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Abstract. Different topological structure between real and p-adic fields provides
a distinct condition for solution of equations or system of equations. For example,
the equation x2+1 = 0 does not have solution over real field but it has solution over
p-adic field for p ≡ 1(mod4). Meanwhile, the equation x3 = p has solution in real
field but not in p-adic field. It is convenience to investigate the translation-invariant
p-adic Gibbsmeasures of Potts model on Cayley trees in terms of zeros of a certain
polynomial. The translation-invariant p-adic Gibbs measures of Potts model on
Cayley trees of order two and three was described with respect to some respective
conditions on the coefficient of certain quadratic and cubic polynomials. In this
paper, the set of p-adic Gibbs measures of p-adic Potts model on the Cayley tree
of order four is considered. For this case, it is possible to associate the existence of
the translation-invariant p-adic Gibbs measures with zeros of quartic polynomial
over p-adic field.

Keywords: p-adic field · p-adic Gibbs measure · p-adic Potts model ·
translation-invariant · Cayley trees

1 Introduction

The completion of rational field gives rise to the p-adic field where non-Archimedean
norm on metric spaces is used instead of Archimedean norm [1]. A non-Archimedean
quantum physics problem involving wave functions with p-adic values can be analysed
statistically using p-adic probability theory, where the values of p-adic number determine
the probabilities [2]. An abstract p-adic probability theory can be created through the
application of the non-Archimedean measures [3]. The authors in [4] proved the non-
Archimedean equivalent of theKolmogorov theorem to study themodels of the statistical
mechanics models over p-adic field.

TheGibbsmeasures, originate fromBoltzmann andGibbs, is ameasure in probability
theory and statisticalmechanics inwhich a number is allocate to each acceptable attribute
of a system, which indicates the outcome of the system’s study [5]. It is a probability
measure that is associated with the system’s Hamiltonian where it gives a state of the
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system. Since the system’s state depends on Gibbs measures, therefore the state of the
system is unchanged in case of uniqueness of theGibbsmeasures. Contrarily, for the case
of non-uniqueness of the Gibbs measures, the state of the system is changing and known
as phase transition. The focuswas given ondetermining all of the possible extremalGibbs
measures to predict the phase transition [6]. The Potts model, developed by Renfrey B.
Potts in 1952, was used to explore the behaviour of systems having multiple states and
is now known as the q-state Potts model. The energy of the configurations of the spins
that defines this model is known as Hamiltonian and it takes one of q possible values on
a lattice’s vertices [7].

There are several methods that can be used to describe the Gibbs measures on Cay-
ley Trees, such as the method of Markov random field theory and the recurrent equa-
tions, node-weighted random walks, information flows and contour methods on trees,
group theory, and non-linear analysis [8]. Based on the result obtained, which shows the
existence of a relationship between the ultrametricity with the structure of correlation
functions for spin glasses, the p-adic approaches had been applied to study the statistical
mechanics.

Recently, the involvement of p-adic properties to investigate the Gibbs measures for
the q-state Potts model had been considered and is referred as p-adic Gibbs measures
which shows examples of p-adic valued process. For case of p-adic Pottsmodel onCayley
trees, the method of p-adic probability theory can be used to investigate the q + 1 state
nearest-neighbour [11–13]. There exists a phase transition through the construction of the
infinite volume p-adic Gibbs measures for the p-adic Potts model. Further development
on the study give rise to some alternative form known as p-adic quasi-Gibbs measures
where the change of state of the model been studied based on the related dynamical
system perspective [14, 15]. In case of Cayley trees of order two and three, the roots
of certain polynomial equation, respective to the order of the Cayley trees, represent all
possible form of the translation-invariant. The translation invariant indicates the phase
transition of the p-adic Gibbs measures of the p-adic Potts model [9, 10]. Generally,
in the field of p-adic number and real number, the same study of roots of polynomial
equations will give a different result since both fields are different topologically.

2 Preliminaries

The foundation for this paper is based on Gibbs measures of Potts model on Cayley trees
in p-adic field. This section will show the crucial part that build the study of the problem
which involved the p-adic numbers and measures, Cayley trees, p-adic Potts model and
lastly, the p-adic Gibbs measures.

2.1 p-Adic Numbers

For any prime number p ∈ N, the mapping of a p-adic norm |·|p on the field of rationals
Q leads to its completion, Qp, which is the field of p-adic numbers. The mapping can
be defined by

|x|p =
{
p−k , x �= 0,
0, x = 0,
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where for k, m ∈ Z and n ∈ N, there exist x = pk (m/n), such that (m, p) = (n, p) = 1.
The value of k is known as p-order of x and denoted by k = ordp (x) for x ∈ Qp.

