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Abstract. Cohesive network modelling and systems biology have emerged as
extremely potent tools which helps understanding the combinatorial effects of
biomolecules. Synergistic modulation among biomolecules (e.g., enzymes, tran-
scription factors, microRNAs, drugs, etc.) are significant in finding out com-
plex regulatory mechanisms in biological networks and pathways. In some cases,
although combinatorial interactions among some biomolecules in specific biolog-
ical networks is available, our knowledge in that particular domain is very limited
with context to a genomic scale. Here we explore the pathway-pathway network to
identify and understand the network architecture of metabolic pathway mediated
regulations at genomic and co-functional levels, in rice.Using network transforma-
tionmethods, a genome scale pathway-pathway co-functional synergistic network
(PcFSN) was constructed. Finally, the PcFSN modules are extracted. This in turn
helps to identify the miRNAs and genes associated with the pathways, especially
linked to the central metabolic network in rice.

Keywords: miRNA · synergistic network · modules · genome scale

1 Introduction

Rice is treated as a major staple food for more than half of the global population [1].
Rice-biotechnologists are continuously working towards finding novel methodologies to
increase the production of this crop by generating high yielding, stress tolerant cultivars.
This requires an understanding in the cellular physiology, which includes gene functions
and their corresponding regulation at the transcriptional level, mRNA lifespan, process-
ing of RNA, post-translational modifications, metabolic pathways, enzymatic activities,
etc. Besides the genes, function of some important regulatory non-protein coding RNAs
are also equally important to study.

The miRNAs are short sequences, 21-22 nucleotide long endogenous non-protein-
coding regulatory RNA sequences which are believed to play significant roles in post-
transcriptional gene regulation.miRNAs play a critical role in cleavage formation, degra-
dation or translational inhibition of their respective mRNAs which can result in sup-
pression of gene expression in animals, plants, and fungi. Such tiny molecules are the
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influencers of plant development, response to environmental stress, pathogen invasion
and regulation of their own biogenesis i.e., the metabolic processes etc. [2]. These can
be identified either with the help of computational methods, or by directly cloning small
RNAs. The computationally predicted miRNAs and their targets are frequently consid-
ered for experimentation in several species of vertebrates, insects, Arabidopsis and rice
to know their exact roles. However, several miRNAs and their target genes are yet to be
discovered and whose discovery might help us to understand the critical role of miRNA
mediated regulation in more detail.

Genome-wide miRNA regulation has been already studied in rice. miRNAmediated
gene regulatory network in roots, signal transduction, leaf senescence, vegetative and
reproductive regulation are few examples [3–6]. Recently pathway centric co-expression
studies are also gaining importance so that gap between gene expression and pathway
perturbation can be minimised [7, 8]. While these studies have shed light on condition
and tissue specific regulatory role of miRNAs in other species, a comprehensive analysis
of genome scale pathway-mediated co-target and co-functional networks in rice has not
been done so far. We constructed a genome scale pathway-pathway synergistic co-
functional network of rice and has subsequently identified some significant modules
where the involved nodes can co-express and co-regulate different but related enzymes.

2 Materials and Methods

2.1 Data Retrieval

All the pathways, reactions, enzymes, and genes for Oryza sativa were downloaded from
the release version 14 of the PMN (Plant Metabolic Network v14 [9] https://www.pla
ntcyc.org/) database. The sequences of mature miRNAs were obtained from the freely
available miRbase v22 (http://mirbase.org/) [10]. Rice genome data was collected from
Oryza sativaMSU Rice Genome Annotation Project 7 [11]. MSU LOC to RAP-DB ID
mapping file was used for the conversion of MSU LOC IDs of rice genes to updated
RAP-DB IDs. (https://rapdb.dna.affrc.go.jp/download/archive/RAP-MSU_2017-04-14.
txt.gz).

2.2 Software and Tools

The plant-small RNA Target analysis server, psRNATarget (release 2017 [12] http://
plantgrn.noble.org/psRNATarget/) was used for the prediction of miRNA targets cor-
responding to identified miRNAs (with default parameters). Python 3 (https://www.pyt
hon.org/) was used in this project for data pre-processing. Cytoscape v3.7.2 [13] was
used for visualizing molecular interaction networks. A specific Cytoscape plugin called
MCODE was used for module analysis.

