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Abstract. This paper proposes an integrated inventory model that considers three
types of inventories: used items, service items, and raw materials. Used items are
collected from the market and are restored to a serviceable condition to satisfy
demand. If the quantity of the restored items is lacking, then the remaining demand
is satisfied by converting raw materials into service items through a production
run. Demand is satisfied by shipping periodically in batches of equal size. The
warehousing of items incurs a carbon emission cost in addition to the traditional
holding costs. Additionally, the transportation of items to the client incurs a carbon
emission cost as well. The objective of the model is to provide insights to help
determine both the frequency and the size of the batch shipments to minimize the
joint total inventory cost and carbon emission cost. This paper also proposes a
numerical solution procedure and provides a numerical example to illustrate the
model. A numerical sensitivity analysis is performed to derive insights that are
potentially beneficial to policy makers.
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1 Introduction

Rapid global industrialization has given rise to environmental, climate, and energy chal-
lenges. It is believed that the excessive emissions of greenhouse gasses (GHGs), espe-
cially carbon, is a major cause of climate change [1]. Recently, regulators have started
to deal with the GHGs emissions problem by introducing regulations and policies such
as the EU Emission Trading System (ETS), the carbon emissions allowance scheme
for power plants in the US, and the carbon taxation scheme in Australia [2]. However,
industry players are still reluctant to prioritize carbon emissions reduction over prof-
itability; as such, understanding how to achieve the former while preserving the latter
has become a critical challenge [3]. Moreover, the focus of the responses to the regu-
lations and policies has been to adopt more energy efficient technologies. The fact that
the industry players may reduce their carbon emissions by optimizing their decisions in
production, inventory, and transportation, often at little to no cost, is largely missed [4].
Furthermore, in addition to optimizing management decisions, the industry players may
also optimize the collection and recovery of used items (see for example [5]).

© The Author(s) 2023
N. Wahi et al. (Eds.): ICMSS 2022, ACSR 98, pp. 150–162, 2023.
https://doi.org/10.2991/978-94-6463-014-5_15

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-014-5_15&domain=pdf
https://doi.org/10.2991/978-94-6463-014-5_15


An Inventory Model with Recovery and Periodic Delivery 151

In [5], a three-stage supply chain that consists of three actors–a final product manu-
facturer, a component manufacturer, and a used component collector–is considered. The
authors considered three sustainability factors–recycling of used components, carbon
emissions control, and transportation costs of JIT (just-in-time) deliveries–and investi-
gated both the classical policy of not implementing carbon emissions control and the
“green” policy that implements carbon emission control (of either carbon taxation or
cap-and-trade). The final product is produced by the manufacturer using both new com-
ponents and recycled used components. As such, the purpose of our paper is to study a
similar problem from a single-stage perspective, by proposing a preliminary model of an
integrated production-repair inventory system that considers three types of items simul-
taneously–service items, raw materials, and used items. The service items are produced
from both the raw materials and the used items. The inventory control policies of these
items are controlled by the same actor instead of three different actors. The demand is
serviced by periodic deliveries and the costs of transportation and carbon emissions are
considered. Unlike [5], the production run and repair run alternates with one another
instead of running simultaneously as these processes share the same facility. A unique
decision mechanism available to the inventory manager is that he or she can delay the
repair run and the production run to reduce redundant inventory from accumulating
(without incurring shortages), which ultimately leads to the unit time total cost function
behaving in an unconventional way.

Numerous contributions to the literature of inventory models can be found; but if
we consider the contributions that are related to this study, then we may divide these
contributions into two groups, namely, the studies of production-recovery inventory
modelswith continuous delivery orwith periodic delivery (or JIT) delivery. Furthermore,
among these two groups, the corresponding studies may be subdivided into studies that
consider carbon emissions control and studies that do not.

