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Abstract. DEA models and their applicability is heavily depended on the type
of data that has been used for efficiency assessment. Conventional DEA models
assume the all the involved data in the efficiency evaluation are non-negative,
which in many cases seems unrealistic specially when the profit or the rate of
growth are involved in the evaluation of organizations. Moreover, the perturbation
in data is unavoidable in real-world applications and negative data also might be
affected by error. In this paper we propose a robust DEA model to handle uncer-
tain negative data that guarantees the robustness of solution against the uncertainty
in data. The proposed robust DEA model is constructed under a box-ellipsoidal
uncertainty set and an application of banking in Malaysia is presented to validate
the applicability of proposed model and evaluate the effect of uncertainty in effi-
ciency assessment and ranking of 30 banks in Malaysia. The result shows that our
proposed model provides a better and more discriminative ranking of banks.

Keywords: Data envelopment analysis (DEA) · Mathematical programming ·
Robust optimization · Uncertainty · Negative data

1 Literature Review

Data envelopment analysis (DEA) is a non-parametric approach for assessing the rela-
tive efficiency of decision-making units (DMUs) based on linear programming, which
construct a frontier based on the observed input-output ratios. Charnes et al. [1] pro-
posed the first DEA model called CCR model with the assumption of constant return
to scale (CRS). Banker et al. [2] extended the CCR model and proposed BBC model
which allows variable return to scale (VRS). Since introducing first DEA models, this
method has been extensively applied in management sciences and various real-world
applications such as education, agriculture, health care, banking, etc. (see [3] and [4] for
a Survey of DEA applications).

Conventional DEA models assume non-negative values for input and output obser-
vations which is unrealistic and in many real-life applications of DEA models some
variables can take both positive and negative values such as rate of growth, profit, rate of
return, operational cost savings etc. One of the firstly presented approaches to cope with
negative data is applying data transformation whereas an arbitrary lager number is added
to into all the values of a variable which can turn negative values into positive values
[5]. However, it should be mentioned that based on the applied model the results are
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different and the solutions may not be invariant to data transformations. Portela et al. [6]
introduced a range directional measure (RDM) model based on the directional distance
function to handle negative data. Sharp et al. [7] developed a modified slack base mea-
sure that considers both positive and negative data. One of the popular approaches for
modelling negative data is based on partitioning positive and negative variables which
was applied by Emrouznejad et al. [8] and based on that they proposed a semi oriented
radial measure (SORM) to evaluate the efficiency of DMUs. Later several models and
approaches were proposed to cope with negative data in DEA models which some of
these studies can be seen in [9, 10]. It should be noted that in the presence of negative
data in a technology, the CRS assumption is not possible, as in the CRS technology
it as assumed that any activity can be radially expanded or contracted to create other
feasible activities or in another words any proportion of an efficient unit is efficient as
well, which is not consistent if some of the values of a variable are negative. Therefore,
the VRS technologies are required to be assumed in the presence of negative data.

In conventional DEA models it is assumed that all data are accurate and crisp values
and the uncertainty and perturbation in data is ignored. However, uncertainty in data is
inevitable inmany real-world applications and ignoring the perturbation in datamay lead
to unreliable efficiency scores and ranking of DMUs and also unattainable management
decisions. There are several approaches in DEA to cope with uncertainty in data such
as fuzzy DEA models [11], imprecise DEA [12] and robust DEA (RDEA) [13]. Robust
DEA was firstly introduced by Sadjadi and Omrani [13] and since then it has gain lots
of attentions by researchers in both theory and application perspective. RDEA has been
proposed based on the robust optimization approach which was originally introduced by
Soyster [14] and extended in the work of Ben-Tal and Nemirovski [15] and Bertsimas
and Sim [16]. In robust optimization, the optimal solutions will be determined in a
robust counterpart of the nominal problem which is constructed based on a predefined
uncertainty set that ensure the optimal solution remain feasible when the data changes
in the predefined uncertainty set. RDEA is one of the most popular approaches for
handling uncertainty in DEA models. Sadjadi et al. [17] proposed a robust counterpart
based on the Bental and Nemirovski’s approach [15] for super efficiency DEA model to
evaluate the gas companies. Shirazi and Mohammdi [18] evaluated Iranian airlines by
developing a robust slack base measure (SBM) with undesirable outputs. Dehokhalaji
et al. [19] presented the robust counterpart of the envelopment form of the CCR model
based on the Ben-Tal and Nemirovski’s robust approach [15] in a situation where inputs
and outputs are assumed to take value from a symmetric box. RDEA is one of the most
popular approaches for handling uncertainty in DEA and many researchers applied the
robust optimization approaches to cope with data uncertainty in basic and advanced
DEA models. A survey of RDEA studies can be seen in [20].