2.3 Annotation of miRNAs

Mature miRNA sequences were obtained from miRbase. Some of the miRNAs that had
identical sequences but were assigned different identifiers under different experiments.
The unambiguous annotation of the miRNAs was achieved with the help of assigning a
new identifier (beginning with “osmir”) to all the 738 unique miRNAs.

https://www.plantcyc.org/
http://mirbase.org/
https://rapdb.dna.affrc.go.jp/download/archive/RAP-MSU_2017-04-14.txt.gz
http://plantgrn.noble.org/psRNATarget/
https://www.python.org/
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2.4 Target Prediction

The plant small RNA target analysis server (psRNATarget), an online tool, was used
to predict miRNA targets corresponding to the miRNAs retrieved from miRbase. The
prediction analysis was carried out using the default scoring schema V2 option [12] and
user submitted small RNA transcripts. The target cut off was set at 3 to increase the
normal stringency.

2.5 Network Construction

2.5.1 Construction of Gene – Metabolic Pathway Network (gmpNet)

Considering genes and their corresponding pathways as nodes, gmpNet was constructed.
Interaction of each gene with its corresponding metabolic pathways were treated as
an edge or link between each node. No filter was applied for the construction of this
genome-scale network of pathways and genes for rice as depicted in Fig. 1.

2.5.2 Construction of Pathway-Pathway Preliminary Network (p2Net)

While constructing the p2Net, an edge was initially established between a pair of path-
ways only if they shared at least one common gene between them. From the constructed
network, 161803 pairwise edges were identified among 571 pathways. The number of
associated common genes was assigned to be the edge-weight for each of the pathway-
pathway pairwise interaction edges. This was followed by calculation of a correlation
coefficient (CC value) for each pair of connected pathways. And then the CC values
were normalized by computing the average of common genes between each pathway
pair for 80000 randomly generated pathway-pathway networks which were made to
have the same distribution as the original pathway-pathway interaction network. This
was followed by assigning CC value for each pathway pair.

2.5.3 Construction of Pathway-Pathway Co-interaction Network (PCIN)

From the previous network, the pathway pairs which were found to have a CC value less
than 1 (i.e., observed co-functionality was lesser than randomly generated coefficient)
were filtered out and only the pairs with values of greater than one was kept for further
analysis. Next, Gmin >= 3 (minimum number of common genes per pair) filter was
applied to the network to obtain the final p2Net for further genome-scale analysis in
rice metabolism. The final p2Net was found to have 1018 edges between 449 nodes
(pathways) after applying the CC > 1 filter and the Gmin >= 3 filters. The same CC
value thresholdwas implemented as used in network constructionmethods prescribed by
Balaji et. al. [14]. The common set of gene(s) (p1 ∩ p2) were extracted for each pathway
pair (p 1 & p2) identified from the previously obtained network. Those pathway pairs
were used further, which shared at least 3 common genes (Gmin >= 3) [14], and also
had a CC > 1. Only the common genes recognized after this step were used for further
analysis. A hypergeometric distribution model was implemented for the calculation of
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Fig. 1. Network graph showing the gene and metabolic pathway network, where are genes and
are pathways.

the probability P for the given p1 ∩ p2 as per Eq. 1.

P = 1 − F(T,G,L) = 1 −
∑n

t=0

(T
t

)( s−T
L−t

)

( s
L
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Where T is the total number of target-genes, G is the number of genes that are targeted
by their respective miRNA and associated with metabolic pathways, L is the size of p1
∩ p2, n is the number of genes in p1 ∩ p2 linked to miRNAs targeting the genes. This
hypergeometric distribution was applied to the network using the inhouse developed
tool, and for FDR correction a cut-off value <0.05 was used with the Benjamini and
Hochberg method. If at least one miRNA was significantly involved with a pair of
pathways, they were annotated as co-dependent or co-functional. All the pathway pairs
identified using the prescribed method in this section were then assembled to construct
a pathway-pathway co-interactional network (PCIN). In this network, a single node
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Fig. 2. Pathway-pathway co-interaction network (PCIN); the pathways in this network are con-
sidered to be nodes, and edges are drawn between a pair of pathways if there are at least 3 common
associated genes between them, and the edge weight depends on the number of shared genes. If
there are no common genes or less than 3, then no edge is considered to exist between them. Only
pathways that belong to the 30 modules identified under Sect. 2.6 are labelled here.

represented a pathway, and two nodes were joined if the corresponding pair of pathways
had a co-dependent relationship, otherwise no edge was considered.