Most of the earlier models in the literature are production-recovery models with
continuous delivery and without carbon emissions control. As far as we know, it began
with the work of Schrady [6], where he considered infinite production rate and repair
rate, and policies of either multiple production runs with one repair run per cycle ((1,P)
policy), or multiple repair runs with one production run per cycle ((R,1) policy). Later,
[7] extended [6] to the case of finite repair rate and [8] extended to the multi-item case.
After that, [9] considered (1,P) and (R,1) policies for the cases where the finite repair
rate is either greater than the demand rate or less than or equal to the demand rate, and
they gave EOQ formulas and found the optimal integer setup numbers numerically. [10]
followed up by giving closed-form expressions for the optimal integer setup numbers,
and [11–13] followed up by assuming finite production rate. [14–18] proposed waste
disposal models by relaxing the assumption that all returned items are recoverable–these
models assumed that a portion of the returned items are disposed at a cost. Finally, [19]
generalized the waste disposal model to the case of finite production rate and finite repair
rate under a (1, 1) policy, and then, [20] followed up by generalizing to the case of (P,R)
policy. Note that all these production-recovery models consider two types of inventories
simultaneously–used items and service items–in a single stage.

The above production-recovery models assumed continuous delivery. Some authors
have studiedmodels operating under periodic (or JIT) delivery,motivated by the idea that



152 I. Yeo

the frequent delivery of small lots of items can be economically desirable. [21] proposed a
model that considers service items and raw materials inventories simultaneously, where
the service items are delivered periodically. [22] compared the classical EPQ model
with a revised EPQ model that incorporates JIT delivery, and focused their attention on
modelling the costs so that the space savings of JIT situations are better1, Pflected, thus
showing that JIT implementation is superior. [23] proposed a manufacturer-retailer two-
stage model where the manufacturer conducts JIT deliveries to the retailer who operates
with shortages that are backlogged. However, all these periodic delivery models do not
consider used items recovery, unlike [5] that does.

In recent years, in the face of increasing environmental, legislative, and economic
pressures, the academia has begun to account for the costs of carbon emissions in the
mathematical modelling of production-recovery inventory systems. [24] developed a
model operating under a (P,R) policy that includes the costs of GHGs emissions and
energy usage from production, recovery, and transportation. [25] developed a two-stage
supply chain model with no recovery in which the production process is imperfect and
the items that are held in stock are subject to deterioration, and in which the vendor ships
items to the buyer periodically. The authors considered carbon emission costs from trans-
portation and warehousing in addition to the traditional costs. [26] developed a model
where the production of new items and the remanufacturing of returned items create
defective items that are perfectly repaired, and the authors considered the emissions of
carbon in every stage of the system, which are taxed accordingly.

2 Mathematical Formulation

This section describes the problem and gives the assumptions and notations that are used
in the mathematical formulation. We consider an inventory model that holds three types
of items: used items, service items, and raw materials. The inventory policy is cyclic:
each cycle starts with a repair run where all returned items are repaired to an as good as
new condition, followed by a production run that converts the raw materials to service
items. The shipping of the service items to the clients is periodic, where the shipments
are of equal sizes and are delivered in equally spaced time intervals. We take the costs
of carbon emission into account when determining which inventory policy to follow.
The following assumptions are made to develop the mathematical formulation of the
proposed model:

(1) A single-item inventory system is considered over an infinite planning horizon.
(2) The items are to service a known demand rate of D units per unit time.
(3) The demand is serviced periodically in equal-sized shipments. The periods

between shipments are of equal length.
(4) The demand is supplied by production at a rate of P units per unit time (where P

> D) and by repair of the used items at a rate of R units per unit time (where R >

D).
(5) The used items are collected at a rate of θD units per unit time (where 0 < θ <

1). All used items are repaired to an as good as new condition.
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(6) The production process converts a basket of raw materials into the service items.
The raw materials are procured at a rate of M baskets per unit time (where M >