The set of p-adic integers and p-adic unit denoted by Zp and Z
∗
p respectively as

follow,

Zp = {
x ∈ Qp : |x|p ≤ 1

}
,

Z
∗
p = {

x ∈ Qp : |x|p = 1
}
.

For any p-adic number x �= 0, they can be represented by x = x∗/|x|p where x∗ ∈ Z
∗
p.

The canonical expansion for the p-adic number, x and p-adic unit, x∗ are given by (2.1)
and (2.2) below,

x = pk(x0 + x1p + x2p
2 + . . .), (2.1)

x∗ = x0 + x1p + x2p
2 + . . . , (2.2)

where x0 ∈{1, 2, …, p – 1} and xi ∈{0, 1, 2, …, p – 1} for i ∈ N [16, 17].
For a given centre a ∈ Qp and radius r > 0, an open ball B(a, r) = {x ∈ Qp : |x −

a|p < r} is also closed due to the non-Archimedean property. The p-adic logarithm logp
(·) : B(1,1) → B(0,1) is defined by,

logp(x) = logp(1 + (x − 1)) =
∑∞

n=1
(−1)n+1 (x − 1)n

n

The p-adic exponential expp(·) : B(0, p−1/(p − 1)) → B(1,1) is defined by,

expp(x) =
∑∞

n=0

xn

n! .

Let x ∈ B(0, p−1/(p − 1)), then the following can be obtained

1. expp(logp(x + 1)) = x + 1;
2. logp(expp(x)) = x;
3. |expp(x)|p = 1;
4. |expp(x) − 1|p = |x|p < 1;
5. |logp(x + 1)|p = |x|p < p−1/(p − 1).

Let a group under multiplication E p ={x ∈ Qp: |x − 1|p < p−1/(p−1)}. For a, b ∈ E p

and h ∈ B(0, p−1/(p−1)),

|a − b|p < 1, |a − b|p =
{ 1

2 , if p = 2
1, if p �= 2

, a = expp(h).

For more explanation, the reader could refer to [1].
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2.2 p-Adic Measure

A p-adic measure can be defined by a function μ: B → Qp for a measurable space (X,
B) if for any A1, ... , An ∈ B such that Ai ∩ Aj = ∅ and i �= j,

μ

(
n∪

j=1
Aj

)
=

n∑
j=1

μ
(
Aj

)
,

whereB is algebra of subsets of X. It is a probability measure when the p-adic measure,
μ(X)=1, andμ is bounded if sup{|μ(A)|p:A∈B}<∞. The details onp-adic probability
measure can be obtained in [3, 18].

2.3 Cayley Tree

A semi-infinite Cayley Tree, �k+ of order k >1, is built up by sets of vertices V, and
edges L, and can be define as �k+(V, L). . It begins from a single vertex (root) x0 ∈ V
and expands to k + 1 edges l ∈ L. Each edge built up of two vertices, called as nearest
neighbour, x and y, where the edges can be denoted by l = x, y. The path from x to y is
the total of nearest neighbour x, x1, x1, x2, . . . , xd−1, y where d is the distance of Cayley
Tree, d(x, y) = n, and n is the total edges from x to y. Hence for fixed root x0 ∈ V,

Wn =
{
x ∈ V : d

(
x, x0

)
= n

}
, Vn = n∪

m=0
Wm,

S(x) = {y ∈ Wn+1 : d(x, y) = 1},
where for ∀x ∈ Wn, S(x) is the set of direct successors of x.

Vertex x0 and vertex x �= x0 has the coordinate (∅) and (i1, ..., in) respectively, where
im ∈ {1, …, k}, for 1 ≤ m ≤ n. The coordinate (∅) indicates level 0 of the Cayley tree
while the coordinate (i1, ..., in) is level n of V from vertex x0. So, for any x = (i1, ..., in)
∈ V, S(x) = {(x, i) : 1 ≤ i ≤ k}where (x, i)means (i1, ..., in, i). For any two elements, x
and y, which have a respective coordinate of (i1, ..., in) and (j1, ..., jm), a binary operation
◦ : V ×V → V is defined by x ◦ y = (i1, ..., in) ◦ (j1, ..., jm) = (i1, ..., in, j1, ..., jm) and
y ◦ x = ( j1, ..., jm) ◦ (i1, ..., in) = ( j1, ..., jm, i1, ..., in). Then, (V, ◦) with the unit x0 =
(∅) is a noncommutative semigroup.

