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Abstract. In this paper, an approximate solution for solving nonlinear mixed
Volterra-Fredholm fractional integro-differential equations is presented. The frac-
tional derivative is defined in terms of Caputo type. Two methods are suggested:
Adomin Decomposition Method (ADM) and Residual Power Series Method
(RPSM). In these methods, Adomian polynomials and residual function are
derived. The fractional Volterra-Fredholm integro-differential equation is reduced
to a recurrence formula, inwhich it canbe solved rather straightforward.Numerical
examples demonstrate the efficiency and accuracy of ADM over RPSM.
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1 Introduction

Fractional calculus plays a great role for describing the natural phenomena in different
fields such as biology, electrochemistry, control theory, viscoelasticity, and others [1–4].
However, the difficulty of finding the exact solution for many classes of these equations
enforce researchers to solve them approximately using different numerical methods. For
example, they use the Polynomial Least Squares Method [5], the Reproducing Kernel
Method [6, 7], Fractional Power Series Method [8], Haar wavelet [9], Laplace Adomian
decomposition method [10], Homotopy perturbation method [11].

Adomian decompositionmethod (ADM) and Residual power series (RPSM)method
were utilized to solve different problems of fractional integro-differential equations.
For example, Ale’damat et al. [12] used (RPSM) to solve a certain class of nonlinear
fractional integro-differential equations of Volterra type, and Hamoud et al. [13] used
(ADM) to solve the Caputo fractional Volterra-Fredholm integro-differential equations.
Momani & Aslam Noor [14] used ADM for solving fourth-order fractional integro-
differential equations. Alaroud et al. [15] obtained the approximate solution of fuzzy
fractional integro-differential equations utilizing RPSM.
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In this paper,wewill study the nonlinear fractionalmixedVolterra-Fredholm integro-
differential equation of the form:

cDα
0+u(t) = ϕ(t) + λ

∫ t

0

∫ T

0
K(x, s)F(u(s))dsdx (1)

subject to the initial conditions

u(0) = u0, u
′(0) = u1 (2)

where α ∈ (1, 2], 0 ≤ t, x ≤ T , ϕ : [0,T ] → R, is continuous function and K(x, s) is a
continuous arbitrary kernel functions, F(u(s)) is a function contain linear and nonlinear
parts, u(t) is an unknown function, and Dα is Caputo fractional derivative.

The paper is organized as follows. We present the necessary basic definitions and
theories in fractional calculus in Sect. 2. In Sect. 3 and 4, we explain the Adomian
decompositionmethod and theResidual power seriesmethod, respectively. In Sect. 5, we
present numerical examples to demonstrate the efficiency of the two proposed methods.
In Sect. 6, our conclusion is presented.

2 Preliminaries and Basic Definitions

In this section we will introduce some basic definitions and theorems in fractional
calculus.

Definition 2.1 [16]. The Riemann-Liouville fractional integral of real order α > 0 of a
function f (t) is given by

Dαf (t) = 1

Γ (α)

∫ t

0
(t − τ)α−1f (τ )dτ

where Γ is Euler’s Gamma function.

Definition 2.2 [16]. For any positive real α > 0 the Caputo fractional derivative of
order α of a continuous function f (t) is defined by

cDα
a + f (t) = J n−α

a+

(
dn

dtn
f (t)

)
= 1

Γ (n − α)

∫ t

a
(t − τ)n−k∼−1f (n)(τ )dτ, α > 0

where m = [α] + 1 and Γ represents gamma function.

The following properties are well known in fractional calculus. Let α > 0 and β > 0,
and let f ∈ L1[a, b]. Then,

Jα
a+J

β

a+ f (t) = Jβ

a+J
α
a+ f (t) = Jα+β

a+ f (t).

cDα
a+

[
Jα
a+ f (t)

] = f (t).
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Jα
a+

[cDα
a+ f (t)

] = f (t) −
∑n−1

k=0

f (k)(a)

k! (t − a)k forn − 1 < α ≤ n.

Also, the fractional integral acts on a power function according to the following
formula:

Jβ

a+(t − a)μ = Γ (μ + 1)

Γ (β + μ + 1)
(t − a)β+μ,μ > −1.