P).
(7) Shortages are not allowed.
(8) Shipping and warehousing of items cause carbon emission.
(9) The distance d travelled for the shipping of items per trip is known and constant.
(10) The following cost structure is considered:

(a) KP, setup cost of production
(b) KR, setup cost of repair
(c) KM , setup cost of raw materials procurement
(d) hP, unit holding cost of service item per unit time
(e) hR, unit holding cost of used item per unit time
(f) hM , unit holding cost of basket of raw materials per unit time
(g) he, average carbon emission cost from warehousing per unit stored per unit

time
(h) Tf , fixed shipping cost per trip
(i) Tv, variable shipping cost per unit shipped per distance travelled
(j) Tr , variable cost per distance travelled for the return trip
(k) Te, average carbon emission cost per distance travelled

The following notations are used to develop the mathematical formulation of the
proposed model:

(1) N, the number of shipments per cycle
(2) S, the size of each shipment
(3) L, the time interval between shipments
(4) QR, the amount of used items that are repaired
(5) QP, the amount of items that are produced from raw materials
(6) T0, the time at which a cycle starts (we set T0 = 0 without loss of generality)
(7) T

′
1, the time at which the repair run in a cycle starts (T

′
1 ≥ T0)

(8) T1, the time at which the repair run in a cycle stops
(9) T2, the time at which the raw materials procurement in a cycle stops
(10) T3, the time at which the production run in a cycle starts
(11) T4, the time at which the production run in a cycle stops
(12) T5, the time at which a cycle end

An example of themovements of the three types of inventories in the proposedmodel
is shown in Fig. 1 for the case of 6 shipments. In each cycle, the repair run will run its
course first followed by the production run.

The points {1, 2, …, 6} in the graph of the service items in Fig. 1 represent the
shipping points. The dashed blue line segments represent the pure build-up of inventory
due to the repair run of rate R followed by the production run of rate P. For the sake of
comparison, the solid grey line segments represent the inventory movement if delivery
is continuous instead of periodic. From the blue dashed line segments, notice that the
inventory level of the service items is either at or above the shipping points, thus ensuring
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Fig. 1. The inventory movements in the proposed inventory system for Case 1 and for N = 6.

that shortage does not occur. This is always the case since R, P>D, as long as the repair
run and the production run are not started too late. The green line segments represent
the actual movement of inventory due to repair, production, and periodic shipping.

Supposing that there are N shipments in a cycle, we have L = T5/N and S =
(DT5)/N . Thus, the shipment times are given by

tk = (kT5)/N , k = 1, 2, . . . ,N . (1)

Since R > D, the repair run can be delayed to starting at time T
′
1 before the first

shipment at time T5/N (instead of starting at time T0) so that the accumulated inventory
at the point of the first shipment is just enough for that shipment. The rationale for
this delay is to reduce the unnecessary build-up of inventory from starting the repair
run earlier than necessary. However, there are two cases to consider: (Case 1) there are
enough used items to be repaired to meet the demand of the first shipment, and (Case 2)
there are not enough used items.

Case 1: Since there are enough used items to be repaired to meet the demand of the
first shipment, we have

T
′
1 = R − D

NR
T5. (2)

Since the amount of used items to be repaired is QR = θDT5, we have

R
(
T1 − T

′
1

)
= θDT5, (3)
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which, from (2), gives

T1 = R + NθD − D

NR
T5. (4)

The number of shipments that the repair run fully provides for is NR = �QR/S� =
�θN�. Thus, the (NR + 1) th shipment needs to be at least partially provided for by the
production run. Hence, the production run must start at time T3 between time NRT5/N
and time (NR + 1)T5/N so that the accumulated inventory at the point of the (NR + 1)
th shipment is just enough for it. Thus, we have

T3 = (P − D)(1 + �θN�) + NθD

NP
T5. (5)

