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Abstract. During these pandemic, SEIR model has become a popular topic
among researchers. Such epidemiological model is said to be a great deci-
sion tool to forecast the behaviour of Covid19 outbreak for future actions. Fol-
lowing trend, this paper attempts to use symmetrized Runge Kutta methods;
Implicit Midpoint Rule (IMR) and Implicit Trapezoidal Rule (ITR), to solve this
model. The base method; IMR and ITR are tested with one-step symmetriza-
tion (1ASIMR, 1ASITR, 1PSIMR, and 1PSITR) and two-step symmetrization
(2ASIMR, 2ASITR, 2PSIMR and 2PSITR) in both active and passive modes.
Symmetrized Runge-Kutta method is best when using along stiff equations. Thus,
we used high rate of disease transmission, β to study the efficiency of eachmethod
and predict the proportion of individuals in each category according to the SEIR
model. All the parameters and values are obtained through official websites of
Malaysia and calculated based on previous studies starting from 2nd December
2021 to 1st January 2022. The equilibrium points: disease free equilibrium (DFE)
and the disease endemic equilibrium (DEE) are presented and calculated. Next,
the basic reproduction number, R0 is computed using the next generation method.
The result depicted R0 > 1, which indicates the disease has spread over. Finally,
2PSIMR is found to be the best method out of all. The efficiency of the methods
is discussed and compared.

Keywords: Symmetrized RK methods · Covid19 · SEIR model · stiff system of
ODEs · prediction of SEIR model

1 Introduction

1.1 Covid-19 Pandemic

A novel coronavirus disease (COVID-19) began to spread in Wuhan, the capital of
Hubei Province, China, in earlyDecember 2019. TheWorldHealthOrganization (WHO)
classified it as a serious health threat by the end of 2019 [9] (He, Peng & Sun, 2020).
Dong, Du and Gardner (2020) [6] stated that the SARS-CoV-2 virus has caused over
81 million confirmed cases worldwide since its appearance in late December 2020,
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with approximately 2 million individuals dying as of early September 2020. There are
currently no known preventive pharmaceutical interventions, and numerous behavioural
intervention policies, such as lockdown, mandatory self-isolation, and facial covering
orders, have been implemented to limit the spread of such a highly infectious disease
to a level that current health and financial systems can sustain [3] (Bhouri, Costabal,
Wang, Linka, Peirlinck, Kuhl & Perdikaris, 2021). While a lockdown is an effective first
response to a pandemic, it is clear that this disease has significant social and economic
implications. Aside from the immediate economic costs, there are significant social costs
associated with unemployment, a widening of the educational gap, mental health issues,
and shorter life expectancies as a result of poor physical and mental health [8] (Grimm,
Mengel, & Schmidt, M, 2021). To summarise, accurately and objectively assessing the
cost and value of restricted opening is becoming increasingly crucial, especially in light
of recent increases in the number of people tested positive as a result of controversial
policies in the United States. This is when the government begins to consider additional
options as a foundation for their emergency decision [3] (Bhouri et al., 2021).