Definition 2.3 [8]. A power series expansion of the form
∑∞

m=0
cm(x − x0)

mα = c0 + c1(x − x0)
α + c2(x − x0)

2α + · · · ,

where 0 ≤ m − 1 < α ≤ m, , is called fractional power series (FPS) about x = x0.

Theorem 2.1 [12]. Suppose that f has a fractional FPS representation at x = x0 of the
form.

g(x) =
∑∞

m=0
cm(x − x0)

mα, x0 ≤ x < x0 + β

IfDmαg(x),m = 0, 1, 2, . . . are continuous onR, then cm = Dmαg(x0))/Γ (1+mα).

Theorem 2.2. Let u(x) ∈ C([x0, x0 + R)) and Diαu(x) ∈ C((x0, x0 + R)) for i =
0, 1, . . . ,m+ 1, where 0 ≤ m − 1 < α ≤ m. Then,

I (m+1)αD(m+1)αu(x) = D(m+1)α(ω)

Γ ((m + 1)α + 1)
(x − x0)

(m+1)α+1

where x0 ≤ ω ≤ x < x0 + R

3 Adomian Decomposition Method (ADM)

In this Section, we apply ADM for solving nonlinear fractional integro-differential with
mixed Volterra-Fredholm type Eqs. (1)-(2). Note that the function F(u(s)) = [Ru(s)+
Nu(s)] where Ru(s) is the linear part, and Nu(s) is the nonlinear part. The integral part
of Eq. (1) can be written

∫ t

0

∫ T

0
K(x, s)F(u(s))dxds =

∫ t

0

∫ T

0
K(x, s)[Ru(s) + Nu(s)]dsdx. (3)

Firstly, substitute Eq. (3) in Eq. (1), then we apply the Riemann integral operator Jα

to both sides yield

u(t) =
∑m−1

k=0
uk(0)

tk

k! = jk
ˆ
ϕ(t) + λJα

(∫ t

0

∫ T

0
K(x, s)[Ru(s) + Nu(s)]dsdx

)
. (4)

Consider the unknown solution u(t) in terms of an infinite series as

u(t) =
∑∞

i=0
ui(t) (5)
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where ui(t) for i = 0, 1, 2, . . . are evaluated recursively. For the non-linear term Nu(t)
will be decomposed in terms of Adomian polynomial pn in the form

Nu(t) =
∑∞

n=0
pn(t).

where Pn, n = 0, 1, 2, . . . is defined by

Pn(t) = 1

n!
dn

dλn
N

(∑n

i=0
λiui(t)

)∣∣∣
λ=0

(6)

Then, substitute Ru(t),Nu(t), and u(t) in Eq. (4), we have

∑∞
i=0 ui(t) = ∑m−1

k=0 uk(0) t
k

k! + Jαϕ(t) + λJα(∫ t
0

∫ T
0 K(x, s)

[∑∞
i=0 ui(s) + ∑∞

i=0 pi(s)
]
dsdx

)
.

with u0 identified as all terms out of the integral sign. Consequently, the components
ui, i ≥ 1 of the unknown function u(t) are completely determined in a recurrent manner
if we set

u0(t) = Jαϕ(t) +
∑m−1

k=0
uk(0)

tk

k! (7)

And

ui+t(t) = λJα

(∫ t

0

∫ T

0
K(x, s)

[
ui(s) + pi(s)

]
ds dx

)
, i = 0, 1, 2 ... (8)

where pi(s) are given as in Eq. (6).
As a result, the solution u(x) of Eq. (1) is obtained by using the series Eq. (5). Hence,

the Adomian decomposition method converts the fractional Volterra-Fredholm integro-
differential equation into a recursion formula with easily computations. Previous studies
investigated the convergenceof thedecomposition seriesun(t), n > 0,, anddemonstrated
that if the exact solution exists for our problem, then the obtained series un(t) converge
rapidly to that solution. And the accuracy increased by increasing n-th iteration.