The focus of this paper is to propose a robustDEAmodel to handle uncertain negative
data. As the equality constraints are challenging for constructing a robust counterpart for
SORMmodel, and the multiplier form of SORMmodel contains equality constraint, we
modify an equivalent model to be applied to propose a robust SORMmodel. The robust
counterpart of the SORMmodel is constructed based on a box-ellipsoidal uncertainty set
proposed by Ben-al and Nemirovski [15]. The level of conservativeness in this approach
is controllable and it depends on the decision makers preferences. The rest of this paper
is organized as follows: Sect. 2, a background on the SORM model and an equivalent
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model is proposed to be applied to propose a robust SORM model. Section 3 presents a
robust SORM (RSORM) model under a box-ellipsoidal uncertainty set. An application
on 30 banks in Malaysia is given in Sect. 4 to validate the proposed model and show the
applicability of the model. Finally, the conclusion is presented in Sect. 5.

2 SORMModel

The SORM model for handling negative data has been developed by Emrouznejad
et al. [8] based on partitioning approach to divide positive and negative values of
a specific variable and replace negative values by a difference of two non-negative
values. The first element includes positive variable, and the second element includes
the absolute value of the negative part. Assume there are n DMUs, which each of
them produces s outputs {yrj; r = 1, . . . , s} using m inputs {xij; i = 1, . . . , s}. Let
us assume the input variables take only positive values and output variables can take
positive values for some DMUs and negative values for the other. The output vari-
ables are divided into two subsets: O = {Yr; take paositive values for all DMUs} and
ON = {Yk; take paositive values some DMUS and negative values for others}, where
as O ∪ON = {1, . . . , s} and O ∩ON = ∅. The output variables Yk ∈ ON are defined as
Yk = Y 1

k − Y 2
k where Y k

1 ,Y k
1 ≥ 0 and take value for DMUj as follows:

Y 1
kj =

{
Ykj, if Ykj ≥ 0
0, if Ykj < 0

Y 2
kj =

{
0, if Ykj ≥ 0

−Ykj, if Ykj < 0

&

Therefore, the production possibility set (PPS) in the presence of negative data for
the output oriented SORM model, denoted by PSORM is defined as follows:

PSORM =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(x, y)

∣∣∣∣∣∣∣∣∣∣∣

x ≥ ∑n
j=1 λj xj,

y ≤ ∑n
j=1

(
Yr
Yk

)
λj,∑n

j=1 λj = 1,
λj ≥ 0 ∀j.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Based on the above partitions and defined variables and assumptions the output
oriented SORM model is defined as the following mathematical programming:

Max ϕo ∀i ∈ I
s.t.

∑n
j=1 λjxij ≤ xio, ∀i ∈ I∑n
j=1 λjyrj ≥ ϕoyro, ∀r ∈ O∑n
j=1 λjy1kj ≥ ϕoy1kj, ∀k ∈ ON∑n
j=1 λjy2kj ≤ ϕoy2kj, ∀r ∈ ON∑n
j=1 λj = 1, ∀j

λj ≥ 0.

(1)
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In model (1) it can be seen that y2kj is treated as inputs since the absolute value of
the negative variables should be decreased to improve the performance of the under
evaluation DMU. Let vi represent the weights factors related to the i-th input and ur the
weights assigned to outputs belong to O and u1r and u

2
r are the wrights factors related to

y1kj and y2kj respectively, so the dual form of model (1) is formulated as follow:

Min
∑

i∈I vixio + vo

s.t.
∑

r∈O uryro +
∑

k∈ON
u1ky

1
ko −

∑
k∈ON

u2ky
2
ko = 1,∑

i∈I vixij −
∑

r∈O uryrj −
∑

k∈ON
u1ky

1
kj +

∑
k∈ON

u2ky
2
ko + vo ≥ 0,

∀j ∈ J

ur ≥ 0, ∀r ∈ O

u1k , u
2
k ≥ 0 ∀k ∈ ON

vi ≥ 0 ∀i ∈ I

vo is free in sign. (2)

The optimal value of model (2) represents the efficiency score of DMUO. DMUO is
called efficient if the optimal value of model (2) is equal to 1 and it is called inefficient
if the optimal value of model (2) is greater than 1.