The amount of service items to be produced is QP = (1 − θ)DT5. We have

P(T4 − T3) = (1 − θ)DT5, (6)

which, from (5), gives

T4 = (P − D)(1 + �θN�) + ND

NP
T5. (7)

Since the procurement rateM of raw materials is greater than the production rate P,
then the procurement of rawmaterialsmust begin latest at timeT3 andmust be concluded
at time T2 before time T4. Thus, we have

M (T2 − T3) = P(T4 − T3), (8)

which, from (5) and (6), gives

T2 =
[
(P − D)(1 + �θN�)

NP
+ θD

P
+ D(1 − θ)

M

]
T5. (9)

Case 2: Since there aren’t enough used items to be repaired to meet the demand of
the first shipment, then we need to start the production run before the first shipment to
supplement the excess demand. To reduce the unnecessary build-up of inventory, the
production run should start immediately after the repair run at time T1 and produce just
enough so that the accumulated inventory at the point of the first shipment is just enough
for that shipment. Thus, we have

T1 = P − D + NθD

NP
T5. (10)

Since (3) holds for this case as well, we have

T
′
1 =

(
P − D + NθD

NP
− θD

R

)
T5. (11)

This means the repair run can be delayed until time T
′
1. And since the production

run should start immediately after the repair run, we have T3 = T1.
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Since (6) and (8) hold for this case as well, we have

T4 = P + (N − 1)D

NP
T5. (12)

T2 =
[
P − D + NθD

NP
+ D(1 − θ)

M

]
T5. (13)

Now, we have written the times T
′
1, T1, T2, T3, and T4 in terms of the cycle length

T5, where.

T
′
1 < T1 ≤ T3 < T2 < T4 < T5. (14)

For Case 1, notice that if R = D, then T
′
1 = 0 and T1 = θT5. Moreover, notice that if

R = P = D, then T3 = T1 and T4 = T5. For Case 2, T3 is always equal to T1. But, if
R = P = D and N = 1, then T

′
1 = 0 and T4 = T5.

Finally, we give the condition that determines which case to employ as follows:
If θ ≥ 1/N , then employ Case 1, else employ Case 2.
Notice that Case 1 needs N > 1. Hence, for the case of one shipment at the end of

the cycle (N = 1), Case 2 is always employed.
Next, consider the used items inventory. The area A1 under the graph of the inventory

level is given by the area of a triangle. This is because we may shift the part of the graph
during the period [0, T1] to time T5 since the inventory level at time 0 and at time T5
are equal. Thus, we have

A1 = θD

2

(
1 − θD

R

)
T 2
5 . (15)

Then, consider the service items inventory for Case 1. The area under the graph of
the pure inventory build-up (the blue dashed lines in Fig. 1) represents the holding of
inventory after the repair run and the production runwithout shipping anything out. Once
the first shipment is completed at time T5/N , the correspond-ing amount of stock is no
longer held for the remaining period of length T5−T5/N . That is, the area S(T5−T5/N )

should be subtracted from the area under the graph of the pure inventory build-up. In
general, once the kth shipment (k = 1, 2, . . . , N ) is completed at time kT5/N , the
corresponding amount of stock is no longer held for the remaining period of length
(N − k)T5/N . That is, the area S(N − k)T5/N should be subtracted from the remaining
area. However, notice that the last shipment is completed at time T5 (at the end of the
cycle); hence for this shipment, there is no corresponding area to subtract. Thus, the
actual area A2 under the graph of the service items inventory level is given by

A2 =Area under the blue dashed lines

−
N−1∑
k=1

S(N − k)T5
N

.