A translation τg : V → V for g ∈V can be defined as τg(x) = g ◦ x for any x ∈V.
LetG ⊂ V be a sub-semigroup of V and h : V → Y be a Y–valued function. A function
h is said to be G–periodic if h

(
τg(x)

) = h(x) for all g ∈ G and x ∈ V. A V–periodic
function is called translation-invariant [19, 20].

2.4 p-Adic Potts Model

For a finite set � = {1, 2, . . . , q}, a configuration is a function σ : V → �. The
configurations of the finite-volume and the boundary are the functions σn : Vn → � and
σ (n) : Wn → � respectively. The set of all configurations is denoted by�while�Vn for
the set of all finite-volume configurations and�Wn for the set of boundary configurations.
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For a given configurations σn−1 ∈ �Vn−1 and σ (n) ∈ �Wn the concatenation is a finite-
volume configuration σn−1 ∨ σ (n) ∈ �Vn such that,

(
σn−1 ∨ σ (n)

)
(v) =

{
σn−1 if v ∈ Vn−1,

σ (n) if v ∈ Wn.

In case of p-adic Potts model, the Hamiltonian for all σn ∈ �Vn and n ∈ N, with the
spin value set � on the finite volume configuration is defined by,

Hn(σn) = J
∑

x,y∈Ln
δσn(x)σn(y),

where J ∈ B(0, p−1 / (p − 1)) is a coupling constant, 〈x, y〉 stands for nearest neighbour
vertices and δ is Kronecker’s delta symbol such that δij = 0 if i = j and δij = 1 if i �= j.

2.5 p-Adic Gibbs Measure

The finite-dimensional distribution of a p-adic probability measure μ in the volume Vn
is defined by,

μ
(n)
h̃

(σn) = 1

Z(n)
h̃

expp{Hn(σn)}
∏

x∈Wn
z̃(σn(x))x , (2.3)

where h̃(x) =
(
z̃(1)x , . . . , z̃(q)x

)
∈ Q

q
p, x ∈ V is Qq

p − valued function and Z(n)
h̃

is the

partition function defined by,

Z(n)
h̃

=
∑

σn∈�Vn
expp{Hn(σn)}

∏
x∈Wn

z̃(σn(x))x . (2.4)

The p-adic probability measure given in Eq. (2.3) are said to be compatible if for all
n ≥ 1 and σn−1 ∈ �Vn−1 , we have

∑
σ (n)∈�Wn

μ
(n)
h̃

(
σn−1 ∨ σ (n)

)
= μ

(n−1)
h̃

(σn−1), (2.5)

where σn−1 ∨ σ (n) is the concatenation of the configurations.
Due to the Kolmogorov extension theorem [21–23] of the p-adic probability measure

given in Eq. (2.3), there exist a unique p-adic measure μh̃ on � = �V , such that for all
n and σn ∈ �Vn ,

μh̃ = ({
σ |Vn = σn

}) = μ
(n)
h̃

(σn).

Such a measure is known as p-adic Gibbs measure. The condition on the function h̃
that satisfied the compatibility condition given in Eq. (2.5) is described in the following
theorem.
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Theorem 2.1. [11, 12] For i = 1, . . . , q − 1, let h̃ : V → Q
q
p, h̃(x) =

(
z̃(1)x , . . . , z̃(q)x

)

and h : V → Q
q−1
p ,h(x) =

(
z(1)x , . . . , z(q−1)

x

)
be some functions defined as z(i)x =

z̃(i)x /z̃(q)x .The p-adic probability distribution
{
μ

(n)
h̃

}
n∈N is compatible if and only if,

h(x) =
∏

y∈S(x)
F(h(y)), (2.6)

for all x ∈ V \{x0}, where S(x) in (2.6) is the set of direct successors of x. For h =(
z1, . . . , zq−1

)
and themappingF : Qq−1

p → Q
q−1
p , the functionF(h) = (

F1, . . . ,Fq−1
)

is defined by

Fi = (θ − 1)zi + ∑q−1
j=1 zj + 1

θ + ∑q−1
j=1 zj

, θ = expp(J ).

Remark: The multiplication in
(2.6) means the multiplication coordinate-wise, i.e. for x = (x1, . . . , xn) and y =

(y1, . . . , yn), xy = (x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn).