1.2 SEIR Model

In the last decades, mathematical models in epidemiology have been important tools
in analysing the propagation and control of infectious disease [2]. As cited in Bouquet
and Stigler [4], W. Kermack and A. McKendrick proposed the first model in 1927 to
“explain the rapid rise and fall in the number of infected patients observed in epidemics
such as the plague (London 1665–1666, Bombay 1906) and cholera (London 1865)”. M.
Anderson and M. May revived the Kermack– McKendrick model, sometimes known as
the SIRmodel, for infectious disease propagation in 1979. Although this model has been
successful in describing disease behaviour, it is unrealistic to ignore other compartments
and control techniques such as immunisation, treatment, quarantine, isolation, and the
impact of age and sex. As a result, several researchers have concentrated on developing
more realistic simulations [18]. Egger, Johnson,Althaus, Schöni, Salanti, LowandNorris
[7] described that mathematical modelling studies can be used to generate emergency
guidelines or assess the pandemic potential of emerging outbreaks. A system of ordinary
differential equations is generated based on the assumptions of the most basic model
to a variety of modified models that are primarily focused on the assumptions of a
disease may carry. Most of these models are nonlinear differential equations, whose
dynamics may be deduced by looking at the eigenvalues of the linearized problem’s
Jacobian [5]. Nonlinear optimization techniques are commonly used to change these
model parameters. It is important to find these parameters for calculating the basic
reproduction number, which represents the expected number of new cases of infectious
disease caused by an infected person. R0 is crucial in determining how quickly the
disease will spread and how control efforts will affect it. If R0 > 1, disease spreads in
epidemics, but if R0 < 1, disease is eradicated [18]. Considering Covid19 cases, SEIR
model is one of themost commonmodels used to predict this disease outbreak. However,
this model is expressed as a set of nonlinear ordinary differential equations for which
no accurate analytic solution has yet been discovered (Piovella, 2020) [14]. According
to Al-Smadi and Gumah [1], the population is divided into four compartments in the
SEIR model: a susceptible compartment labelled S, in which all individuals are prone
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to disease; an exposed compartment labelled E, in which all individuals are exposed
to the virus but not yet infectious; an infected compartment labelled I, in which all
individuals are infected and have risk of transmission; and a removed compartment
labelled R, in which all individuals have been cleared from the infected cohort. The
SEIR model employs four categories of data, the first of which is demographic data,
which considers the population size of affected areas. Following that are the counts of
cases, hospitalizations, and fatalities. The third one is the disease features from previous
studies and finally, the intervention impact estimates are used to forecast how the disease
would progress.

This paper is organized as follows: Sect. 2 will describe about the mathematical for-
mulation used in this approach; Sect. 3 is for the method followed bymodel formulation,
equilibrium point and basic reproduction number in Sect. 4. The next section illustrates
the result and discussion in numerical analysis and some concluding remarks in Sect. 5.

2 Methodology

2.1 Data

The data for this study was gathered from Malaysia’s official websites, which are cited
in the reference source. The data were from December 2, 2021 and until January 1, 2022
[13]. The date was picked because it is the first Omicron variant instance in Malaysia
on December 2nd. As a result, it piqued people’s interest in learning more about what
will happen when Omicron arrives in the country. It’s worth noting that we’re not only
looking at Omicron variant cases in this model; we’re looking at all Covid19 cases. The
value of parameters is calculated by referring article by Mahmud and Lim [12]. These
data are then being compared to each other using different methods to obtain the most
accurate ones for a 100 days-prediction. The report data includes the number of total
cases, active cases, recovered cases, and the death cases.

2.2 Method

Two symmetric Runge Kutta methods; IMR and ITR are compared with one-step and
two- step symmetrization in both active and passivemodes [15–17]. Below is the defining
equation and Butcher tableau for IMR (Table 1) and ITR (Table 2).

Implementation in a Constant Step Size Setting
Active Symmetrization
A symmetrized value is computed and then used to propagate the numerical solution
each time. Every step, every two steps, or every three steps can all be symmetrized.

Passive Symmetrization
In the passive mode, the implementation entails computing multiple steps with the sym-
metric technique, storing the update as well as the internal stage values at each step, and
then applying symmetrization where necessary using the stored values.
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Table 1. Defining equation and Butcher tableau for IMR

Defining Equation Butcher Tableau

One-Step Symmetrization

yn = yn−1+2yn+yn+1
4

yn+1 = yn + 1
4 (3k1 + k2)

k1 = hf (xn + 1
2h, yn + 1

2 k1)

k2 = hf (xi + 3
2h, yn + k1 + 1

2 k2)

1 1
2 2
3 11
2 2

3 1
4 4

Two-Step Symmetrizatio

yn = −yn−2+4yn−1+10yn+2yn+1−yn+2
16

yn+1 = yn + 1
16 (17k1 + 13k2 + 3k3 − k4)

k1 = hf (xn + 1
2h, yn + 1

2 k1)

k2 = hf (xi + 3
2h, yn + k1 + 1

2 k2)

k3 = hf (xi + 5
2h, yn + k1 + k2 + 1

2 k3)

k4 = hf (xi + 7
2h, yn + k1 + k2 + k3 + 1

2 k4)

