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Abstract. Hourly particulate matter time series data from eight air quality mon-
itoring stations in Peninsular Malaysia were forecast by using the Convolutional
Neural Network (CNN) algorithm. Instead of using the original time series,
which are time-domain sequence data, this study used the time-frequency domain
sequence data retrieved by wavelet transformation. Air pollutants’ concentration
considered for this study is the particulate matter with a diameter of 10 microns or
less, PM10. The transformation used in this study is the Morlet wavelet transform,
which is continuous wavelet transformation (CWT). Different time steps for the
time series dependencies were considered to assess the PM10 dependencies on its
past values. The results were compared with the results from the CNN algorithm
using the original time series. It is shown that the Wavelet Convolutional Neural
Network algorithm improves the forecast accuracy of the PM10 time series.

Keywords: Convolution Neural Network · Wavelet Transform · Time Series
Forecasting · Air Quality

1 Introduction

Air quality is determined by measuring air pollutants’ concentration such as suspended
particles with a diameter of fewer than 10 μm (PM10), suspended particles with a
diameter of fewer than 2.5 μm (PM2.5), sulphur dioxide (SO2), nitrogen (NO2), ozone
(O3) and others. High concentrations of toxic elements and gases released into the
atmosphere will cause air pollution. Urban air pollution has been a major concern for
the last fifty years, affecting human health, well-being, and the environment. Studies
show that the rapid development of industry and population growth at the end of the
20th century poses a severe threat to air quality [1].

Many air quality monitoring stations have been set up to monitor the air quality in
Malaysia. From the data collected by the air quality monitoring stations, an air quality
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model can be built, which is helpful for air quality management. Many air quality mod-
els have been built using outdated time series models, where many assumptions were
required and with lower prediction accuracy. Nowadays, many deep learning techniques
have been proposed which is more flexible and with better accuracy [2, 3]. According to
Azid et al. [4], artificial neural networks (ANN) can improve the decision-makingprocess
and propose a problem-solving tool for improvingMalaysian atmospheric management.
Thus, in this study, the convolutional neural network (CNN) model was proposed for
modelling air quality in Malaysia.

CNN can be defined as involves pooling many small filters from the input data and
a feed-forward artificial neural network algorithm. Its ability to discover the internal
structure and extract deep features make it useful for pattern identification, which is
useful for analyzing time series data.

In this study, the continuous wavelet transform (CWT) of the air quality time series
data will be used as the input for the CNN algorithm to forecast the hourly PM10
time series for several areas in Malaysia. Wavelet analysis is a technique that can be
used to analyze time-frequency characteristics of time domain signals. It has been used
extensively inmany areas, such as in engineering [5, 6], finance [7] and signal processing
[8]. Several studies have shown that combining the time series model with wavelet
analysis could improve the time series model accuracy [9, 10].

2 Convolutional Neural Network (CNN)

CNN technique extracts feature from datasets through convolution kernels and pooling
operation. The convolutional layer combines several local filterswith a sequential input to
identify the sequence. Each featuremap corresponding to the local filter can be generated
by applying a filter to all sequential input. Then the pooling layer is used to extract the
most significant features with fixed lengths from each feature map. The convolutional
and pooling layers can be combined and arranged to perform analysis.

The convolutional layer is a linear process that aims to extract local patterns in the
time dimension and find local dependencies in the raw sequence. The raw sequential
input, S and the sequential filter, FS are defined as follows:

S = [s1, s2, s3, . . . , sL] (1)

FS = [w1,w2,w3, . . . ,wK ] (2)

where si ∈ R is a single sequential data point arranged by time and wj ∈ Rm×1 is one of
the filter vectors. L is the length for the raw sequential input S andK is the number of total
filters in the convolutional layer. A convolutional operation is defined as a multiplication
operation between filter vector wj and network vector symbol si:i+m−1.

si:i+m−1 = si ⊕ si+1 ⊕ si+2 ⊕ . . . ⊕ si+m−1 (3)

where ⊕ is networking operation and si:i+m−1 represents a continuous period starting
from i. Bias b ∈ R required to be considered in convolutional operations. Therefore, the
final computational equation is given as follow:

ci = f (wj
T · si:i+m−1 + b) (4)



Wavelet Convolutional Neural Network for Forecasting Malaysian PM10 207

where wj
T represents a change in the order of the filter matrix and f is the nonlinear

activation function. The i index represents the timestep’s index and j is for the filter’s
index.