After some algebraic manipulation, we get

A2 =
[
2θD(NR − R + D) − Nθ2D2

2NR
− D(N − 1)

2N
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+ 2(1 − θ)D(P − D)(N − 1 − �θN�)
2NP

+ N (1 − θ)2D2

2NP

]
T 2
5 . (16)

Next, consider the service items inventory for Case 2. The area under the graph of
the pure inventory build-up is the sum of the areas of two trapezoids. Thus, the actual
area A2 under the graph of the service items inventory level is

A2 =
[
PD(N − 1) − D2(θN − 1)

NP
+ θ2D2

2R

− (1 − θ)2D2

2P
− D(N − 1)

2N

]
T 2
5 . (17)

Then, consider the case of the raw materials inventory. The area A3 under the graph
of the inventory level is also given by the area of a triangle. Thus, we have

A3 = (M − P)(1 − θ)2D2

2MP
T 2
5 . (18)

The total cost per cycle is given by the sum of the setup costs, holding costs, emission
costs, and transport costs. The total holding costs, considering both traditional holding
costs and carbon emission costs due to warehousing (assuming that all items consume
the same warehousing resources), is given by

CH = (hR + he)A1 + (hP + he)A2 + (hM + he)A3. (19)

We assume that the transport cost of moving items within the production and repair
facilities are negligible. We also ignore the transport cost of procuring used items and
raw materials since these procurements typically involve third parties whose transport
policies are not within our control. Hence, the total transport costs, considering only the
shipping of service items, is given by

CT = N
(
Tf + Trd + 2Ted

) + TvdDT5. (20)

Finally, the total cost per unit time (TCUT ) in terms of the variables N and T5 is
given by

TCUT (N ,T5) = 1

T5
(KP + KR + KM + CH + CT ). (21)

The objective of the proposedmodel is to determine the optimal number of shipments
(N ∗) as well as the optimal cycle time (T ∗

5 ) that minimizes TCUT.

3 Solution Procedure

First, we derive the square root formulas to find the optimal T ∗
5 for a fixed N. The fact

that these formulas can be derived follows from the form of the TCUT, i.e.

TCUT (T5) = A

T5
+ BT5 + C,
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where A, B, and C are constants. This is the convex form from the EOQ model. The
following square root formula is clearly seen:

T ∗
5 =

√
AB−1.

To find the optimal N ∗, we start with N = 1 and find the corresponding T ∗
5 . Then we

increment N by 1 and find the corresponding T ∗
5 again. Our numerical experiments have

shown us that asN increases, the value of TCUT ∗ increases and decreases, thus resulting
in multiple local minima. But as N increases, the local minima follow an upward trend.
Hence, we propose to find the optimal N ∗ by searching through a large number of N’s
and stopping when the TCUT ∗ corresponding to the last N is many times larger than the
best TCUT ∗ that has been found so far.

4 Numerical Example and Sensitivity Analysis

Most of the parameter values that are used in the numerical example are adopted from [26]
(e.g., the carbon emission and transportation costs). However, since the proposed model
incorporates repair of used items and raw materials procurement, where the associated
parameters have no counterpart in [26], random values that satisfy the assumptions that
we made are adopted. The values are:

• P = 2000000 units/year,
• D = 500000 units/year,
• R = 1000000 units/year,
• M = 2500000 units/year,
• KP = $100000/setup,
• KR = $80000/setup,
• KM = $2000/setup,
• hP = $60/unit/year,
• hR = $40/unit/year,
• hM = $20/unit/year,
• he = $6.18/unit/year,
• Tf = $500/trip,
• Tr = $20/km,
• Tv = $0.01/unit/km,
• Te = $0.048/km,
• d = 100 km.

We illustrate both Case 1 and Case 2 by using two values for the parameter θ. When
we set θ = 0.6, we obtain the optimal value ofN asN ∗ = 2, the minimum unit time total
cost as TCUT ∗ = $3, 123, 837.05, and the optimal cycle time as T ∗

5 = 0.1426 year.
These values are obtained from implementingCase1, since θ =0.6>1/2=1/N. InFig. 2,
the plot of TCUT ∗ against N from N = 1 to N = 100 shows the upward trend of TCUT ∗
with respect to N. When we set θ = 0.1, we obtain N ∗ = 1, TCUT ∗ = $2, 521, 962.96,
and T ∗

5 = 0.1825 year. These values are obtained from implementing Case 2, since N
= 1.
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Fig. 2. Plot of TCUT∗ against N for the case of θ = 0.6.