2.1 Equality Constraints in the Multiplier SORM Model and an Equivalent
Model

One of the challenges in constructing a tractable robust counterpart for some of the DEA
models is the existence of equality constraints in some of the models. In the multiplier
form of the output oriented SORM model the constraint (2.1) is in equality form, hence
if the outputs variables are assumed to be uncertain, this constraint may restrict the
feasible region or results in a non-feasible solution for the robust counterpart of model
(2) [21]. In order to avoid such complications one can assume that only input variables
are under uncertainty to avoid the problems caused by equality constraint related to
output variables which is not an appropriate way. Therefore, we develop an equivalent
model to model (2), without any equality constraint which is more applicable in cases
where both inputs and outputs variables are subjected to uncertainty or in our case to
handle the uncertainty in output variables in an output-oriented model. In this section
we modify an alternative formulation to convert the equality constraint to inequality.
Towards this end, suppose the equality constraint (2.1) is fixed at an arbitrary positive
parameter, thus model (2) can be reformulated as follows:

Min
∑

i∈I vixio + vo s.t.
∑

r∈O uryro +
∑

k∈ON
u1ky

1
ko −

∑
k∈ON

u2ky
2
ko = t,∑

i∈I vixij −
∑

r∈O uryrj −
∑

k∈ON
u1ky

1
kj +

∑
k∈ON

u2ky
2
ko + vo ≥ 0,

∀j ∈ J

ur ≥ 0, ∀r ∈ O



186 R. Y. Zehi and N. S. N. Khurizan

u1k , u
2
k ≥ 0 ∀k ∈ ON

vi ≥ 0 ∀i ∈ I

vo is free in sign. (3)

Proposition 1. Model (3) is equivalent to SORM model.

Proof. It is clear that
(
u∗
r , u

1∗
k , u2∗k , v∗

i , v
∗
0

)
is an optimal solution for the SORM model

if and only if
(
tu∗

r , tu
1∗
k , tu2∗k , tv∗

i , tv
∗
0

)
is an optimal solution of model (3). Therefore, it

can be concluded that model (3) is equivalent to SORM model.

Theorem 1. SORM model is equivalent to the following model:

Min
∑

i∈I vixio + vo

s.t.
∑

r∈O uryro +
∑

k∈ON
u1ky

1
ko −

∑
k∈ON

u2ky
2
ko ≥ t,∑

i∈I vixij −
∑

r∈O uryrj −
∑

k∈ON
u1ky

1
kj +

∑
k∈ON

u2ky
2
ko + vo ≥ 0,

∀j ∈ J

ur ≥ 0, ∀r ∈ O

u1k , u
2
k ≥ 0 ∀k ∈ ON

vi ≥ 0 ∀i ∈ I

vo is free in sign. (4)

Proof. By proposition 1, model (3) is equivalent to SORM model, hence it is sufficient
to prove that the dual of model (3) is equivalent to the dual of model (4). The dual form
of model (3) is the following mathematical programming:

Max tϕo

s.t.
∑n

j=1 λjxij ≤ xio, ∀i ∈ I (5.1)∑n
j=1 λjyrj ≥ ϕoyro, ∀r ∈ O (5.2)∑n
j=1 λjy1kj ≥ ϕoy1kj, ∀k ∈ ON (5.3)∑n
j=1 λjy2kj ≤ ϕoy2kj, ∀k ∈ ON (5.4)∑n
j=1 λj = 1, ∀j ∈ J (5.5)

λj ≥ 0 (5.6)
ϕo is free in sign (5.7)

(5)

and the dual of model (4) is as follows:

Max tϕo

s.t.
∑n

j=1 λjxij ≤ xio, ∀i ∈ I∑n
j=1 λjyrj ≥ ϕoyro, ∀r ∈ O∑n
j=1 λjy1kj ≥ ϕoy1kj, ∀k ∈ ON∑n
j=1 λjy2kj ≤ ϕoy2kj, ∀k ∈ ON∑n
j=1 λj = 1, ∀j ∈ J

λj ≥ 0
ϕo ≥ 0

(6)
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Let ϕ∗
o be the optimal solution of model (5) and (6). The only difference between

the dual models is the sign of ϕ∗
o which is free in sign in (5) and non-negative in (6). It is

straightforward to show that ϕ∗
o > 0 in (5) since if ϕ∗

o ≤ 0, then λ∗ = 0n in constraints
(5.2), (5.3) and (5.4) which contradicts with the convexity constraint and violate it, that is
impossible. Therefore, it can be concluded that the dual models (5) and (6) are equivalent
and subsequently their primal models (3) and (4) are equivalent.