3 Existence of the Translation-Invariant P-Adic Gibbs Measures

The translation-invariant p-adic Gibbs measure exist if and only if the function h̃(x) =
h̃ for any x ∈ V , which means that h̃ : V → Q

q
p, is constant. Hence, in case of

translation-invariant p-adic Gibbs measure, the compatibility condition (2.6) takes the
form

zi =
⎛
⎝ (θ − 1)zi + ∑q−1

j=1 zj + 1

θ + ∑q−1
j=1 zj

⎞
⎠

k

, i = 1, . . . , q − 1. (3.1)

Let Iq−1 = {1, . . . , q − 1}. For j ∈ Iq−1 and δij is the Kronecker’s delta sym-

bol, let ej = (
δ1j, δ2j, . . . , δq−1j

) ∈ Q
q−1
p be vectors. Let eα = ∑

j∈α ej and h =(
z1, . . . , zq−1

) ∈ Q
q−1
p be any vector. Let

{
αj(h)

}d
j=1 be a disjoint partition of the index

set Iq−1, i.e.,
⋃d

j=1 αj(h) = Iq−1, αj1(h) ∩ αj2(h) �= ∅ for j1 �= j2 such that zi1 = zi2 for
all i1, i2 ∈ αj(h) and zi1 �= zi2 for all i1 ∈ αj1(h), i2 ∈ αj2(h). Then, h can be expressed
as follow

h =
∑d

j=1
zoj eαj(h), (3.2)

where zi = zoj for any i ∈ αj(h) and j = 1, . . . , d .

Theorem 3.1. [10] If h is a solution of the system given in Eq. (3.1) then 1 ≤ d ≤ k.

Proof. Let h = (
z1, . . . , zq−1

)
be a solution of the system (3.1). The case q − 1 ≤ k is

trivial. Suppose that q > k + 1. Then we can write h in the form (3.2). Since h is a fixed
solution, S(h) = ∑q−1

j=1 zj = ∑q−1
j=1

∣∣αj(h)
∣∣zoj is also a fixed number where zi = zoj for

any i ∈ αj(h) and j = 1, . . . , d .
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In the case of order k = 2 and 3, the descriptions of all translation-invariant p-adic
Gibbs measures of the system given in Eq. (3.1) were shown in [9, 10]. Next, the study
will be focus on system of equation of order k = 4.

Lemma 3.2. Let h = (
z1, . . . , zq−1

)
be a solution of the system given in Eq. (3.1). Then

h = ∑d
j=1 z

o
j eαj(h), S(h) = ∑q−1

j=1

∣∣αj(h)
∣∣zoj and for 1 ≤ j ≤ d,

zoj (θ + S(h))4 =
(
(θ − 1)zoj + S(h) + 1

)4
. (3.3)

Proof. Let k = 4, zi = zoj and h = (
z1, . . . , zq−1

)
be a solution of the system given in

Eq. (3.1). Substitute S(h) = ∑q−1
j=1 zj = ∑q−1

j=1

∣∣αj(h)
∣∣zoj into Eq. (3.1) as follow,

zoj =
(

(θ − 1)zoj + S(h) + 1

θ + S(h)

)4

.

Rearrange the equation, we obtain Eq. (3.3) as below,

zoj =
(
(θ − 1)zoj + S(h) + 1

)4
(θ + S(h))4

,

zoj (θ + S(h))4 =
(
(θ − 1)zoj + S(h) + 1

)4
.

This completes the proof. �

The Eq. (3.3) has a trivial root zi = 1 and can be expand into the following,

((θ − 1)zi + S(h) + 1)4 − zi(θ + S(h))4

= (zi − 1)
[
(θ − 1)4

(
z3i + z2i + zi

)
+ 4(θ − 1)3(S(h) + 1)

(
z2i + zi

)

+ 6(θ − 1)2(S(h) + 1)2zi − (S(h) + 1)4
]
.

It means, any root zi �= 1 for Eq. (3.3) is the roots of

(θ − 1)4
(
z3i + z2i + zi

)
+ 4(θ − 1)3(S(h) + 1)

(
z2i + zi

)

+ 6(θ − 1)2(S(h) + 1)2zi − (S(h) + 1)4. (3.4)

For simplicity, the term S(h) is denoted with S. The following theorem 3.3 is the main
result of this paper which describe the possible forms of the translation-invariant p-adic
Gibbs measures (TIpGM) of the p-adic Potts model on the Cayley tree of order four.

