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Abstract. TheDiscovery of the novel optimized structures of small molecules for
selective targeting is one of the challenging tasks in drug designing. Bioisosteres
are the key components of the lead compound, which provide hidden power to the
compound scaffold for selective targeting. We are presenting a database, named
CoSSDb which stands for Co-crystallized Sub-Structure Database. The CoSSDb
contains ligand sub-structures as possible bioisosteres. extracted from PDB files,
available in Protein Data Bank. Sub-structures were extracted through an algo-
rithm, which utilizes the location of atoms in the 3D domain of the complex
ligand & protein. It processes the relative positioning of atoms for demarcation of
the influential part of the ligand, which interacts withmacromolecule and provides
potency to that ligand for binding with a specific binding pocket of the protein.
The algorithm was used to extract sub-structures from the ligands co-crystallized
with proteins involved in cancer. About 7721 x-ray crystallography PDB files
were processed, and 654 non-redundant substructures were identified. These sub-
structures will be useful during designing & optimization of novel ligands for
selective targets. The database is freely accessible at ‘https://opticket49.wixsite.
com/substructdb’.
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1 Introduction

The selective targeting of proteins by ligand in cellular processes is one of the primary
challenges in toxicology and new drug discovery. As a remedy to this challenge, the
structure of ligands or compounds that are known to interact with specific cell signalling
proteins is being explored. Understanding of structural components are must for per-
forming studies on selective targeting, drug design, lead editing, and lead optimization
etc. Some of the previously known methods for lead optimization for anticancer activ-
ity are as: Experiment based hit & trials, sub-structure & structure alerts-based lead
identification, and fragment-based lead optimization etc. With existing databases, sig-
nificance of our database can be seen in terms of availability of ‘authentic side chains’
for lead optimization, and selectivity towards the specific set of residues [1]. Because
the role of sub-structural components is well established, several attempts to identify
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structural components for this purpose have been made in the past. The significance
of sub-structure has been explained in the drug-target network [2]. The importance of
structural underpinnings for selective targeting has also been proven [1]. There have
been numerous ways explained for discovering sub-structures that act as bioisosteres.
These earlier methods used structure comparison processes based on structural simi-
larity, fingerprinting, and QSAR modelling, among others, to identify sub-structure or
structural warnings [3]. To find substructures in previous studies, structural comparison
was employed. European REACH utilises a weight-of-evidence approach to identify
bio-accumulative substances. One of the components in REACH’s weight of evidence is
structural alarm detection based on quantitative structure activity relationship (QSAR).
It’s worth noting that in this work, QSARs were used to extract structural alerts from
compounds [3]. For structural warnings, statistical QSAR models based on structural
traits were created to indicate likely chemical dangers [4]. To reduce toxicity, chemi-
cally reactive molecule fragments were also considered structural alarms and avoided in
pharmaceuticals [5].

Structure-metabolism investigations are well-known for resolving reactive
metabolite-related dangers by employing “avoidance” techniques such as structural
alerts exclusion and likely termination of reactive metabolite-positive substances [6].
In one study, structural alarms were built for the generation of reactive metabolites from
pharmaceuticals, and immune responses were triggered using a systematic technique
including macromolecules [6, 7]. Another study employed a classifier-based technique
to identify a relationship between drug substructures and protein domains. The classifier
was used to extract substructures using biologically relevant chemogenomic features [8].
In a study, information about the binding location as well as the ligand’s substructure was
used to predict ligand-protein interaction. To extract substructure, a physical-chemical
properties of binding site-based approach was used [9]. In a genome-wide screening
of drug-target interactions that did not require the target protein’s 3D structure, sparse
canonical correspondence analysis was utilised to derive groups of chemical substruc-
tures. Following that, these substructures were utilised in the creation of a drug [10]. The
RUMSSA (Relative Unified Mechanical Skill Score of Atom) technique, in addition to
existingmethodologies, uses X-ray crystallographic complex structure to identify poten-
tially influential sub-structure(s) from ligand. The position of atoms in the 3D domain
of a ligand-protein combination was thought to contain high selectivity information
[11]. As a result, mechanical transformations of relative positioning can be employed
to gather data for identifying the ligand’s influential component inside the complex sys-
tem of a certain protein binding pocket. As a consequence, an RUMSSA-implemented
generalised approach was utilised to extract substructure from a co-crystallized protein-
ligand complex’s PDB dataset. The present database for cancer contains sub-structural
components taken from co-crystallized ligands in PDB files.