Asmentioned previously in order to avoid the challenges regarding the normalization
constraint, various models in the RDEA literature adopted the input-oriented models
when output variables are assumed to be uncertain and similarly the output-oriented
model are adopted when input variable are uncertain. One of the advantages of model
(4) is that the constraints in this model are all in the form of inequality which make it
suitable to be applied in cases when uncertain inputs and outputs appear simultaneously.
Since in model (4), the parameter t is ab arbitrary positive number, therefore it can
be considered to set t = 1 and the following model (7) is a suitable model to handle
uncertainty in output variables in an output-oriented model in the presence of negative
data.

(SORME) Min
∑

i∈I vixio + vo

s.t.
∑

r∈O uryro +
∑

k∈ON
u1ky

1
ko −

∑
k∈ON

u2ky
2
ko ≥ t,∑

i∈I vixij −
∑

r∈O uryrj −
∑

k∈ON
u1ky

1
kj +

∑
k∈ON

u2ky
2
ko + vo ≥ 0,

∀j ∈ J

ur ≥ 0, ∀r ∈ O

u1k , u
2
k ≥ 0 ∀k ∈ ON

vi ≥ 0 ∀i ∈ I

vo is free in sign. (7)

3 Robust Counterpart of the SORME Model

In this section we modify a robust counterpart for the SORME model based on Ben-
Tal and Nemirovski’s approach [15] when uncertain data change in a box-ellipsoidal
uncertainty set. Without loss of generality, we assume input variables are certain and
accurate and only output variables are subjected to uncertainty. Let J yj be the set of

uncertain non-negative outputs
(
yrj

)
and J y

1

j and J y
2

j be the set of uncertain outputs that

are non-negative valued for some DMUs (y1kj) and negative valued for the other DMUs

(y2kj), in j-th constraint. The uncertain outputs are expressed as ỹrj = yrj + ηrjε
yyrj,

ỹ1kj = y1kj + η1kjε
y1y1kj and ỹ2kj = y2kj + η2kjε

y2y2kj where εy, εy
1
and εy

2
are the level of
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perturbations in outputs andηrj ,η1kj andη2kj are the scale deviation from the nominal value.
The uncertain outputs change in a box-ellipsoidal uncertainty set defined as follows:

U(1, ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣ηrj∣∣ ≤ 1,
√∑

j∈Ji η
2
rj ≤ ϕ

y
j ∀r ∈ J yj∣∣∣η1kj

∣∣∣ ≤ 1,

√∑
j∈Ji

(
η1kj

)2 ≤ ϕ
y1

j ∀k ∈ J y
1

j∣∣∣η2kj
∣∣∣ ≤ 1,

√∑
j∈Ji

(
η2kj

)2 ≤ ϕ
y2

j ∀k ∈ J y
2

j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

where, parameters ϕ
y
j , ϕ

y1

j and ϕ
y2

j are the lengths of the semi-axes of the ellipsoid for
the uncertain outputs that control the size of ellipsoid and the level of reliability. The

level of ϕj ≤
(∣∣∣J yj

∣∣∣ +
∣∣∣J y1j

∣∣∣ +
∣∣∣J y2j

∣∣∣)0.5 adjust the level of protection against uncertainty
and ϕj = 0 means the model is not protected against uncertainty and the robust counter-

part is reduced to the SORME model. Note ϕj =
(∣∣∣J yj

∣∣∣ +
∣∣∣J y1j

∣∣∣ +
∣∣∣J y2j

∣∣∣)0.5 implies the

smallest volume of ellipsoid contained in the box and it is the highest allowable level
of conservatism that the decision maker can consider for the j-th constraint and ϕj = 1
implies the largest volume of ellipsoid contained in the box. Considering the uncertainty
set U(1, ϕ), the robust counterpart of the SORME based on Ben-Tal and Nemirovski’s
approach [15] can be formulated as the following mathematical programming:

