of invariant solutions, let the linear combinations of
the infinitesimal generators (5) be

X = λ1X1 + λ2X2 + λ3X3 + λ4X4, (8)

with λ1 to λ4 are any random coefficients. Follow Olver’s method [6], in order to obtain
the optimal system of Eq. (2), the coefficients in Eq. (8) must be simplify as much as
possible.

Case 1: Assume λ1 �= 0, and let λ1 = 1.
Equation (8) becomes

X = X1 + λ2X2 + λ3X3 + λ4X4. (9)

Referring to Table 2, the generator X3 can be vanished by solving X
′ = Ad(εX2)X .

After simplified the generator X3, it gives

X
′ = X1 + λ

′
2X2 + λ

′
4X4,

where X ′, λ′ are the different versions of X and λ. Continue to act on X ′ by X ′′ =
Ad(εX3)X ′ and lead to

X
′ ′ = X1 + e2εβλ

′ ′
2X2 + eεβλ

′ ′
4X4.

Table 2. Adjoint representation table of the generalized CIR equation

Ad [Xi,Xj] X1 X2 X3 X4

X1 X1 X2 − ε2X1 − ε
(
2
β X3 − κ2θ

αβ X4
)

X3 + εβX1 X4

X2 X1 − ε2X2 −
ε
(
− 2

β X3 + κ2θ
αβ X4

)
X2 X3 − εβX2 X4

X3 e−εβX1 eεβX2 X3 X4

X4 X1 X2 X3 X4
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Taking the coefficients of X2 and X4 as ±1 and hence Eq. (9) can be simplified to either

X1 + X2 + X4,X1 + X2 − X4,

X1 − X2 + X4,X1 − X2 − X4. (10)

No further simplification can be made for λ1 �= 0.

Case 2: Assume λ1 = 0, λ2 �= 0, and take λ2 = 1.
The linear combination generators are given by

X = X2 + λ3X3 + λ4X4.

The generator X2 can be simplified and yield.

X
′ = λ3X3 + λ4X4.

It is also equivalent to the scalar multiple of

X
′ = aX3 + bX4, (11)

where a and b are any real constants. No further simplifications are possible for second
case.

Case 3: Assume λ1 = λ2 = 0, λ3 �= 0, and let λ3 = 1.
Referring to Table 2, no further simplification, Eq. (8) becomes

X = X3 + λ4X4,

and it is also equal to

X = X3 + aX4, (12)

where a is any random constant. Note that the scalar multiple of aX3+bX4 and X3+aX4
are similar by taking 1 as the coefficient of X3.

Case 4: Assume λ1 = λ2 = λ3 = 0, λ4 �= 0, and take λ4 = 1.
Equation (8) can be simplified to

X = X4. (13)

To sum up, the optimal system of Eq. (2) is given by

{X1 + X2 + X4, X1 + X2 − X4, X1 − X2 + X4,

X1 − X2 − X4,X3 + aX4,X4}, where a ∈ R.
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4 Symmetry Reduction and Group Invariant Solutions
of the Generalized CIR Equation

Lie symmetry is widely applied is due to it can reduce the order of the original equation
by introducing the similarity variables via the symmetries point and hence make the
equation easier to solve. A function of PDE u = u(x, t) is invariant under its symmetries
group, if and only if it satisfies the invariant surface condition

ξ(x, t, u)ux + τ(x, t, u)ut = η(x, t, u). (14)

Taking ξ and τ are not both zero, Eq. (14) can be solved through the characteristic
method,

dx

ξ
= dt

τ
= du

η
, (15)

which will introduce the similarity variables and lead to a reduction of the PDE to an
ODE,

u = F(r), (16)

where r is a function of x and t. Solving the functionF(r)will give the invariant solutions
of the PDE. In this section, we give some invariant solutions of the generalized CIR
equation.