1 1
2 2
3 11
2 2
5 11 1
2 2

17 1 1 1
22

17 13 3 1
16 16 16 16

−

Table 2. Defining equation and Butcher tableau for ITR

Defining Equation Butcher Tableau

One-Step Symmetrization

yn = yn−1+2yn+yn+1
4

yn+1 = yn + 1
8 (3k1 + 4k2 + k3)

k1 = hf (xn, yn)

k2 = hf (xn + h, yn + 1
2 k1 + 1

2 k2)

k3 = hf (xi + 2h, yn + 1
2 k1 + k2 + 1

2 k3)

0

1 11
2 2
1 12 1
2 2
3 1 1
8 2 8

(continued)
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Table 2. (continued)

Defining Equation Butcher Tableau

Two-Step Symmetrization

yn = −yn−2+4yn−1+10yn+4yn+1−yn+2
16

yn+1 = yn + 1
32 (17k1 + 2k2 + 2k3−k4)

k1 = hf (xn, yn)

k2 = hf (xi + h, yn + 1
2 k1 + 1

2 k2)

k3 = hf (xi + 2h, yn + 1
2 k1 + k2 + 1

2 k3)

k4 = hf (xi + 3h, yn + 1
2 k1 + k2 + k3 + 1

2 k4)

k5 = hf (xi + 4h, yn + 1
2 k1 + k2 + k3 + k4 + 1

2 k5)

0

1 11
2 2
1 12 1
2 2
1 13 1 1
2 2

114 1 1 1
22

17 15 1 1 1
32 16 2 16 32

−

3 Mathematical Formulation

We begin by considering the SEIRmodel that enables vital dynamics (births and deaths)
to sustain an epidemic or allow new introductions to spread. The total population of
Malaysia is approximately 32,655,000 by 2021. Susceptible phase will cover population
in Malaysia aged 15–64 (working age) for 69.6% from the whole population as this age
group affected the most than other age groups based on the Covid data analysis. Exposed
population on the other hand, is the number of people screened during 30 days from 2nd
December 2021 to 1st January 2022. The number of confirmed cases is presented as the
infected population while recovered individuals depict the recovered population [12].

The highlighted component in this model is the parameters (transmission rate) which
stands for stiffness parameter in this model. Value of β applied such as β1 = 6.47. It is
deemed high, i.e. stiff, according to Mahmud and Lim [12], but it is said to be consistent
because WHO states that the virus has gone through at least three or four generations of
transmission over the period. Other parameter used is parameter which describes about
the rate of the exposed population become infectious, so 1

m is the mean latent period
while and represent the birth and death rates, respectively. Parameter g that stands for
the rate of recovery is obtained by g = 1

number of days to recover while parameter α is the
rate of people died because of pandemic.

There is no transfer from the R class to the S class for the recovered persons; they
are presumed to have immune protection. The incidence rate is IS/N , and the force of
infection is I/N [11]. Below is the illustration of the SEIR model system (Fig. 1).

The dynamics of the Covid-19 transmission can be explained using the nonlinear
ordinary differential equations (ODEs) listed below, which are based on Fig. 1.

S ′ = μN − vS(t) − βI(t)S(t)

N
, (1)
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Fig. 1. SEIR model

Table 3. Definition of variable/parameter

Variable/Parameter Definition Parameter Value

N(t) Human population 26634116

S(t) Suspected population 22727880

E(t) Exposed population 3638067

I(t) Infected population 123251

R(t) Recovered population 144918

μ Rate of natural birth 0.144

v Rate of natural death 0.051

α Rate of disease-related death 0.010

g Rate of recovery 0.974

m Probability of changing from E to I 1.428

β Transmission rate β = 6.47

E′ = βI(t)S(t)

N
− (m + v)E(t),

I ′ = mE(t) − (g + α + v)I(t),

R′ = gI(t) − vR(t)

subject to S(0) ≥ 0,E(0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0, where N (t) = S(t) + E(t) + I(t) +
R(t) is the total population or we can add the equations in (1) such that,

N ′ = (b − d)N − aI (2)

The definition of each parameter and value is described in Table 3 [19, 20].