(RSORM) Min
∑

i∈I vixio + vo∑
r∈O uryro +

∑
k∈ON

u1ky
1
ko −

∑
k∈ON

u2ky
2
ko

−
∑

r∈J yo
αroŷroϕ

y
o

√∑
r∈J yo

ŷ2roz
2
ro −

∑
k∈J y1o

βkoŷ
1
ko − ϕ

y1
o

√∑
k∈J y1o

ŷ1
2

koz
12
ko

−
∑

k∈J y2o
γkoŷ

2
ko − ϕ

y2
o

√∑
k∈J y2o

ŷ2
2

koz
22
ko ≥ 1,

∑
i∈I vixij −

∑
r∈O uryrj −

∑
k∈ON

u1ky
1
kj +

∑
k∈ON

u2ky
2
kj + vo −

∑
r∈J yj

αrj ŷrj

− ϕ
y
j

√∑
r∈J yj

ŷ2rjz
2
rj −

∑
k∈J y1j

βkjŷ
1
kj − ϕ

y1

j

√∑
k∈J y1j

ŷ1
2

kj z
12
kj −

∑
k∈J y2j

γkjŷ
2
kj

− ϕ
y2

j

√∑
k∈J y1j

ŷ2
2

kj z
22
kj ≥ 0,

− αrj ≤ ur − zrj ≤ αrj ∀r ∈ J yj

− βkj ≤ u1k − z1kj ≤ βkj ∀k ∈ J y
1

j

− γkj ≤ u2k − z2kj ≤ γkj ∀k ∈ J y
2

j

ur ≥ 0 ∀r ∈ O

u1k , u
2
k ≥ 0 ∀k ∈ ON

vi ≥ 0 ∀i ∈ I

vo is free in sign (8)
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where αrj, βkj, γkj, zrj, z1kj and z2kj are auxiliary decision variables. The probability that

j-th constraint in model (8) is violated is at most exp

(
−ϕ2

j
2

)
. The robust counterpart of

the SORMmodel under a box-ellipsoidal uncertainty set lead to a second order quadratic
programming and it is non-linear, however its formulation is practically tractable.

4 Application

DEA is one of most popular approaches for the assessment of efficiency in banking
system. As the banks play a significant role in the economic development, evaluating the
efficiency of banks provides valuable information regarding the future decisionsmade for
the banks in order to improve the efficiency scores of banks and as a result an economic
growth for the banks can be expected. Generally, there are two approaches to identify the
input and output variables in the assessment of efficiency in banks: the intermediation
and production approaches [22]. The intermediation approach uses monetary measure
such as capital and labor as inputs and loans and profit as outputs. On the other hand,
the production approach considers banks as producers and uses physical inputs such as
number of staff and capital to produces services as outputs such as loans.

Several research have been conducted to evaluate the efficiency of banks inMalaysia
based on different approaches. Omar et al. [23] adopted the intermediary approach
for input and output selection and evaluated the efficiency of 11 commercial banks in
Malaysia using a CRS and VRS CCRmodel and investigated the change of productivity
for the banks using a Malmquist index. Tahir et al. [24] employed the intermediation
approach to identify inputs and outputs and evaluated the efficiency of 23 banks in
Malaysia during the period of 2000–2006 using the basic DEA models. Ab Rahim
et al. [25] applied DEA models to estimate the cost efficiency of 10 domestic banks
in Malaysia during the period of 1995–2010. Echchabi [26] provided a review of the
previous work on the efficiency evolution of banks in Malaysia and stated that there are
limited studies on this area in developing countries like Malaysia in comparison with
developed countries. They adopted the intermediary approach to choose the variables
and estimate the efficiency of 23 Malaysian banks and examine the factors that has an
impact of the efficiency score of the banks.