2.6 Identification of Significant Modules from PCIN Using MCODE

All clusters from the PCIN network have been extracted using the MCODE plugin,
in Cytoscape. MCODE defines a module as densely connected subgraphs in a given
network based on topology. Modules from the PCIN, in this study have been defined
as k-cliques, highly dense subgraphs with ‘k’ number of miRNAs where all miRNAs
exhibit co-functional associationwith othermiRNAs in the same subgraph. TheMCODE
plugin was run with the default parameters; (i) degree cut-off = 2, (ii) k-core value =
2, (iii) node score cut-off = 0.2, (iv) max. Depth = 100. Each of the modules that were
obtained (Fig. 2) had a unique combination of pathways and none of the pathways or
pathway pair were found to be present in more than one module. 125 pathways out of
449 pathways were found to be in the thirty modules extracted using MCODE, i.e., 127
miRNAs were found to be significantly co-functional. And the remaining 322 pathways
were not found to have any associations with the corresponding gene sets targeted by
miRNAs used in the present study.

3 Result and Discussion

3.1 Network Properties

3.1.1 Network Characteristics of the Gene – Metabolic Pathway Network
(gmpNet)

With the interaction between genes and their corresponding metabolic pathways being
considered as edges, gmpNet was constructed as described in Sect. 2.5.1. This network
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had 4632 nodes (571 metabolic pathways and 4061 genes) and 7351 edges among them.
Each gene had an average of ≈2 (1.81) associated metabolic pathways, while each
metabolic pathway targeted an average of ≈13 (=12.87) genes. The frequency distribu-
tion of genes and their target metabolic pathways showed that a fairly large percentage
(i.e., 94.6%) of genes (3843 out of 4061 genes) were involved in a comparatively lesser
number of metabolic pathways (less than 4 pathways). While in the case of metabolic
pathways, only about 4% of them targeted an excess of 50 genes in a single pathway
(23 out of 571). Among all metabolic pathways in the network the one with maximum
number of genes connected was, PWY-3781 (aerobic respiration I (cytochrome c)] with
310 genes associated with it.

3.1.2 Network Characteristics of the Preliminary Pathway-Pathway
Co-interaction Network (p2Net)

At the beginning, the pathway-pathway network had 571 pathway nodes and 161803
edges between them. Then we considered edges will be drawn if three common genes
exist between each pathway-pathway pair. Thus, the resultant p2Net contained 449 nodes
and 1018 edges among them. In this network (p2Net), we found that each node (pathway)
had an average of ≈5 (4.534) neighboring nodes (pathway) and an average clustering
coefficient of 0.291.

3.1.3 Network Characteristics of the Pathway-Pathway Co-interaction Network
(PCIN)

PCIN network has 203 nodes (pathways) from the previous network (p2Net) with 354
edges between them, after applying CC filter and application of a hypergeometric dis-
tribution. In this network too, it was found that each node (pathway) was connected
to at least ≈4 (=3.487) neighboring nodes (pathways) and had an average clustering
coefficient of 0.318 (Fig. 3).

3.2 PCIN Module Characteristics with Respect to Rice Metabolic Pathways

571 metabolic pathways of rice were retrieved from PMN, among which 125 pathways
were found to be involved in the 30 modules extracted from the PCIN network using
MCODE. The largest module comprises 10 pathways whereas the smallest module
has only 3 pathways. The network further showed involvement of 119 reactions and
70 enzymes associated with those 125 metabolic pathways. From the thirty modules
extracted from the PCIN network, the average pathways found for each module was ≈4
(=4.16), the average number of genes in each module was ≈3 (=2.73) and each module
had an average of≈4 (=3.93) miRNAs involved. The combined miRNA, gene, pathway,
enzyme network for the 30 modules was found to have 460 nodes (68 miRNAs, 125
pathways, 77 genes, 119 reactions, and 70 enzymes) and 750 edges were found to exist
among those nodes (Fig. 3).
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Fig. 3. Network graph representation of enriched pathways that overlap with PCIN pathways,
based on DEGs identified for Indica vs Japonica seedling mRNA expression data. Pathways
marked in green were found to be enriched for upregulated DEGs while pathways marked in red
were enriched for downregulated DEGs.