3.1 Equilibrium Points

By setting all the derivatives equal to zero,

S ′ = E′ = I ′ = R′ = 0 (3)
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Two equilibrium points is obtained from system (1).

Disease Free Equilibrium (DFE)
E0, or a common name for equilibrium point of free disease happens when there is no
rate of infection occur [18]. Equilibrium point can be written as S0,E0, I0,R0. As this
model follows the mathematical modelling in Li, et al. [11] the disease-free equilibrium
is given by

E0 = (S0,E0, I0,R0) = (1, 0, 0, 0). (4)

Disease Endemic Equilibrium (DEE)
E∗, is defined as the equilibrium with all positive components such as,

S∗ = N (m + v)(α + g + v)

βm
= N

R0
= 0.6451 (5)

E∗ = − N
(
v2(v + α + g + m) + m(αv − βu + gv)

)

βm(m + v)
E1

(
S∗,E∗, I∗,R∗)

= − N (Z1)

βm(m + v)
= 3.4208

I∗ = − N
(
v2(v + α + g + m) + m(αv − βu + gv)

)

β(m + v)(α + g + v)

= −N (Z1)

Z2
= 2.2377

R∗ = − Ng
(
v2(v + α + g + m) + m(av − βu + gv)

)

βv(m + v)(α + g + v)

= −Ng(Z1)

vZ2
= 6.2654

where

R0 = βm

(m + v)(α + g + v)

Z1 = v2(v + α + g + m) + m(αv − βu + gv)

Z2 = β(m + v)(α + g + v)

The Jacobian matrix can be written as,

J =

⎛

⎜⎜
⎝

−(v + βI
N ) 0 −βS

N 0
βI
N −(m + v) βS

N 0
0 m −(g + α + v) 0
0 0 g −v

⎞

⎟⎟
⎠
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3.2 Basic Reproduction Number, R0

The estimated number of secondary cases developed by a single infected case intro-
duced into a completely susceptible population is well-defined as the basic reproduction
number. Only if the fundamental reproduction number is bigger than one can the disease
spread in a population [10]. Themethod used to calculateR0 is called the next generation
matrix method. Thus, when β = 6.47,R0 = βm

(m+v)(α+g+v) = 4.13.

Theorem 1. If R0 ≤ 1, then the disease-free equilibrium E0 = (S0,E0, I0,R0) of sys-
tem (1) is globally asymptotically stable. If R0> 1, then the disease endemic equilibrium
E1 = (S∗,E∗, I∗,R∗) of system (1) is globally asymptotically stable.

4 Result and Discussion

Weperformed the numerical integration usingMATLABsoftwarewith step size, h = 0.1
at time, t = 30 days. Table 4 stated each notation that will be used for numerical
experiments.

4.1 Analysis of the Symmerized RK Method on SEIR Model

We first tested the efficiency according to the passive and active symmetrization. As a
result, we find that the base method, IMR are more efficient than other methods followed
by 2ASIMR and then ITR. This proves that, basically, both base method (IMR and ITR)
are more efficient than active symmetrization (see Fig. 2(a)). In passive symmetrization,
we note that all the IMR method and its symmerization are more efficient than ITR,
1PSITR and 2PSITR (see Fig. 2(b)).