However, the previous studies considered the input and output as certain and non-
negative variables. In fact, in the presence of profit as an output in the evaluation process it
is most likely that some of DMUs experience a loss instead of profit in a specified period.
Moreover, uncertainty in data is an unavoidable factor in the efficiency assessment of any
organizations such as banks and it can be due to errors in computation and measurement
etc. Utilizing the intermediary approach, in this study we determine the efficiency of 30
banks in Malaysia with three inputs (total assets, deposit, total equity) and two outputs
(loans and profit). The SORM models is applied to cope with negative data and the
proposed RSORM to handle the uncertainty in in both negative and positive variables.
we assume that outputs variables are subject to uncertainty. A descriptive statistic for data
sets is given in Table 1. Firstly, the efficiency scores of DMUs are evaluated applying the
SORMmodel and the proposed RSORMmodel for two different level of perturbation in
data (0.01 and 0.05). The result of efficiency score and ranking of DMUs are presented
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Table 1. Descriptive statistics for data sets

Data set Mean Standard Deviation Minimum Maximum

Inputs

Total assets 85938662 143794964.8 430897 602354899

Total deposits 51485240 94965298.9 101430 410839559

Total equity 11143709 17169911.37 327053 72266256

Outputs

Loans 37667592 79757727.26 32561 365844401

Profit 630273 1299502.742 −70405 5965127

Table 2. Optimal solutions obtained from SORM Model and RSORM model (ϕj = 1.4)

B
an
ks

SO
R
M

R
an
ki
ng

R
SO

R
M

ε
=

0.
01

R
an
ki
ng

R
SO

R
M

ε
=

0.
05

R
an
ki
ng

B
an
ks

SO
R
M

R
an
ki
ng

R
SO

R
M

ε
=

0.
01

R
an
ki
ng

R
SO

R
M

ε
=

0.
05

R
an
ki
ng

1 1 1 1.02 1 1.11 1 16 1.05 4 1.07 4 1.16 4

2 1 1 1.02 1 1.11 1 17 1 1 1.02 1 1.58 12

3 1 1 1.02 1 1.11 1 18 1 1 1.02 1 1.11 1

4 1.56 12 1.60 14 1.73 16 19 1.42 10 1.45 12 1.63 14

5 1 1 1.02 1 1.11 1 20 1.06 5 1.08 5 1.17 5

6 1.22 9 1.24 9 1.79 17 21 1 1 1.02 1 1.11 1

7 1.54 11 2.13 17 2.43 20 22 1 1 1.56 13 1.80 18

8 1.09 6 1.14 7 1.21 6 23 1 1 1.02 1 1.47 10

9 1.02 2 1.04 2 1.13 2 24 1.15 8 1.87 15 2.18 19

10 1 1 1.41 11 1.59 13 25 1.05 4 1.07 4 1.64 15

11 1 1 1.02 1 1.11 1 26 1 1 1.02 1 1.11 1

12 1 1 1.02 1 1.11 1 27 1 1 2.10 16 2.58 21

13 1 1 1.30 10 1.45 9 28 1 1 1.15 2 1.42 8

14 1.04 3 1.06 2 1.15 3 29 1.42 10 1.45 12 1.57 11

15 1 1 1.02 1 1.11 1 30 1.11 7 1.13 6 1.23 7

in Table 2. The results in Table 2 are obtained for the highest level of conservativeness

ϕj =
(∣∣∣J yj

∣∣∣ +
∣∣∣J y1j

∣∣∣ +
∣∣∣J y2j

∣∣∣)0.5 ∼= 1.4 which means the outputs variables are fully

protected against uncertainty. In Table 3, a comparison of efficiency score for different
level of conservativeness and different level of perturbation in data is given.

The obtained results in Table 2 shows that by applying SORM model most of the
banks are efficient and the uncertainty in output variables can significantly change the
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Table 3. RSORM optimal value for different level of ϕj
B
an
ks