Theorem 3.3. (Description of TIpGM, k = 4) There exists a TIpGM μh̃ associated

with function h̃(x) = (
z̃1, . . . , z̃q

)
if and only if z̃j = hzj for all j = 1, . . . , q − 1 and

z̃q = h where h is any p-adic number, and h = (
z̃1, . . . , z̃q−1

)
is defined by either one

of the following,
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1. h = (1, . . . , 1);
2. h = (z, . . . , z), where z is the zeros of Eq. (3.4);
3. h = eα1 + zeα2 , with |αi| = mi, m1 +m2 = q− 1 and S = m1 +m2z where z is the

zeros of Eq. (3.4);
4. h = z1eα1 + z2eα2 , with |αi| = mi, m1 + m2 = q − 1 and S = m1z1 + m2z2 where

z1, z2 are the zeros of the system of equations derived from Eq. (3.4);
5. h = eα3 + z1eα1 + z2eα2 , with |αi| = mi, m1 + m2 + m3 = q − 1 and S =

m1z1 +m2z2 +m3 where z1, z2 are the zeros of the system of equations derived from
Eq. (3.4);

6. h = z1eα1 + z2eα2 + z3eα3 , with |αi| = mi, m1 + m2 + m3 = q − 1 and S =
m1z1 +m2z2 +m3z3 where z1, z2, z3 are the zeros of the system of equations derived
from Eq. (3.4);

7. h = eα4 + z1eα1 + z2eα2 + z3eα3 , with |αi| = mi, m1 + m2 + m3 + m4 = q − 1
and S = m1z1 + m2z2 + m3z3 + m4 where z1, z2, z3 are the zeros of the system of
equations derived from Eq. (3.4).

Proof. This theorem is the further description of theorem 2.1. To describe it further, we
study the system of Eq. (3.1) to find the solutions. Let k = 4, then by theorem 3.1, the
solution of Eq. (3.1) has the form as given in Eq. (3.2),

h =
∑d

j=1
zoj eαj(h),

for 1 ≤ d ≤ 4. Moreover, using lemma 3.2, for zoj �= 1, we can derive the Eq. (3.4).
Since zi = zoj any i ∈ αj(h) and j = 1, . . . , d , therefore the possible forms of solution
h are as follow,

1. h = ∑1
j=1 1 = (1, . . . , 1),

2. h = ∑1
j=1 z = (z, . . . , z), where z is any solutions for Eq. (3.4).

3. h = ∑2
j=1 z

o
j eαj(h) = eα1 +zeα2 , with |αi| = mi,m1+m2 = q−1and S = m1+m2z

where z is the solution of Eq. (3.4).
4. h = ∑2

j=1 z
o
j eαj(h) = z1eα1 + z2eα2 , with |αi| = mi, m1 + m2 = q − 1 and

S = m1z1 +m2z2 where z1, z2 are the solutions of system of equations derived from
Eq. (3.4).

5. h = ∑3
j=1 z

o
j eαj(h) = eα3 + z1eα1 + z2eα2 , with |αi| = mi, m1 + m2 + m3 = q − 1

and S = m1z1 + m2z2 + m3 where z1, z2 are the solutions of system of equations
derived from Eq. (3.4).

6. h = ∑3
j=1 z

o
j eαj(h) = z1eα1 + z2eα2 + z3eα3 , with |αi| = mi, m1 +m2 +m3 = q− 1

and S = m1z1+m2z2+m3z3 where z1, z2, z3 are the solutions of system of equations
derived from Eq. (3.4).

7. h = ∑4
j=1 z

o
j eαj(h) = eα4+z1eα1+z2eα2+z3eα3 ,with |αi| = mi,m1+m2+m3+m4 =

q−1 and S = m1z1 +m2z2 +m3z3 +m4 where z1, z2, z3 are the solutions of system
of equations derived from Eq. (3.4).

This completes the proof. �
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4 Conclusion

This paper focused on listing down all the possible form of the translation-invariant p-
adic Gibbsmeasure of the p-adic Potts model on the Cayley tree of order k= 4. The zeros
of polynomials equation indicate the translation-invariant of the study and consideration
made based on Theorem 3.1, where the possible number of distinct solutions, d ≤ k,
and at least one of the zeros must be equal to 1 when d = k. Since this study deals with
some polynomial equations of order four, we believe that a better form of polynomial
equation can be obtained from this study in the future.
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