Meanwhile, Fig. 3(a) depicts the efficiency diagram for all method listed in Table
1, while (b) is the efficiency diagram only for IMR, 1PSIMR and 2PSIMR as they are

Table 4. Notation for numerical experiments

Abbreviation Definition Implementation

IMR Base method IMR −
ITR Base method ITR −
1ASIMR One-step symmetrization of IMR Active

2ASIMR Two-step symmetrization of IMR Active

1ASITR One-step symmetrization of ITR Active

2ASITR Two-step symmetrization of ITR Active

1PSIMR One-step symmetrization of IMR Passive

2PSIMR Two-step symmetrization of IMR Passive

1PSITR One-step symmetrization of ITR Passive

2PSITR Two-step symmetrization of ITR Passive
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Fig. 2. (a) Active Symmetrization (b) Passive Symmetrization



420 S. S. Bakar and N. Razali

Fig. 3. (a) Efficiency Diagram IMR, 1ASIMR, 2ASIMR, PSIMR, 2PSIMR, ITR, 1ASITR,
2ASITR, 1PSITR, and 2PSITR (b) Efficiency Diagram IMR, 1PSIMR and 2PSIMR.
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Fig. 4. Model prediction at t = 100 days, h = 0.1 (a) Susceptible Proportion (b) Exposed
Proportion (c) Infected Proportion (d) Recovered Proportion



422 S. S. Bakar and N. Razali

Fig. 4. (continued)

slightly accurate than other methods and it is difficult to differentiate which method is
more efficient in (a). Therefore, it is observed that 2PSIMR is the most efficient method
out of all.
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4.2 Model Simulation

Based on the results we get; we extend the discussion to simulate the cases in Malaysia
using 2PSIMR. The step sizes are subject to 0.1 at t = 100 days. As the data of this
model is taken in the middle of the pandemic, the susceptible phase began with a high
volume of people that are prone to disease. After 10 days, the number of susceptible
individuals converge to the disease endemic equilibrium, at which is 6,451,000 people.
In (b), the exposed individuals reached its peak at the maximum. This is due to the rate
of transmission, β from the susceptible phase that enters the exposed phase is high. The
population then started to decrease gradually and converges at E∗ = 3.4208 × 107,
equivalent to 34,208,000 people. Infected population, on the other hand, behaves almost
the same as exposed population, which indicates that most of the exposed population
are infected by the disease. The graph then showed a declining behaviour and begins
to converge at point R∗ = 2.2377 × 107 = 22, 377, 000 individuals (see Fig. 4(c)).
The last phase, Fig. 4(d) indicates the recovered population of the model. As the rate
of recovery is greater than the rate of death, it is observed that the number of recovered
individuals has increased over time. The trajectory soon to converge at some point,
R∗ = 6.2654 × 107 = 62, 654, 000 individuals. The overall simulation of the model is
combined in Fig. 5.

Fig. 5. Model simulation using 2PSIMR
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5 Conclusion

In this research, SEIR model of Malaysia is analysed using different methods as dis-
cussed. At first, the model is presented according to S(t),E(t), I(t), and R(t) respec-
tively and compared to each method. It is then revealed that IMR method and its sym-
metrized method are more efficient. Then the most efficient method is used to simulate
the model for the next 100-days. Besides, the basic reproduction number is discussed
and as the calculated R0 > 1, it is concluded that the epidemic is spread. Thus, it is
important to take precautions and follow the government rules as now we are in the
state of living with the virus. Note that, as this model does not take any precautions into
account, the analysis might change if one considered other parameters that brings the
model more realistic.

Acknowledgement. The authors fully acknowledged the University Kebangsaan Malaysia and
theMinistry of Higher Education under Grant FRGS/1/2020/TK0/UKM/02/29 for the opportunity
that made this important research viable and effective.

References

1. AL-Smadi, M.H., Gumah, G.N.: On the homotopy analysis method for fractional SEIR
epidemic model. Res. J. Appl. Sci. Eng. Technol. 7(18), 3809–3820 (2014)

2. Biswas, M.H.A., Paiva, L.T., De Pinho, M.D.R.: A SEIR model for control of infectious
diseases with constraints. Math. Biosci. Eng. 11(4), 761 (2014)

3. Bhouri, M.A., et al.: COVID-19 dynamics across the US: a deep learning study of human
mobility and social behavior. Comput. Methods Appl. Mech. Eng. 382, 113891 (2021)