Case 1: X1 + X2 + X4.
Recalling the generators in Eq. (7), the linear combination generators ofX1+X2+X4

is given by

X = x
(
etβ + e−tβ) ∂

∂x
+ 1

β

(
etβ − e−tβ) ∂

∂t

+ u
(
etβ(Px + Q) + e−tβ(Rx + S) + 1

) ∂

∂u
,

and its characteristics equation are

dx

x
(
etβ + e−tβ

) = dt
1
β

(
etβ − e−tβ

) = du

u
(
etβ(Px + Q) + e−tβ(Rx + S) + 1

) ,

provides the similarity variables and the similarity equation,

u = e
−Rx−Qtβ+e2tβ (Px+Qtβ)

−1+e2tβ
(
1 − e−tβ) 1

2 (1+Q+S)(
1 + e−tβ) 1

2 (−1+Q+S)
F(ω), (17)

where

ω = x

e−tβ − etβ
. (18)

Differentiate and substitute Eq. (17) into Eq. (2) gives the reduced equation

α2β2ωF
′′
(ω) + καθβ2F

′
(ω) +

(
ω

(
−κ4 + 8κ2αγ − 16α2γ 2

)
− αβ3

)
F(ω) = 0.



110 H. S. Tang et al.

Solving the reduced equation and substitute into Eq. (17) lead to the invariant solution
for X1 + X2 + X4,

u(x, t) = e

xβ(1+e2tβ)
−1+e2tβ

−κ2 tθ+κ(x−tβθ)

2α
(
1 − e−tβ) α−κθ

2α
(
1 + e−tβ)− α+κθ

2α

⎛

⎜
⎝

c1e
xβ

α(e−tβ−etβ)KummerM (m, n, z)
(

etβx
1−e2tβ

)1− κθ
α

+c2e
xβ

α(e−tβ−etβ)KummerU (m, n, z)
(

etβx
1−e2tβ

)1− κθ
α

⎞

⎟
⎠, (19)

with

m = α − κθ

2α
, n = −κθ + 2α

α
, z = 2etβxβ

α
(−1 + e2tβ

) , (20)

c1, c2 are any arbitrary constants, KummerM and KummerU are the confluent
hypergeometric functions [22] and β = √

κ2 − 4αγ .

Case 2: X3 + aX4.
From the generators (7), the infinitesimals X3 + aX4 are given by

X = ∂

∂t
+ au

∂

∂u
,

of which characteristics equation are

dx

0
= dt

1
= du

au
,

gives the similarity equation as

u = eatF(x). (21)

Taking Eq. (21) into Eq. (2) yields an ODE,

αxF ′′(x) + κ(θ − x)F
′
(x) + aγ xF(x) = 0.

Solving the ODE, lead to the invariant solution for infinitesimals X3 + aX4,

u(x, t) = eat
(
c1e

− x(−κ+β)
2α KummerM (m, n, z)x

−κθ+α
α + c2e

− x(−κ+β)
2α KummerU (m, n, z)x

−κθ+α
α

)
,

(22)

with c1, c2 are any real constants and m, n, z are represent

m = −βκθ − κ2θ + 2αβ − 2aα

2αβ
, n = −κθ + 2α

α
, z = xβ

α
,

and β is defined in Sect. 2.
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Case 3: X4
Recalling Eq. (7), the infinitesimal X4 is

X = u
∂

∂u
,

with the transformed ODE

xαF ′′(x) + κ(θ − x)F
′
(x) + xγF(x) = 0.

Integrating the ODE gives the invariant solution of Eq. (2) generated by infinitesimal
X4,

u(x, t) = c1e
− x(β−κ)

2α KummerM (m, n, z)x
−κθ+α

α

+ c2e
− x(β−κ)

2α KummerU (m, n, z)x
−κθ+α

α , (23)

where c1, c2 are arbitrary constants, β is defined as above and other parameters are

m = −κ2θ + β(κθ − 2α)

2αβ
, n = −κθ + 2α

α
, z = xβ

α
.

The infinitesimal generators of X1 + X2 − X4,X1 − X2 + X4 and X1 − X2 − X4 will
generate a much more complicated invariant solution. We are still working on it and the
results will be reported later.

5 Conclusion

In conclusion, Lie symmetry is applied to determine the invariant solution of the gen-
eralized CIR equation. The Eq. (2) admitted four symmetries point and one infinite-
dimensional subalgebra Xφ. The symmetries point obtained were then used to compute
the commutators and adjoint representation tables to construct the optimal system of
Eq. (2). With the optimal system found, the symmetry reduction was performed and
hence the new group invariant solutions of Eq. (2) were calculated. Other solutions
admitted by other generators will be studied later.
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