3.3 PCIN Module Analysis

We have selected three modules randomly. The pathways, miRNAs and genes associated
with these modules are represented in Table 1. From the figures (Fig. 4, 5, 6) it can be
concluded that the pathways are highly interconnected through the genes which are
regulated by the miRNAs.

3.4 Literature Validation

We used rice expression data available under accession GSE71925. The expression data
in the study is extracted from 3 samples of Indica group and 3 samples of Japonica group
of rice seedlings. To identify differentially expressed genes (DEGs), we used DESeq2
[15]. All genes that had log2FoldChange value more than 1 and less than −1 along
with p-adjusted value of less than 0.05 were considered to be differentially expressed.
Next, we performed an overrepresentation analysis with pathway annotation based on

Table 1. Modules and related pathways, miRNAs and genes

Modules PATHWAYS miRNAs GENES

Module 3 PWY-5176, PWY-6762, PWY4FS-10,
PWY-116, PWY-5968, PWY-6624,
PWY-7186

osmir314,
osmir598,
osmir543,
osmir683,
osmir637,

Os12g0263800,
Os05g0499800,
Os01g0638600,
Os01g0597800,
Os09g0517900,
Os01g0638000,
Os03g0212000

Module 18 ALACAT2-PWY,ALANINE-DEG3-PWY,
ALANINE-SYN2-PWY

osmir446,
osmir505,
osmir575,
osmir517,
osmir626,
osmir126

Os07g0108300,
Os12g0263800,
Os10g0390600,
Os10g0390500,
Os07g0617800,
Os03g0183600,
Os09g0433900

(continued)
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Table 1. (continued)

Modules PATHWAYS miRNAs GENES

Module 24 PWY-7221, GLUTAMINDEG-PWY,
PWY-5921

osmir554,
osmir13,
osmir483

Os12g0556600,
Os11g0536800,
Os03g0256400,
Os06g0265000,
Os04g0184500,
Os02g0130100,
Os05g0555600,
Os03g0651000,
Os11g0708500,
Os03g0291500,
Os01g0654100,
Os02g0708100,
Os04g0182900,
Os11g0123033,
Os10g0191600,
Os05g0573300,
Os01g0570700,
Os04g0182875,
Os04g0183300,
Os06g0271300,
Os11g0544800,
Os01g0616900,
Os05g0569700,
Os07g0100200,
Os12g0263800,
Os04g0183500,
Os04g0643200,
Os01g0682001,
Os10g0100700,
Os05g0570400,
Os10g0155400,
Os07g0658400,
Os04g0184100,
Os08g0326600

the upregulated and downregulated DEGs using an online tool called WebGestalt [16]
with custom Oryza sativa pathway database subset from the PMN database as described
under Sect. 2.1.

Here we identified top 25 pathways each, sorted by p-values (less than 0.05) for
upregulated and downregulated DEGs, respectively and overlapped it against the PCIN
modules extracted in Sect. 2.6.

16 enriched pathways were found to overlap with the pathways identified in the
PCIN modules, which again belonged to 10 different modules. Overlapping pathways
are represented in Fig. 3.
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Fig. 4. Module 3.

Fig. 5. Module 18.

Fig. 6. Module 24.

Out of all the overlapping pathways 11 belong to secondary metabolite biosynthesis
pathways of which 6 are flavonoid biosynthesis pathways. Given that the expression data
is from rice seedlings, it makes sense that the flavonoid biosynthesis seem to be enriched.
In plants, flavonoids have long been known to be synthesised in particular sites and are
responsible for the colour and aroma of flowers, and in fruits to attract pollinators and
consequently fruit dispersion to help in seed and spore germination, and the growth and
development of seedlings [17].
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