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Abstract. Walsh-Hadamard spectrum is widely used in the field of science and
technology like classification of cancer cells, image processing, speech process-
ing, signal and image compression etc. In this paper, a genomic analysis using
Walsh-Hadamard spectrum and cross-correlation has been done. Transformation
of genetic code using Walsh-Hadamard spectrum has been given. We redefine the
Walsh-Hadamard spectrum in genomics and analyse the origin of mRNA features
by using this spectra. Finally, usingWalsh-Hadamard spectrum the overall energy
of the mRNA sequence has been evaluated.
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1 Introduction

Every living organism starts its life from a single cell that contains DNA, its double
helix structure carries genetic instructions for the development, functioning, growth and
reproduction. Almost every activity of a living organism is based on the gene expression,
regulation and protein synthesis that is based on the DNA codons. The DNA and mRNA
sequences are key factors that determined the proteins. The process of DNA transforma-
tion into mRNA and subsequently proteins synthesis is basically governed by genetic
code. The transparency order and Walsh-Hadamard spectrum have been widely used as
an important tool for research in cryptography from last so many years, especially in the
construction of cryptographically important Boolean functions, used in various cryp-
tosystems. TheWalsh-Hadamard spectrum has also been used in biological science, like
Zhao and Pompili [1] classified human cancer cells (normal and diseased cells) based
on Walsh-Hadamard spectrum of DNA Methylation Profile and showed that the trans-
form domain vector is unique for a particular tissue type. The various characteristics,
reactions and theories of DNA are explored by the DNA cryptography, in which DNA
is considered as an information carrier [2]. A five-stage algorithm based on DNA cryp-
tography was used to encrypt information [3]. The central dogma of biology is used in
inspired pseudo biotic DNA cryptography [4]. A DNA based symmetric key cryptog-
raphy for secure data transfer over the communication channel was analysed [5]. The
effect of Walsh-Hadamard spectrum on various generalized Boolean functions has been
analyzed by different authors. The various results of Boolean functions based on spectral
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analysis were provided by Sarkar and Maitra [6], and Zhou et al. [7]. In this paper, we
investigate a Walsh-Hadamard spectrum analysis of the genetic code in the bit stream of
Boolean functions and evaluate some important properties of such codes. We take the
DNA and mRNA sequences as the bit streams only.

2 Preliminaries

Let Fn
2 be the n-dimensional vector space over the finite field F2. A function from F

n
2

to F2 is known as Boolean function. We denote by Bn the set of all n-variable Boolean
functions. Any Boolean function can be represented as a multivariate polynomial called
Algebraic Normal Form (ANF). The support of a Boolean function f is given by Sf ={
x ∈ F

n
2 : f (x) �= 0

}
, whose cardinality

∣∣Sf
∣∣ is known as the Hamming weight of f . The

Hamming distance d(f , g) between f , g ∈ Bn is the number of elements x ∈ F
n
2 where

these functions differ.
The Walsh-Hadamard transform of a function f ∈ Bn is the integer-valued function

over Fn
2 defined by

Wf (a) =
∑

x∈Fn2
(−1)f (x)+<a,x>

where a ∈ F
n
2 and <a, x> is an inner product.

The Cross-Correlation between the function f and g at a ∈ F
n
2 is given by

Cf ,g(a) =
∑

x∈Fn2
(−1)f (x)+g(x+a)

Moreover for f = g, the sum Cf (a) is called Autocorrelation of f at a.
The sum-of-squares indicator of the Cross-Correlation between f (x), g(x) ∈ Bn is

defined by

σf ,g =
∑

a∈Fn2
C2
f ,g(a)

The transparency order of a Boolean function f ∈ Bn is defined by [8]

TOf = 1 − 1

2n(2n − 1)

∑

a∈Fn∗2

∣∣Cf (a)
∣∣ (1)

The below given lemma is the consequence of Lemma 2.2 [9].

Lemma 2.1. Let k ∈ Bn then for any v ∈ F
n
2

∑

y∈Fn∗2
|Ck(y)| ≥

∣∣∣W 2
k (v) − 2n

∣∣∣
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From above lemma and (1) we compute

W 2
k (v) ≤ (1 − TOk)2

n(2n − 1
) + 2n (2)

The upper bound for the above relations is obtained in case of bent function.
A sequence of amino acids determines a particular protein that is coded by mRNA.