ϕ
j
=

0.
5

ε
=

0.
01

ϕ
j
=

0.
5

ε
=

0.
05

ϕ
j
=

1
ε

=
0.
01

ϕ
j
=

1
ε

=
0.
05

ϕ
j
=

1.
4

ε
=

0.
01

ϕ
j
=

1.
4

ε
=

0.
05

B
an
ks

ϕ
j
=

0.
5

ε
=

0.
01

ϕ
j
=

0.
5

ε
=

0.
05

ϕ
j
=

1
ε

=
0.
01

ϕ
j
=

1
ε

=
0.
05

ϕ
j
=

1.
4

ε
=

0.
01

ϕ
j
=

1.
4

ε
=

0.
05

1 1.01 1.05 1.02 1.02 1.02 1.02 16 1.06 1.10 1.07 1.07 1.07 1.07

1 1.01 1.05 1.02 1.02 1.02 1.02 17 1.01 1.05 1.02 1.02 1.02 1.02

3 1.01 1.05 1.02 1.02 1.02 1.02 18 1.01 1.03 1.02 1.02 1.02 1.02

4 1.58 1.64 1.60 1.60 1.60 1.60 19 1.44 1.49 1.45 1.45 1.45 1.45

5 1.01 1.03 1.01 1.02 1.02 1.02 20 1.07 1.12 1.08 1.08 1.08 1.08

6 1.23 1.28 1.24 1.24 1.24 1.24 21 1.01 1.05 1.02 1.02 1.02 1.02

7 1.56 1.62 1.58 2.13 2.13 2.13 22 1.01 1.05 1.02 1.56 1.56 1.56

8 1.10 1.14 1.11 1.14 1.14 1.14 23 1.01 1.05 1.02 1.02 1.02 1.02

9 1.03 1.07 1.04 1.04 1.04 1.04 24 1.16 1.20 1.17 1.87 1.87 1.87

10 1.01 1.05 1.02 1.41 1.41 1.41 25 1.06 1.10 1.07 1.07 1.07 1.07

11 1.01 1.05 1.02 1.02 1.02 1.02 26 1.01 1.05 1.02 1.02 1.02 1.02

12 1.01 1.05 1.02 1.02 1.02 1.02 27 1.01 1.05 1.02 2.10 2.10 2.10

13 1.01 1.05 1.02 1.30 1.30 1.30 28 1.01 1.05 1.02 1.15 1.15 1.15

14 1.05 1.09 1.06 1.06 1.06 1.06 29 1.43 1.49 1.45 1.45 1.45 1.45

15 1.01 1.05 1.02 1.02 1.02 1.02 30 1.12 1.17 1.13 1.13 1.13 1.13

efficiency score and the ranking of DMUs. For example, the ranking of Bank 27 by
SORM model is reported as 1 and by RSORM (ε = 0.01) is 16 and by RSORM (ε =
0.05) is 21. The result for RSORM model in Table 2 are reported for the full protection
of uncertain outputs (ϕj = 1.4). The optimal solution by RSORM model increases by
increasing the level of perturbation in output variables from 0.01 to 0.05. The level of
protection indicates the level of risk that decision makers are willing to allow and in this
case any level of ϕj ≤ 1.4 can be considered based on the preference of decision makers.
Table 3 compares the obtained optimal solutions for two different level of perturbation
(ε = 0.01, 0.05) and three different level of conservativeness (ϕj = 0.5, 1, 1.4). It shows
that by increasing the level of conservativeness the optimal solution of the RSORMwill
be increased which indicates that the banks will become less efficient. Decision makers
can apply SORMor RSORMbased on the result they expect to achieve. The result shows
that the SORM model is less discriminative than the RSORM model and if the decision
makers are willing to accept a certain level of uncertainty in data, the RSORM model
can be a better model to assess the efficiency of banks.
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5 Conclusion

The input and output variables in the basic DEAmodels are assumed to be non-negative.
However, in many real-world applications negative data are also involved in set, any
type of data can be affected by uncertainty. Robust optimization is one of the popular
approaches to cope with data uncertainty in DEA models. This paper focuses on the
SORM model which is one of the popular DEA models to handle negative data and
constructing a robust counterpart for the SORM model to ensure feasible and robust
solutions. The presence of equality constraints can be problematic for constructing a
robust counterpart, as such constraints may lead to a restricted feasible region or infea-
sible solutions. Therefore, we showed that the equality constraint can be replace by
inequality and an equivalent SORMmodel (SORME) is presented. A robust counterpart
for SORME model is constructed under a box-ellipsoidal uncertainty set to handle the
uncertainty in both positive and negative data. The proposed RSORM model can be
applied in complex case studies where uncertain negative data are involved in the evo-
lution of DMUs. In this study the proposed RSORM model is applied for assessing the
efficiency of 30 banks in Malaysia in the financial year 2020 to take into consideration
the uncertainty in outputs where these uncertain outputs can take both positive and neg-
ative data. Since the previous studies on assessing the efficiency of banks in Malaysia
ignored the effect of uncertainty in data and also the presence of negative data, therefore
the proposed RSORM model provide further opportunities for researchers to apply the
proposed RSORM model and the methodological grounds of this research for future
studies on different cases such as supply chain or sustainability analysis.
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