4. Boquet, G., Stigler, B.: A discrete study of the SIR model (2004). Accessed 14 Sept 2010
5. D’Ambrosio, R., Giordano, G., Mottola, S., Paternoster, B.: Stiffness analysis to predict the

spread out of fake information. Future Internet 13(9), 222 (2021)
6. Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track COVID-19 in real

time. Lancet Infect Dis. 20(5), 533–534 (2020). https://doi.org/10.1016/S1473-3099(20)301
20-1

7. Egger, M., et al.: Developing WHO guidelines: time to formally include evidence from
mathematical modelling studies. F1000Research 6 (2017)

8. Grimm,V.,Mengel, F., Schmidt,M.: Extensions of the SEIRmodel for the analysis of tailored
social distancing and tracing approaches to copewithCOVID-19. Sci. Rep. 11(1), 1–16 (2021)

9. He, S., Peng, Y., Sun, K.: SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dyn.
101(3), 1667–1680 (2020). https://doi.org/10.1007/s11071-020-05743-y

10. Kuddus, M.A., Rahman, A.: Analysis of COVID-19 using a modified SLIR model with
nonlinear incidence. Results Phys. 104478 (2021)

11. Li, M.Y., Graef, J.R., Wang, L., Karsai, J.: Global dynamics of a SEIR model with varying
total population size. Math. Biosci. 160(2), 191–213 (1999)

12. Mahmud, A., Lim, P.Y.: Applying the SEIR model in forecasting the COVID-19 trend in
Malaysia: a preliminary study. medRxiv (2020)

13. Malaysia Covid-19 Corona Tracker (2021). https://www.coronatracker.com/country/mal
aysia/

14. Piovella, N.: Analytical solution of SEIR model describing the free spread of the COVID-19
pandemic. Chaos Solit. Fractals 140, 110243 (2020)

https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1007/s11071-020-05743-y
https://www.coronatracker.com/country/malaysia/


Solving SEIR Model Using Symmetrized Runge Kutta Methods 425

15. Razali, N., Jedi, A., Zainuri, N.A.: The implementation of extrapolation with smoothing
technique in solving stiff ordinary differential equations. Int. J. Struct. Integr. (2020)

16. Razali, N.: Two-step symmetrization of initial value problems. Doctoral dissertation,
ResearchSpace@ Auckland (2015)

17. Razali, N., Nopiah, Z.M., Othman, H.: Comparison of one-step and two-step symmetrization
in the variable stepsize setting. Sains Malays. 47(11), 2927–2932 (2018)

18. Ucakan, Y., Gulen, S., Koklu, K.: Analysing of Tuberculosis in Turkey through SIR, SEIR
and BSEIR mathematical models. Math. Comput. Model. Dyn. Syst. 27(1), 179–202 (2021)

19. Vital Statistics, Malaysia (2021). https://www.dosm.gov.my/v1/index.php?r=column/ctheme
ByCat&cat=165&bul_id=UDlnQ05GMittVXJWZUVDYUFDcjVTZz09&menu_id=L0p
heU43NWJwRWVSZklWdzQ4TlhUUT09

20. Worldometer, Malaysia Population (2021). https://www.worldometers.info/world-popula
tion/malaysia-population/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.dosm.gov.my/v1/index.php?r=column/cthemeByCat&amp;cat=165&amp;bul_id=UDlnQ05GMittVXJWZUVDYUFDcjVTZz09&amp;menu_id=L0pheU43NWJwRWVSZklWdzQ4TlhUUT09
https://www.worldometers.info/world-population/malaysia-population/
http://creativecommons.org/licenses/by-nc/4.0/

	Solving SEIR Model Using Symmetrized Runge Kutta Methods
	1 Introduction
	1.1 Covid-19 Pandemic
	1.2 SEIR Model

	2 Methodology
	2.1 Data
	2.2 Method

	3 Mathematical Formulation
	3.1 Equilibrium Points
	3.2 Basic Reproduction Number, R0

	4 Result and Discussion
	4.1 Analysis of the Symmerized RK Method on SEIR Model
	4.2 Model Simulation

	5 Conclusion
	References