The DNA contains the genetic information which is transferred from one generation to
another. A DNAmolecule consists of four bases Adenine(A),Gaunine(G),Thymine(T )

and Cytocine(C)which follow complementary base pairing rule. The bases in DNA and
mRNA are same except that T is replaced byU in mRNA. The mRNA acts as a template
for protein synthesis. Some of the protein features of mRNA codons are given below

GCA GCC GCG GCU Alanine
UGC UGU Cystine
GAC GAU Aspartic Acid

3 Genomic Analysis

From above section, we notice that transparency order, cross-correlation and Walsh-
Hadamard spectrum are interrelated by various types of equalities or inequalities. They
may be applied in genomics, a genomic analysis on any of these, directly or indirectly
has impact on the other. The genomic data helps in assessing the various interactions
between the biological processes. The genomic data may be treated as a function of
genomic positions to evaluate the cross-correlation between these functions, here each
genomic feature is considered as a Boolean function of genomic position t. In biological
systems, the genomic features are of special importance not only at the same genomic
positions, but also at the proximal positions. The transparency order definition wholly
depends upon the correlation between the functions, so what type of correlation exists in
the genes, the transparency order may change accordingly. These correlations may result
from various types of interactions between the genes. The cross-correlation between two
genomic functions h(t), r(t) is defined as follow

Ch,r(x) =
∑

t∈Fn2
(−1)h(t)+r(t+x)

where n is the length of genome.
There are various types of correlations having different roles [10], this cross-

correlation in a similar way may be relevant in determining the nature of interactions
like the scale of interactions between the genes.

The Walsh-Hadamard spectrum for a genomic sequence of length n is defined as

W (x) = 1

n

n−1∑

i=0

h(i)M (x, i)

where h(i) is the ith genomic position in the genomic sequence of length n before
transformation. M (x, i) is the xth row and ith column position of the Walsh matrix and
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W (x) is the xth position of the sequence after transformation and x = 0, 1, . . . n−1. The
Walsh matrix is given by

Mn =
[
Mn−1 Mn−1

Mn−1 −Mn−1

]

for n ≥ 1 andM0 = 1. TheWalsh-Hadamard spectrumdecomposes the original genomic
sequence into a series of basic functions of Walsh matrix. This Walsh-Hadamard spectra
and cross-correlation may help in understanding some properties of genomics.

Since DNA and mRNA sequences are bit streams, the Walsh-Hadamard spectrum at
y ∈ {0, 1}n may alternately be defined as

W (y) = 1

2n
∑

x∈Fn2
(−1)f (x)+<x,y>

where n is the length of bit stream.
The basis function of Walsh-Hadamard spectrum is given by

By(x) = (−1)<x,y>

where x and y are bit stream of length n. Here y is called the partition. The Walsh basis
are orthonormal, therefore

∑

x∈Fn2
By(x)Bz(x) =

∑

x∈Fn2
(−1)〈x,y+z〉 =

{
2n, when y = z
0, otherwise

Any function can be represented by Walsh-Hadamard basis. A Walsh-Hadamard
basis helps in the construction of a function f : X n → R, which is expressed as the
linear sum of Walsh-Hadamard spectrum as given below

f (x) =
∑

x∈Fn2
W (y)By(x)

Thus Walsh-Hadamard spectrum can be considered as the relative contribution of
the partition y to the function value of f (x). In other words the absolute value of W (y)
is considered as the significance of the corresponding partition y. When magnitude of
W (y) is small then the yth partition is said to be insignificant and ignore its contribution.

Suppose a function f : X n → Y , from the data {(x1, y1), (x2, y2), . . . (xt, yt)} is
generated by some function : Xm → Y , such that f̂ approximates f . To learn f̂ can be
understood as the problem of approximating the Walsh-Hadamard spectrum of f . We
can estimate the significant Walsh-Hadamard spectrum of f and use it to define f̂ . The
complexity of inducing a function in Walsh representation is directly proportional to the
number of such spectra. The Walsh-Hadamard spectrum in the Boolean domain has 2n

values and estimating all of them will require exponential time.
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3.1 Transformation of Genetic Code Using Walsh-Hadamard Spectrum

In this section we investigate the effect of the genetic code like representation transfor-
mation using Walsh-Hadamard spectrum. There is a correspondence between mRNA
and the proteins defined by genetic code. The codon is trinucleotide sequence of DNA
or RNA that corresponds to a specific amino acid. The size of codon is three, but we
may treat it as a parameter. This analysis investigates the effect of such transformations
in the bit stream. The transformations for these codons using bit streammay be analysed
analogously using Boolean functions. Although the strings are from the bit stream, we
will use mRNA, proteins and genetic code accordingly for maintaining the link between
the bioscience and the Walsh-Hadamard spectrum.