2 Material and Method

2.1 Raw Data Collection

Protein Data Bank (PDB) files were retrieved for the express purpose of referencing
human cancer sickness. These files contained at least two components, the protein and
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the ligand co-crystallized with in it. Only X-ray crystallographic complex structures
were used. These files contained three dimensional locations of atoms of protein and
ligand.

2.2 Method to Extract Sub-structure

The RUMSSA approach was used to manually extract substructures from PDB data
including co-crystallized ligands (rcsb.org). Details about the RUMMSA algorithm
implemented, can be accessed from the literature ‘BioRxiv 2020.02.02.931436’ [11].

2.3 Organisation of Database CoSSDb

The selectivity performance of extracted substructures was carefully examined utilising
experimental evidence from diverse literatures. Simple tabular data entries make up the
database. The database comprises four essential pieces of information: the SMILES
sub-structure, the target protein’s name, class, protein and ligand ids, and facts on the
target. The substructure of a ligand that may be involved in a molecular interaction
with a specific protein has been extracted using an algorithm. For the hypothesising
algorithm, the following assumptions were made: I the co-crystal structure is at its most
optimised stable/stagnant state; (ii) the co-crystallized ligand has found stable interaction
conformation during ligand-protein interaction; and (iv) theoretically, the dynamicity of
protein and ligand will eventually achieve a combination each pegging hook is led by a
single atom (referred to as the ‘leader atom’ in this con). Atoms of decreasing stretch
follow the leader atom.With increasing distance from the leader atom, the hook’s impact
diminishes until it is nil. The ligand’s selectivity for the target is represented by the most
stretched hook atom. It was once considered that the ligand atom nearest to the protein
was themost effective at attracting other ligand atoms. The ‘RelativeUnifiedMechanical
Skill Score of Atom’ algorithm incorporates both the selection of the leader atom and the
definition of the stretch gradient score (RUMSSA). It selectively targets a co-crystallized
ligand by extracting the substructure of the ligand. The PDB file is directly processed.
It’s a generalised and impartial method for working with co-crystallized PDB structures.
Because it was chosen from the PDB, this method ensures molecule interaction.

2.4 Algorithm Brief

Although the RUMSSAmethod is detailed in publication [11], but it can be summarised
as follows: RUMSSA (Relative Unified Mechanical Skill Score of Atom) is a method
that can determine a ligand’s substructure from a PDB file comprising two molecules
(Protein-Ligand) interacting. Calibration is required for each complex. As a result, the
distance value should be adjusted to calibrate programme performance. The steps of
the RUMSSA algorithm are as follows: The entire complex is believed to be in 3D
space when processing with the full molecule. The position of each atom is traced in
three dimensions. The distance between each pair of atoms is determined. A sphere
is supposed to develop around each atom in this situation (the radius of the sphere is
adjustable, with a default radius of 5). Each atom has an RUMSSA score of zero to
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begin with. Each atom is treated in the following way: Atom pairings are chosen from
the sphere’s interior (i.e. have an inter-atomic distance greater than zero and a radius
equal to the radius of the sphere). The atom’s local RUMSSAvalue is updated as follows:(∑j

k=0

(
1
dk

))
of Ligand within sphere around it. This step is repeated for each of the

ligand atoms. The initial RUMSSA value is used to sort the atoms. The ‘Leader atom’ is
the atom with the RUMSSA value of ‘Zero.’ For each Ligand-atom within a customised
range, the sorted distance from the ‘Leader atom’ is now determined (default 5). The
‘Relative RUMSSA i.e. RDi’ is now calculated in relation to the ‘RUMSSAof the Leader
atom’ and each atom’s distance (i.e. Di) from the ‘leader atom.’ TheRDi vector’s greatest
value is utilised as a ‘Threshold’ for demarcating atoms starting with the leader atom.
The following is the global RUMSSA value for each ligand atom:

RDi = 1
{
sort

(∑j
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))}
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∗Di

)

RDthreshold = max
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RDi
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Tofind the substructure that is selective for the target protein, the following conditions
must be met: Atoms should have an RDThreshold Global RUMSSA value and a Local
RUMSSA value that is shared by both sorted and unsorted atoms.