The activation functions are used to improve the model’s ability to learn more com-
plex functions that can further improve forecasting performance. Applying an appro-
priate activation function can speed up the rate of mapping and improve the model’s
illustration ability. Rectified Linear Units (ReLU) has been selected for this study since
it has been used in many applications, including for air quality predictive models, given
its advantages over other activation functions in improving the model’s accuracy [11].

In general, several filters are arranged in a convolutional layer to extract some input
data’s key features efficiently. Based on the example, there are as many K filters with
m-sized windowmeasurements in the convolutional layer. Based on the equations above,
each vector wj represents a filter and the value ci represents a window activation.

A convolutional operation applied to the entire sequential input is executed by apply-
ing a filtering window based on a fixed timestep. Thus, the feature map corresponding
to the filter can be defined in vector form as follows:

Fj = [c1, c2, c3, . . . , cL−m+1] (5)

where j is the filter’s index and elements in Fj corresponds to {s1:m, s2:m, . . . , sl−m+1:L}.
The pooling function is similar to sub-sampling because the pooling function samples

the convolutional layer’s output based on a specific pooling measure, p. This means that
the pooling layer can effectively compress the feature map’s length to further reduce the
number of model parameters. The feature compression vectorFj-compress can be obtained
based on the max-pooling applied in the air quality predictive model.

Fj−compress = [h1, h2, h3, . . . , hL−m
p +1] (6)

where hj = max(c(j−1)p, c(j−1)p+1, . . . , cjp−1) [12].
Figure 1 illustrates the One-Dimensional CNN architecture for time series data used

in this study. The CNN model considered here is a univariate time series model which
only considered the time series lag values (previous observation) as the input variable
without including other variables. The PM10 concentrations time series will be modelled
separately for each station without considering the correlation between other air quality
variables or between those air quality monitoring stations. This study considers different
timesteps for building the CNN model to evaluate the model’s accuracy in different
timesteps. There are seven timesteps considered, of which the shortest is 24 h (a day)
and the longest is 168 h (seven days). The CNNmodel applied in this studywas restricted
to three convolutional layers and one pooling layer only. The CNN models were trained
up to 30 cycles (epoch) for optimizing the CNN hyperparameters.
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Fig. 1. One-Dimensional CNN architecture for time series data.

3 Continuous Wavelet Transform

Time series data can be decomposed into several resolutions using wavelet transform,
where each resolution represents a contribution of oscillations from different frequencies
[13]. One of the common applications of wavelet in deep learning forecasting is for
transforming the time series into several resolutions, where one-step prediction will
be performed at each resolution independently and will be summed to obtain the final
prediction [14]. Air quality time series have various frequency levels similar to other time
series data types influenced by human activities or weather conditions [15]. Therefore,
the prediction may be improved by accounting for those important properties at certain
frequencies extracted from the time series [16].

There are two types of wavelet transformations, which are discrete wavelet trans-
formation (DWT) and continuous wavelet transformation (CWT). In this study, the
decomposition of the time series was conducted before constructing the CNN predictive
model using the CWT. CWT is chosen here since it is more suited for time series. This
technique can reveal the time series characteristics under multi-temporal scales with
higher resolutions [17], while DWT is more suited for data compression [18].

The CWT of a signal x(t) at time a and scale b can be defined as

Wx(a, b) = 1√
a

∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt, (7)

whereψ(t) is the wavelet function. Here,Wx(a, b) are known as the wavelet coefficients,
which provide information about the signal, x(t), at scale a and around time b.
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In this study, the Morlet wavelet has been used as the wavelet function, defined as

ψ(t) = exp

(
− t2

2σ 2

)
exp(iωt), (8)

where σ and ω are parameters that control the size of the wavelet envelope and oscilla-
tions, respectively. TheMorlet wavelet is a modulated Gaussian function, and its integral
is approximately zero for σω0 > 5. The Fourier transform of the Morlet wavelet is

ψ(ω) = exp

(
− (ω − 2π)2

2

)
, (9)

which provides good localization in the frequency domain (Carmona et al. 1997).