4 Residual Power Series Method

In this section, we will construct the residual power series method to solve fractional
integro-differential equation with mixed Volterra-Fredholm Eqs. (1)-(2). The solution
can be written in fractional power series form as

u(t) =
∑∞

n=0
cn

(t − a)nα

Γ (nα + 1)

when a = 0, then the previous expression become

u(t) =
∑∞

n=0
cn

tnα

Γ (nα + 1)
. (9)
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To obtain the approximate values of the above series (Eq. (9)), the k-th truncated
series uk(x) is written in the form

uk(t) =
∑k

n=0
cn

tnα

Γ (nα + 1)
. (10)

Since u(a) = u0 = c0, we rewrite Eq. (10) as

uk(x) = c0 +
∑k

n=1
cn

tnα

Γ (nα + 1)
, k = 1, 2, . . . (11)

Define the residual power series of our problem as

Res(t) = cDα
0+u(t) − ϕ(t) − λ

∫ t

0

∫ T

0
K(x, s)F(u(s))dsdx.

where the k-th residual function is defined by

Resk(t) = cDα
0+uk(t) − ϕ(t) − λ

∫ t

0

∫ T

0
K(x, s)F(uk(s))dsdx. (12)

Substitute Eq. (11) in Eq. (12), we get

Resk(t) = cDα
0+

(
c0 + ∑k

n=1 cn
tnα

Γ (nα+1)

)
− ϕ(t)

−λ
∫ t
0

∫ T
0 K(x, s)F

(
c0 + ∑k

n=1 cn
snα

Γ (nα+1)

)
dsdx.

Many references mentioned the important properties of residual function which help
us to applying the method (see: [12]):

limk→∞Resk(t) = Res(t) = 0, for each t ∈ (0, 1), and Dnα
0+Res(0) = Dnα

0+Resk(0),
for each n = 0, 1, 2, . . . k.

To find the coefficients cn for n = 1, 2, 3, · · · , k, we solve D(n−1)αResn(t)|t=0 =
0, n = 1, 2, 3, . . . , k, where Dnα = Dα · Dα · · ·Dα(n − times).

5 Illustrative Example

To illustrate the effectiveness of the presentedmethods,we are applying the two proposed
method on next example, then comparing the results.

Example. Consider the following form of the nonlinear fractional integro-differential
equation.

cDα
0 + u(t) = ϕ(t) + λ

∫ t
0

∫ 1
0 (x − s)F(u(s))ds dx, u(0) = 1, u′(0) = 0, 1 < α

≤ 2, t ∈ [0, 1]
where ϕ(t) = − 25

504 t
2 + 749

360 t and F(u(s)) = (u(s))2 − u(s)with λ = 1.

The exact solution is u(t) = 1
3 t

3 + 1.
Table 1 shows the comparison between the approximate solution and the absolute

error for ADM and RPSM at α = 1.90 and α = 2, respectively. The results show that
ADMgivesmore accurate results as compared toRPSM. Furthermore, whenwe increase
the values ofα, the approximate solution is in agreement with the exact solution. Figure 1
represents the comparison between the two proposed methods at α = 1.90 and α = 2.
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Table 1. Exact solution and Approximate Solutions of ADM and RPSM for N = 10 and α =
1.90, and α = 2.

t Exact Solution Approximate Solution at
α = 1.90

Approximate Solution at
α = 2

ADM RPSM ADM RPSM

0.1 1.0003333333 1.0004718768 1.0000184852 1.0003333333 1.0000086688

0.2 1.0026666667 1.0035230216 1.0002574592 1.0026666667 1.0001386948

0.3 1.009 1.0114203547 1.0012017290 1.009 1.0007020870

0.4 1.0213333333 1.0263088301 1.0035851536 1.0213333333 1.0022186948

0.5 1.0416666667 1.0502620452 1.0083691827 1.0416666667 1.0054159605

0.6 1.072 1.0853032013 1.0167291011 1.072 1.0112285714

0.7 1.1143333333 1.1334168113 1.0300438167 1.1143333333 1.0207980140

0.8 1.1706666667 1.1965561864 1.0498876803 1.1706666667 1.0354720282

0.9 1.243 1.2766486299 1.0780236049 1.243 1.0568039620

1.0 1.3333333333 1.3755992488 1.1163970752 1.3333333333 1.0865520282

Fig. 1. Comparison between approximate solution of ADM and RPSM at different values of α,
n = 10 for (a) α = 1.90 and (b) α = 2.

6 Conclusion

In this paper, Adomian decomposition method and Residual power series method
has been derived to obtain the approximate solution of nonlinear fractional Volterra-
Fredholm integro-differential equations. The numerical results showed that ADM
method is accurate and effective to solve the nonlinear equations as compared to RPSM.
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