3 Results

A total of 7721 human cancer-related x-ray crystallography PDB files were analysed. As
a result, 654 non-redundant substructures were found and added to the database. ‘https://
opticket49.wixsite.com/substructdb’ is the web address for the database. To access
database, username & password can be used as ‘omprakash’. All of these binders are
linked to cancer-related protein interactions. Four different sorts of queries can be used
to search databases. Search output comes in tabulated format with ‘Disease,’ ‘SMILES,’
ligand ID, PDB ID, resolution, and structural description. Substructures (1 to >1) are
displayed using the SMILES format. The database website and data visualisation are
depicted in Fig. 1. Chemists can be benefited much from SMILES of substructure and
their annotation. Although the website’s simplicity is its strength, it does have certain
weakness, such as the presence of single tablewithmultiple fields for exploratory presen-
tation. The following queries can be used to search the database: ligand id (for example,
U72, ONJ), PDB id (for example, 7NBQ, 7LT0), protein/structure name (for example,
Tubulin, Estrogen), and illness name (e.g. here Cancer).

https://opticket49.wixsite.com/substructdb
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Fig. 1. CoSSDb outlook. (A) Front page and (B) search result display from substructure database

Finally, the requisite sub-structure demarcation is obtained by comparing the relative
commonality of mechanical transition of atomic capacity for atomic interaction. As a
result, the sub-structure is determined by the global relative RUMSSA value of the
atom as well as its local RUMSSA value. Here are a few samples of database output
(Table 1).
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Table 1. Examples of output from CoSSDb database. One or more sub-structures, from each
complex, come as output from RUMSSA.

Sub-Structure Target PDB

HN

N

N

N

H
N

Human Nicotinamide N-methyltransferase 
(NNMT)

