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Abstract. Double Seasonal Autoregressive Integrated Moving Average
(DSARIMA) model is an extension of the single SARIMA that is incorporated
in modelling data with two seasonality. Model identification, parameter estima-
tion and diagnostic checking are the steps in the modelling. However, the model
identification is the most crucial stage as it provides the information used in the
next step. Thus, this study extended the derivation of the model identification for
DSARIMA in all three models which are additive, multiplicative and subset. The
daily and weekly seasonality which can be indicated by 24 and 128 were used
in this study with the derivation involving correlation and covariance from the
general form of both seasonal and non-seasonal parts. The derivation results were
shown for ARIMA (0, 0, 1) (0, 0, 1)24(0, 0, 1)168, ARIMA (0, 0, [1, 24, 25, 168,
169, 192, 193]) and ARIMA (0, 0, [1, 24, 168]) for multiplicative, subset and
additive models, respectively. In conclusion, this study gives a valuable insight
into the model identification step in DSARIMA models.
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1 Introduction

A time series is a collection of observations made over a period of time. A monthly
sequence of the quantity of items delivered from a factory, a weekly series of the num-
ber of road accidents, daily rainfall amounts and hourly observations of the yield of a
chemical process are all examples of time series dataset [1]. In 1970, George Box and
Gwilym Jenkins proposed the Box-Jenkins method. The method is based on the assump-
tion that the process that created the time series may be approximated using either an
ARMA or an ARIMA model, depending on whether it is stationary or non-stationary.
ARIMAmodel can only be applied to stationary time series data. If the data is not station-
ary, differencing need to be done first to make the data stationary [2]. Box-Jenkins model
is an iterative process that consist of three steps which are identification, estimation and
diagnostic checking. Figure 1 shows the step of Box-Jenkins model [3].

ARIMAmethod are widely used method to time series analysis. Humaira, Nursupri-
anah and Darwan (2020) used the Box-Jenkins method of the time series analysis to
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Fig. 1. Box-Jenkins Methodology

forecast the number of schizophrenia disorder disease. Meanwhile, this method are also
being used to forecast the exchange rate of the Jordanian Dinar versus the US Dollar
[4]. Multiplicative SARIMA is being applied to forecasting the solar radiation [5].

Althoughmany previous papers have concentrated onmodel estimation, model iden-
tification is actually the most crucial stage in building ARIMA models, because false
model identification will cause the wrong stage of model estimation and increase the
cost of reidentification. In particular of DSARIMA models, most of previous papers
usually used directly the multiplicative model without testing whether the multiplicative
parameter was significant. It means that the multiplicative DSARIMA models assume
that there is a significant parameter as a result of multiplicative between non-seasonal
and seasonal parameters [6]. However, the subset and additive relationship may exist in
DSARIMAmodel. Thus, the objective of this paper is to obtain the significance lag that
will produce in subset, additive and multiplicative DSARIMA model.

The paper is organized as follows: a brief theoretical review about the time series,
Box-Jenkins methodology, ARIMA, SARIMA, DSARIMA, autocorrelation (ACF)
and partial autocorrelation (PACF) functions of subset, multiplicative, and additive
DSARIMA models and conclusion.
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2 Methodology

2.1 DSARIMA Model

Autoregressive Integrated Moving Average, or ARIMA, is a forecasting univariate time
series method introduced in the 1970s. ARIMAmodels are a form of Box-Jenkins model
where the termsARIMAandBox-Jenkins are used interchangeably. One of the attractive
features of the Box-Jenkins approach for forecasting is that ARIMA processes are a very
rich class of possible models and it is usually possible to find a process which provides
an adequate description to the data. This model has originated from the autoregressive
model (AR), the moving average model (MA) and the combination of the AR and MA,
the ARMA models [6]. The time series is assumed to be stationary in the Box-Jenkins
model. To attain stationarity,Box and Jenkins advocate differencing non-stationary series
one or more times. As a result, an ARIMA model is created, with the “I” standing for
“Integrated.” [7]. The full model can be written as follows [8]:

∅p(B)(1 − B)dZt = θq(B)αt (1)

where ∅p(B) = 1 − ∅1B − ∅2B2 − · · · − ∅pBp, θq(B) = 1 − θ1B − θ2B2 − · · · − θqBq.
Zt is appropriately transformed load demand in period t; (1 − B)d is the non-seasonal
differencing operator, B is the backward shift operator; and αt is the purely random
process.We call this anARIMA(p, d , q)model, where p is the order of the autoregressive
part, d is the degree of first differencing involved and q is the order of the removing
average. In addition to the general ARIMAmodel, namely non-seasonalARIMA(p, d , q)
model, we should also consider some periodical time series. The periodicity of periodic
time series is usually due to seasonal changes [9]. This is an extension of ARIMA
which is also known as Seasonal ARIMA (SARIMA) that explicitly supports univariate
time series data with a seasonal component. It adds three new hyper parameters to
specify the autoregressive (AR), differencing (I) and moving average (MA) for the
seasonal component of the series, as well as an additional parameter for the period of the
seasonality. This seasonality includes year, month, days etc. To deal with seasonality,
the ARIMAmodel is extended to a general multiplicative seasonal ARIMA (SARIMA)
model which is defined as follows [1]:

∅p(B)Φp(1 − B)d
(
1 − Bs)DZt = θq(B)ΘQ

(
Bs)αt (2)

where
∅p(B) = 1 − ∅1B − ∅2B2 − · · · − ∅pBp

Φp(Bs) = 1 − Φ1Bs − Φ2B2s − · · · − ΦPBPs

θq(B) = 1 − θ1B − θ2B2 − · · · − θqBq

ΘQ(Bs) = 1 − Θ1Bs − Θ2B2s − · · · − ΘQBQs.

Zt is appropriately transformed load demand in period t; (1 − B)d and (1 − Bs)D

are the nonseasonal and seasonal differencing operators respectively; B is the backward
shift operator; and αt is the purely random process. If the integer D is not zero, then
seasonal differencing is involved. The above model is called a SARIMAmodel of order
(p, d , q)×(P,D,Q)s. If d is non-zero, then there is a simple differencing to remove trend,
while seasonal differencing, (1 − Bs)D may be used to remove seasonality. In certain
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type of data, there exist a double seasonal pattern and therefore a Double SARIMA
(DSARIMA) Model is developed to produce a more accurate forecast. The general
multiplicative double seasonal ARIMA model is as follows [1]:

∅p(B)ΦP1

(
BS1

)∏

P2

(
BS2

)
(1 − B)d

(
1 − BS1

)D1(
1 − BS2

)D2
Zt

= θq(B)ΘQ1

(
Bs1

)
ΨQ2

(
Bs1

)
αt (3)

where
φp(B) = 1 − φ1B1 − φ2B2 − · · · − φpBp

�P1(BS1) = 1 − �1BS1 − �2B
2S1 − · · · − �P1B

P1S1

	P2(BS2) = 1 − 	1BS2 − 	2B
2S2 − · · · − 	P2B

P2S2

θq(B) = 1 − θ1B1 − θ2B2 − · · · − θqBq


Q1(BS1) = 1 − 
1BS1 − 
2B
2S1 − · · · − 
Q1BQ1S1

�Q2(BS2) = 1 − �1BS2 − �2B
2S1 − · · · − �Q2BQ2S1

Zt is appropriately transformed load demand in period t; B is the backward shift
operator; ∅p(B) and θq (B are regular autoregressive and moving average polynomials
of orders p and q; ΦP1(BS1),

∏
P2(B

S2), ΘQ1(Bs1) and ΨQ2
(
Bs1

)
are autoregressive and

moving average polynomials of orders P1,P2,Q1 and Q2; S1 and S2 are the seasonal
periods; d, D1 and D2 are the orders of integration; at is a white noise process with zero
mean and constant variance. In this study, we choose the simplest form of DSARIMA
model and we let p = 0, q = 1, P1 = 0, P2 = 0, Q1 = 1, Q2 = 1, S1 = 24 and S2 = 168.