4 Analysis and Results

In this study, hourly PM10 time series from eight air quality monitoring stations in
Peninsular Malaysia, shown in Fig. 2, have been fitted to the Wavelet CNN (WCNN)
and CNN algorithms. The hourly PM10 time series from 12 am of 5th July 2017 to 11 pm
of 31st March 2019 were used to train the model, while the hourly PM10 time series from
12 am of 11th April 2019 to 11 pm of 30th June 2019 were used for model accuracy
assessment. Seven different timesteps were also considered for this study to assess the
PM10 time series dependencies on its past values.

Figure 3 shows the hourly PM10 time series andWCNN forecast plots for all stations
considered in this study. In this figure, the forecast values based on theWCNNalgorithms

Fig. 2. Air quality monitoring stations considered in this study.
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Fig. 3. Hourly PM10 time series and forecast based on WCNN technique.

were only plotted on the testing set period, from 12 am on 11th April 2019 to 11 pm
on 30th June 2019. Since seven different timesteps were considered in this study, each
station’s forecast values were plotted using the best timesteps, as provided in Table 1.
Based on those plots, it can be deduced that the WCNN did quite well in forecasting the
hourly PM10 values for all the stations. The figure also shows that the WCNN technique
can forecast those extreme events, which happen on those actual values.

Table 1 lists the RMSE values for the testing sets based on WCNN and CNN tech-
niques for seven different time steps. The RMSE values for the WCNN technique are
lower compared to the RMSE from CNN techniques for all stations and all timesteps.
This shows that the WCNN has better accuracy in predicting the future values of PM10
for all stations than the CNN technique. This is because the time series’ wavelet decom-
position provides extra information related to the cyclical patterns. This information was
fed into the CNN algorithms, resulting in a better prediction of the time series.
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Table 1. RMSEvalues of hourlyPM10 (μg/m3) testing sets based onWCNNandCNN techniques

Station Timestep

24 48 72 96 120 144 168

WCNN CNN WCNN CNN WCNN CNN WCNN CNN WCNN CNN WCNN CNN WCNN CNN

CA05K 6.9111 7.0128 6.6335 7.0451 6.3038 7.4909 6.9718 7.1786 6.5117 7.3366 6.2703 7.2895 6.9982 7.2096

CA13A 6.3137 6.0560 5.9307 6.1069 5.5151 6.4379 4.9819 6.2994 4.7949 7.0416 4.8623 6.6614 4.9165 6.5854

CA20B 6.5947 8.0278 6.6320 8.0001 6.4552 7.9584 6.0048 8.0025 6.8831 8.5906 7.6015 8.1334 6.0012 8.0611

CA26M 6.9883 7.7908 6.9950 7.5001 6.7373 7.5735 7.4476 7.9342 7.1211 8.2608 7.8158 7.8967 8.0426 8.0412

CA34J 6.3454 8.7361 5.9437 8.8241 6.0324 8.8624 6.2159 8.9797 6.1779 8.9620 6.8351 9.1149 7.2512 9.1308

CA40C 6.8452 7.3199 6.8103 7.1500 7.3687 7.1510 8.8551 7.2397 8.0910 7.3762 8.0125 7.3776 8.6405 7.3147

CA42T 8.8112 10.3166 9.5278 10.3512 7.4529 10.5409 8.8520 10.4821 7.5482 10.7649 8.7759 10.9788 9.4896 12.7121

CA46D 7.4417 9.5730 6.5687 9.4341 6.8356 9.7124 5.5584 9.7747 6.1520 9.8111 5.0086 9.9508 5.4881 10.4437

The table also shows that the best timesteps length of previous values to be used by
each station varies. The stations with a better prediction for shorter previous time steps
have a shorter dependency on their past values than those with longer dependencies on
their previous values. This means that those stations with longer dependencies on their
previous values will be expecting much more predictable PM10 values. In comparison,
those stations with shorter dependencies on their previous values will have more volatile
PM10 values. These different dependencies of hourly PM10 time series on its previous
values for each station could be caused by several factors such as wind speed, humidity,
temperature, land terrain and activities in that area [19–21].

5 Conclusion

This study shows that theWCNN improved the forecast accuracy of the hourly PM10 time
series compared to the CNN technique. This also shows that the wavelet transformation
of the original time series gives extra information formodelling the time series, especially
on the cyclical characteristics of the time series. Furthermore, this study also shows that
selecting suitable timesteps of past data plays an important role in forecasting air quality
data. It was found that each station considered in this study require different lengths of
timesteps used as the input data for producing better predictive models.
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