Let us take a mapping from the mRNA sequence (r) to the corresponding protein
sequence (p) using genetic code as

F : Rnr → PnP

where nr and nP be the respective lengths of mRNA and protein sequence. In case of
Boolean functions R = P = {0, 1}n. Since mRNA codons are in the form of triplets, we
represent these triplets in the form of bit streams having value of 1 or 0. Let us take an
example of Code Z as:

AUU 100 1
GUA 101 1
CGA 011 0
GCU 001 0

Thus a particular mRNA codon maps to a single bit protein feature. As there are
a large number of Boolean functions having the same value despite the fact that the
functions are having different combinations of the bit streams. In a similar way there
may be some codons which code for the same protein feature and we denote that class
by τp. Thus the Walsh-Hadamard spectrum in the mRNA space may be written as

W (y) = 1

2nr

∑

r∈Fnr2
(−1)f (r)+<r,y>

= 1

2cnp

∑

p∈Fnp2
(−1)f (p)

∑

ri∈τp

(−1)<ri,y> (3)

Let S0 and S1 be the total number of codons that map to a protein feature value of
0 and 1 respectively. The cardinality of τp is

∣∣τp
∣∣ = S

np,0
0 S

np,1
1 , where np,0 and np,1 is

the number of 0’s and 1’s in np. The magnitude of
∑

ri∈τp
(−1)<ri,y> may take values

between 0 and S
np,0
0 S

np,1
1 . This may be considered as the scaling factor of every protein

sequence to the yth Walsh-Hadamard spectra. If the value of (−1)<ri,y> depends only on
features of r corresponding to 1’s in the partition y, then mRNA features may belong to
the same mRNA codon, different codons, or a combination of both. In other words they
may originate from the same protein feature, different protein features, or a combination
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of both. If there are equal number of 0’s and 1’s in the protein feature, then we call it
balanced. The protein feature is said to be perfect if

∑

x∈Fnp2
(−1)f (x)+f (a+x) =

{
2n, if a = 1
0, otherwise

3.2 Energy of mRNA Sequence

Someproteins recognize specificbases, consider a signal to be aDNAormRNAsequence
pattern that is recognized by a protein. In thermodynamical sense “recognize” means
binding. The energy of Walsh-Hadamard spectrum can be defined as

E =
∑

y∈Fn2
W 2(y)

The energy of the spectrum in terms of genetic code like representation is described
below. From Eq. (3), we can write

W 2(y) = 1

22cnp

∑

p,q∈Fnp2
(−1)f (p)(−1)f (q)

∑

ri,ki∈τp

(−1)<ri,y>(−1)<ki,y>

∑

p∈Fnp2
W 2(y) = 1

22cnp

∑

p∈Fnp2
(−1)2f (p)

∑

ri,ki∈τp

∑

y∈Fnp2
(−1)<ri+ki,y>

Using the orthonormality condition we can write

∑

p∈Fnp2
W 2(y) = 1

2cnp

∑

p∈Fnp2
(−1)2f (p)S

np,0
0 S

np,1
0

We now specialize this result for the Code Z , for this code S0 = 2, S1 = 2 and c = 3,
therefore we have from above equation

∑

p∈Fnp2
W 2(y) = 1

23np

∑

p∈Fnp2
(−1)2f (p)2np,0+np,1 = 1

22np

∑

p∈Fnp2
(−1)2f (p)

In other words we can say that the energy of protein sequence is same as that of
mRNA sequence and is given by

Ep,r = 1

22np

∑

p∈Fnp2
(−1)2f (p)

Thus overall energy remains invariant under the transformation Code Z . The overall
energy is an important property, the number and location of Walsh-Hadamard spectrum
constitute the critical properties that significantly contribute to the overall energy. The
energy of protein sequence is crucial in growth and maintenance, providing structure,
maintaining proper pH, improving immune system, causing biochemical reactions etc.



112 M. Ahmad Dar and D. Sharma

4 Conclusion

In this paper, we give genomic analysis through Walsh-Hadamard spectrum and cross-
correlation. We established a genetic code type transformation in terms of Walsh-
Hadamard spectrum using the concept of Boolean functions and evaluated the origin
of mRNA sequence with reference to their codons. Also we find the energy of the
mRNA sequence with the help of Walsh spectra. Future scope of the work is to find
more applications of Walsh-Hadamard spectrum and transparency order in identifying
gene promoter regions and in studying the structural properties (conformational and
physiochemical) of DNA.
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adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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