In the numerical sensitivity analysis, the set of parameters

X = {D, θ , (KP ,KR,KM ), (hP , hR, hM ), d , he,Te}
is tested. The initial value of X is

X ={500000, 0.6, (100000, 80000, 2000),
(600, 40, 20), 100, 6.18, 0.048}.

Except for θ, the parameter values are made to vary in the range from 50% to 140%
of their initial values.

For testing the return rate θ, the unit time cost of production (CP) and the unit time
cost of repair (CR) are included into the unit time total cost (TCUT ) in order to reflect
the economic advantage of used items recovery. This is because carrying used items
incurs additional holding cost that will inflate the TCUT, but this can be counteracted
by considering the typically cheaper cost of repair (compared to the cost of production).
Hence, the following costs are added to the TCUT expression:

CP = QPwp

T5
, CR = QRwR

T5
,

where wP is the unit production cost and wR is the unit repair cost, and wP > wR. In this
test, we set wP = $10 and wR = 0.6wP . The values of θ are made to vary in the range
[0.1, 0.8].

From the results of the sensitivity analysis, the following observations can be made:

(1) The optimal N ∗ is sensitive to the parameters D and θ and is insensitive to the other
parameters.

(2) The optimal TCUT ∗ is highly sensitive to the parameter D.
(3) TCUT ∗ is more sensitive to the classical costs (KP , KR, KM , hP , hR, hM ) than to

the emission costs (he and Te). It is almost insensitive to Te.
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(4) TCUT ∗ is less sensitive to the parameter θ than to the parameters (D, KP , KR, KM ,
hP , hR, hM , d ). When the unit time production cost and unit time repair cost are
factored in, TCUT ∗ decreases as the value of θ increases, but N ∗ increases as the
value of θ increases.

(5) Both TCUT ∗ and N ∗ increase as the value of the parameter D increases.
(6) TCUT ∗ increases as the values of the parameters (KP , KR, KM , hP , hR, hM , d , he,

Te) increase over the prescribed range, but N ∗ remains stable.

5 Conclusion

This paper proposes an integrated inventory model that considers three types of inven-
tories: used items, service items, and raw materials. Used items are collected from the
market and are repaired as good as new to satisfy demand. If there are insufficient repaired
items, then the remaining demand is satisfied by producing the required items from the
stocked raw materials. Hence the policy that is adopted is cyclic, with one repair run and
one production run per cycle. Demand is satisfied by shipping in equally spaced time
intervals in batches of equal size. The warehousing of items incurs a carbon emission
cost in addition to the traditional holding costs. Additionally, the transportation of items
to the client also incurs a carbon emission cost in addition to the traditional transportation
costs.

The numerical results showed that when repairing used items is cheaper than produc-
ing new items, then the additional costs that are incurred by carrying the used items and
setting up the repair run are counteracted, and the optimal policy favours repair rather
than production. We note that the emission costs that arise from repair and production
can be included inside the unit production cost and unit repair cost, and thus, there is no
loss of mathematical generality.

The numerical results further showed that the emission costs from warehousing
and from the transportation of items to the client barely affects the optimal policy.
Specifically, the optimal delivery frequency (N ∗) is observed to be unaffected by the
emission costs while the length of the cycle time (T5) barely changes. The optimal
policy is much more affected by the demand rate and the return rate. Perhaps a more
realistic assessment of N ∗ vis-a-vis the emission costs can be made if the number of
transportation vehicles and themax load of each vehicle are considered. This can be done
in a future work. Another important item for future research is an analytical treatment of
the behaviour of the value of TCUT ∗ with respect to N; that is, what are the conditions
that ensure the existence of a global minimum.
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