7NBQ

N N

N

FGFR2 kinase domain gatekeeper mutant 
V564F

7KIE

O

N
H

S
O

N
H

S
O

O NH2

N
H

Carbonic Anhydrase IX mimic 7K6T

OH

H2N human ALDH1A1 7JWV

N

NH2NN

H2N

S
Cl

Cl
Cl

SH

Non-receptor Protein Tyrosine Phosphatase 
SHP2 

7JVN 

4 Discussion

Suggestions for substructures can be utilised to create and optimise potential leads. To
execute a certain biological function, a ligand molecule interacts with one or multiple
protein. For performing against a specific target protein, entire ligand molecule is not
conserved. Each ligand has a structural and conformational combination in the form of
one ormore sub-structures, which promotes selectivity toward the target protein. To avail
the hidden power sub-structure, it must be extracted from the co-crystallized ligand, so
that the known sub-structures can be reused for further lead optimization. Now, the issue
is that the sub-structure delineation is not well established. The RUMSSA algorithm,
which was based on the mechanical behaviour of ligand atoms to define technique, has
re-evolved the topic of assumption. This scheme is generalized and can be used with any
ligand; because it uses a ligand itself, that is alreadypresent in a protein’s 3Dfield domain.
Here, atomic positions were redefined for expressing mechanical behaviour hypotheses
for the construction of generalised schemes. In order to specify themechanical behaviour,
the reference point has been established as the leader atom. The leader atom, in theory,
has the best ability to interact with protein, and the rest of the ligand atoms follow the
leader’s lead.As a result, the ‘RelativeUnifiedMechanical Skill Score ofAtom’was used
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to establish this hypothesis theme. Atoms that followed the leader atom were thought
to be a part of the potentiating substructure, while atoms that did not follow the leader
atomwere assumed to be excluded. The algorithm assesses the complicated molecule on
both a global and local level. The global aspect looks at the entire molecule in question,
whereas the local aspect looks at each individual ligand atom. This is identified as a sub-
structure required for selectivity where the global and local features intersect. Because
the algorithm took into account complicated molecular observation at both the global
and local levels, therefore it was necessary to calibrate it in order to get reliable results.
Despite the fact that RUMSSA considers all possible leader atoms, when calibrated for a
single leader atom, it produces themost accurate sub-structure. The location of each atom
is noticed in 3D space thanks to the algorithm’s consideration of the 3D complicated
PDB structure. The hidden pattern for molecular selectivity is revealed by trapped ligand
atoms in the force field of protein. RUMSSA calculates the distance between each pair of
atoms as a result of this process. Because each ligand atom is affected by its neighbours,
a sphere with a range of area was assumed to achieve average relative influence on each
atom. The technique was unbiased and generalizable to any ligand molecule because
each atom was given a unified RUMSSA value. As a result, this value can be used to
compare molecules. RUMSSA is a hypothetical parameter that is exclusively governed
by the ligand atoms’ distance from the leader atom, as optimised inside the protein force-
field. Here, selective targeting was claimed because tip-of-arrow i.e. ligand side chain
sub-structures were directly extracted from naturally existing complexes. Therefore,
these sub-structures contain naturally defined pharmacophore for selective hitting of the
target. CoSSDb is the collection of such tip-of-arrows. RUMSSA is the creator of tip-
of-arrows. We processed about 7721 x-ray crystallography PDB files, and found about
654 unique substructures. These collections are ready to be attached at scaffolds for
modulating their behaviour. Free accessibility of manually curated database is available
at ‘https://opticket49.wixsite.com/substructdb’.

There are several previously known databases and tool, which are developed with the
mind-set of cytotoxicity concerned lead optimization or toxicity related aspects in gen-
eral. Benefits of CoSSDb over previous one can be observed. In a database named Swiss-
Bioisosters, side chain replacement was considered for lead design. These replacement
were identified through detection of matched molecular pairs and mining bioactivity
data from ChEMBL database [12]. CoSSDb uses 3D structure from Protein Data Bank.
In another protocol, frequency-based substructure detection protocol implemented for
avoiding potential toxicity risk. It was based on sub-structures from Non-Toxic com-
pounds [13]. CoSSDb uses RUMSSA implemented mechanical skill score of atoms for
extraction of substructure. In another study, mechanisms related to specific functional
groups were used for identification of sub-structures which may have capacity to trig-
ger genotoxic or epigenetic effects [14]. CoSSDb sub-structures also show side chain
along with functional groups, which has capacity to trigger modulations in signalling &
expression. Manually curated substructures collections are also available, where liter-
ature contents were used for gathering information, currently available in the form of
SMARTS chemical structure [15]. CoSSDb provides sub-structures in SMILES format.
Which has been collected from ligand-protein co-crystallized X-ray crystallographic
PDB file. Basic significance and future scope of the study can be understood as; side

https://opticket49.wixsite.com/substructdb
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chains of any drug interacts with target protein, and createsmodulations in the expression
or signalling extent of target protein. Therefore, significance of CoSSDb will exist at
every point of ligand-protein interaction. Considering these facts, CoSSDb can be useful
for target specific lead optimization by adding or removing sub-structures. Cytotoxicity
of the lead molecules can also be enhanced or reduced, by using the sub-structure infor-
mation from CoSSDb. Bioavailability of lead molecule can also be modulated through
sub-structural modifications. Drug repurposing can also be performed by reorganising
the side chains as common scaffold structures. Similarly, multiple dimensions can be
touched through using sub-structures.

5 Conclusion

CoSSDb is manually curated. It has interesting substructures/bioisosteres for lead opti-
mization and new ligand creation. They were extracted through RUMSSA algorithm, by
using mechanical skill scoring of atoms. The substructures are able to directly connect
to the target protein, allowing for selective targeting. This substructure database will aid
in the discovery of new drugs as well as toxicological research.
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