2.2 ACF and PACF

The stationarity of the time series is tested as the first step in the modelling procedure.
To acquire a fair estimate of stationarity, utilise the partial auto correlation function
(PACF) and auto correlation function (ACF) plots of the time series. The ACF measures
the correlation of a time series value with other values from the same time series at
various delays. PACF evaluates the connection between a time series value and a value
with a different lag. PACF, on the other hand, ignores other values at other delays when
determining the correlation for a particular lag value [10]. We have a stationary time
series on our hands if the ACF does not reflect any meaningful value after a few delays
or the PACF has a sharp cutoff after the initial value [11].

3 Results and Discussion

Three forms of DSARIMA models which are additive, multiplicative and subset were
selected. The theoretical explanation about ACF and PACF for these three models was
focusing on non-seasonal and the double seasonal moving average orders. i.e.

ARIMA (0, 0, [1, 24, 25, 168, 169, 192, 193]), ARIMA (0, 0, 1)(0, 0, 1)24(0, 0,
1)168, and ARIMA (0, 0, [1, 24, 168]),for subset, multiplicative and additive model,
respectively.
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3.1 Subset DSARIMA Model

The generalized form of ARIMA (0, 0, [1, 24, 25, 168, 169, 192, 193]) model, also
known as subset DSARIMA, can be written as

zt − μ = αt − θ1αt−1 − θ24αt−24 + θ25αt−25 − θ168αt−168 + θ169αt−169

+ θ192αt−192 − θ193αt−193 (4)

where θ1, θ24, θ25, θ168, θ169, θ192 and θ193 denotes the parameters of MA orders. From
Eq. (4), this subset model needs to estimate seven number of parameters. By using
mathematical statistics, the following ACF of this model is obtained:

ρk =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−θ1+θ24θ25+θ168θ169+θ192θ193
1+θ21+θ224+θ225+θ2168+θ2169+θ2192+θ2193

, k = 1
θ1θ24+θ169θ192

1+θ21+θ224+θ225+θ2168+θ2169+θ2192+θ2193
, k = 23

−θ24+θ1θ25+θ168θ192+θ169θ193
1+θ21+θ224+θ225+θ2168+θ2169+θ2192+θ2193

, k = 24
−θ25+θ168θ193

1+θ21+θ224+θ225+θ2168+θ2169+θ2192+θ2193
, k = 25

θ1θ168+θ24θ192+θ25θ193
1+θ21+θ224+θ225+θ2168+θ2169+θ2192+θ2193

, k = 167
−θ168+θ1θ169+θ24θ193

1+θ21+θ224+θ225+θ2168+θ2169+θ2192+θ2193
, k = 168

−θ169
1+θ21+θ224+θ225+θ2168+θ2169+θ2192+θ2193

, k = 169
θ1θ191

1+θ21+θ224+θ225+θ2168+θ2169+θ2192+θ2193
, k = 191

−θ192+θ1θ193
1+θ21+θ224+θ225+θ2168+θ2169+θ2192+θ2193

, k = 192
−θ193

1+θ21+θ224+θ225+θ2168+θ2169+θ2192+θ2193
, k = 193

0, others.

(5)

The theoretical ACF and PACF of Eq. (5) are presented in Fig. 2.
From the Fig. 2, we can clearly see that the lag is significant at lag number 1, 23, 24,

25, 167, 168, 169, 191, 192 and 193. Thus this additive subset DSARIMA model needs
to estimate seven different number of parameters at ten number of lags.

3.2 Multiplicative DSARIMA Model

The generalized form of ARIMA (0, 0, 1)(0, 0, 1)24(0, 0, 1)168 model, also known as
multiplicative DSARIMA, can be written as

zt − μ = αt − θ1αt−1 − θ24αt−24 + θ1θ24αt−25 − θ168αt−168 + θ1θ168αt−169

+ θ24θ168αt−192 − θ1θ24θ168αt−193 (6)

where θ1, θ24 and θ168 represents the parameters of non-seasonal, first seasonal and
second seasonalMAorder, respectively. Thismodel is the same as the subset DSARIMA
model in Eq. (4) when θ25 = −θ1θ24, θ169 = −θ1θ168, θ192 = −θ24θ168 and θ193 =
θ1θ24θ168. Therefore, it can be concluded that multiplicative model is a part of subset
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Fig. 2. Theoretical ACF and PACF of subset DSARIMA

model. From Eq. (6), this model needs to estimate seven different parameters. By using
mathematical statistics, the following ACF of this model is obtained:

ρk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−θ1
1+θ21

, k = 1
θ1θ24(

1+θ21

)(
1+θ224

) , k = 23, 25
−θ24(
1+θ224

) , k = 24
θ1θ168(

1+θ21

)(
1+θ2168

) , k = 167, 169
−θ168(
1+θ2168

) , k = 168
−θ1θ24θ168(

1+θ21

)(
1+θ224

)(
1+θ2168

) , k = 191, 193
θ24θ168(

1+θ224

)(
1+θ2168

) , k = 192

0, others

(7)

Equation (7) shows that the significant lag is at lag number 1, 23, 24, 25, 167, 168,
169, 191, 192 and 193 with lag 167 is equal with lag 169 and ACF values at lag 191 is
equal with lag 193. The theoretical ACF and PACF of Eq. (7) are presented in Fig. 3.

Based on the above plot, multiplicative DSARIMA model need to estimate seven
number of parameters at ten number of different lags.

3.3 Additive DSARIMA Model

The generalized form of ARIMA (0, 0, [1, 24, 168]) model, also known as additive
DSARIMA, can be written as

zt − μ = αt − θ1αt−1 − θ24αt−24 − θ168αt−168 (8)
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Fig. 3. Theoretical ACF and PACF of multiplicative DSARIMA

where θ1, θ24 and θ168 represents the parameters of non-seasonal, first seasonal and
second seasonal MA order, respectively. This model is the same with subset DSARIMA
model in Eq. (4)when θ25 = θ169 = θ192 = θ193 = 0. Therefore, it can be concluded that
additive model is also a part of subset model. In addition, this additive model in Eq. (8)
could also be seen as subset ARIMA model with lower order than model in Eq. (4).
Thus, by using mathematical statistics, the following ACF of this model is obtained:

ρk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−θ1
1+θ21+θ224+θ2168

, k = 1
θ1θ24

1+θ21+θ224+θ2168
, k = 23

−θ24
1+θ21+θ224+θ2168

, k = 24
θ1θ168

1+θ21+θ224+θ2168
, k = 167

−θ168
1+θ21+θ224+θ2168

, k = 168

0, others

(9)

Equation (8) shows that the main difference between additive and the other two
models (subset and multiplicative) is this model needs to estimate only three parameters
where the significant lag is at lag number 1, 23, 24, 167 and 168 only. The theoretical
ACF and PACF of Eq. (9) are presented in Fig. 4.

Based on the above plot, additive DSARIMA model need to estimate three number
of parameters at five number of different lags.
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Fig. 4. Theoretical ACF and PACF of additive DSARIMA

4 Conclusion

Accurate forecasting is very crucial in order to produce a correct result and this need
to start from model identification since it is the first step of Box-Jenkins modeling.
In this paper we have discussed the model identification of Double seasonal ARIMA
(DSARIMA) for all three models which are multiplicative, additive and subset. Often
researchers directly used multiplicative DSARIMA model without checking if the mul-
tiplicative model is the best model fit to the data. This will definitely produce a less
accurate forecasting and will result in poor decision making. It proved in our result and
discussion where we can see from the obtained ACF, each model needs to estimate dif-
ferent number of parameters at different number of lags. Subset DSARIMAmodel need
to estimate seven parameters at lag number 1, 23, 24, 25, 167, 168, 169, 191, 192 and
193. Meanwhile for multiplicative DSARIMA model, it needs to estimate also seven
parameters with different value as the subset DSARIMA model at the same number of
lags also. As for the subset DSARIMA model, it needs to estimate three parameters at
significant lag number 1, 23, 24, 167, 168. This clearly shows that the different model
produces different lag with different parameter used. Hence, it is very important to use
the correct model that fit best to the data in order to increase forecasting accuracy.
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