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Abstract. Lung cancer can be categorized into two types, which are Non Small
Cell Lung Carcinoma (NSCLC) and Small Cell Lung Carcinoma (SCLC). 85% of
lung cancer cases are NSCLC, although SCLC is the more aggressive. Mutation
of EGFR, ALK and KRAS are characteristics of NSCLC and these findings have
led to the discovery of targeted therapy for NSCLC. Targeted therapy for SCLC is
lagging as identifying its genetic markers is complicated by the molecular com-
plexity of its pathophysiology. Hence, in this study, genetic differences between
SCLC and NSCLC were explored using bioinformatics approaches. The study
was divided into two parts where the first involves feature selection and principal
component analysis to differentiate the two lung cancer types based on mRNA
gene expression. Additionally, top 20 mutated genes for each type were deter-
mined using odds ratio (OR). In the second phase, a predictive model was built
using outcome of the mRNA gene expression analysis. The results showed that the
mRNA expression of 20 identified genes could differentiate the two lung cancer
types. This was further corroborated by the predictive model where a sensitivity
and specificity of 1.0 was achieved. However, with the small number of data, fur-
ther analyses are warranted. The OR and protein–protein interaction (PPI) showed
that KRAS, NFE2L2, MUC6 and ARHGAP35 genes to be potential biomarkers
for NSCLC as well as potential pathway for its progression. This preliminary
study shows that bioinformatics approach could aid in understanding SCLC and
NSCLC, which could lead to discovery of novel targeted therapy and potential
biomarkers.
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1 Introduction

According to the GLOBOCAN 2020 report published by theWorld Health Organisation
(WHO), 18% of cancer related deaths in 2020 were due to lung cancer, which was the
highest among all cancer types [1]. Furthermore, lung cancer recorded the second highest
number of new cases among all cancer types with over 2 million cases, just behind breast
cancer [1]. It is also the leading cause of cancer-related mortality in male worldwide.
Smoking is themost common cause of lung cancer, although there are a small percentage
of non-smokers being diagnosed with lung cancer.

Lung cancer can be classified into two main types, which are Small Cell Lung
Carcinoma (SCLC) and Non Small Cell Lung Carcinoma (NSCLC). Approximately
85% of lung cancer cases are NSCLC, although SCLC is the more aggressive of the two
[2]. SCLC is characterised by rapid growth, high tumour burden and early metastasis
[3]. It originates in the bronchi while NSCLC originates in lung tissues and composed of
larger cells than SCLC when observed under the microscope. Both types are tested in a
similar manner involving conventional chest radiography, computed tomography (CT),
magnetic resonance (MR) and positron emission tomography (PET) [4]. In majority of
the cases, both types of lung cancer are diagnosed in the later stage due to complex
diagnostic work up, which could decrease the chance of survival [5].

Mutation of EGFR, KRAS and ALK are characteristics of NSCLC patients, which
have led to genetic testing to diagnoseNSCLCaswell as the discovery and introductionof
target therapy as part of the treatment regimen forNSCLC [6]. EGFR (EpidermalGrowth
Factor Receptor) mutations have been observed in a significant percentage NSCLC case
involving non-smokers and female of Asian descent [7]. Administration of Tyrosine
Kinase Inhibitors (TKIs) such as gefitinib and erlotinib showed high response rates in
patients with EGFR somatic mutations particularly exon 21 L858R, exon 18 G719X
and exon 19 deletions [8]. In contrast, mutation of exon 20 T790M mutation is linked
to acquired TKI resistance [9]. Mutation of KRAS (Kirsten rat sarcoma virus) is largely
seen in adenocarcinomas, in approximately 25%of the case.However,KRASmutation is
commonly seen in smokers but less so in Asians [10]. Fusion between ALK (Anaplastic
Lymphoma Kinase) between and EML4 (Echinoderm Microtubule-Associated Protein
Like 4) was observed in around 7% NSCLC adenocarcinoma patients, and common in
non- or light smokers [11]. Patients with this fusion protein can be treated with ALK
inhibitors such as brigatinib [12], ceritinib [13] and crizotinib [14]. In contrast, the
development of novel drugs for SCLC is lagging even though TP53 and RB1 mutations
have been found in 75–90% of SCLC patients, as the mutations are primarily loss
of function [15, 16]. Additionally, several of the therapeutic targets in SCLC such as
amplification of MYCs are not ‘druggable’ [17], where it is unlikely to bind to small
molecules with high affinity.

Several studies utilising computational approaches have been reported in unveiling
the genetics of lung cancer for the purpose of diagnosis as well as discovery of novel
therapy. Baoshan et al., [18] identified 16 potential prognostic markers of lung ade-
nocarcinoma (LUAD), a subtype of SCLC through the use of predictive model. The
computational model was built using LUAD RNA-Seq data and clinical data from the
Cancer Genome Atlas (TCGA) where random survival forest and forward selection
were used as machine learning algorithm. External validation in three different data sets
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showed a C-index values between 0.656 to 0.672. Pathway analysis revealed that eleven
of the genes were linked to Nicotine addiction pathway. Lai et al., [19] employed deep
neural network and used gene expression and clinical data of NSCLC patients to predict
5-year survival of NSCLC patients. The model showed high accuracy, with an AUC
of 0.81 and 75% accuracy. Li et al.,[20] built a risk prediction model for LUAD using
gene expression profile obtained from TCGA and Gene Expression Omnibus (GEO).
The genes were first evaluated for its prognostic relevance using three algorithms, which
were Random Forest, sigFeature and univariate Cox regression [20]. 16 potential genes
were identified and used to build a predictive model using the least absolute shrinkage
and selection operator (LASSO) algorithm. The model showed good performance in
classifying high and low risk patients with C-index of 0.7, 0.689, 0.696, 0.682 and 0.794
in the training set, internal testing set, entire TCGA set, external testing set, and external
validation set respectively [20].

As lung cancer is the leading cause of cancer-related deaths worldwide, understand-
ing the full extent of the disease is crucial. Hence, the aim of this study is to explore
the genetic differences between SCLC and NSCLC through bioinformatics approaches,
which could further aid in the diagnosis of the disease as well as discovery of novel
targeted therapy.

2 Materials and method

2.1 Design of Study

This study is divided into two phases (see Fig. 1). In the first phase, Principal Component
Analysis (PCA) and feature selection were employed to first mine important genes that
differentiates NSCLC and SCLC. Odds ratio was also conducted to analyse significantly
mutated genes in both NSCLC and SCLC. In the second phase, predictive models were
built using information determined previously to classify SCLC and NSCLC.

Fig. 1. Design of the study. The study is divided into two parts where the first involves the use of
PCA on mRNA gene expression data, and Odds Ratio on mutated genes data. The second phase
involves the building of a prediction model based on the result of the mRNA gene expression from
the first phase
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2.2 Dataset

All the datawas obtained fromcBioPortal, a library of genomic information developedby
Memorial Sloan-Kettering Cancer Centre (MSKCC) [21]. This platform contains more
than 40 datasets collected from The Cancer Genome Atlas (TCGA) and hence provides
various data and samples on patient case set, cancer study and cancer genomic profiles
such as gene expression and mutation [21]. mRNA gene expression and gene mutation
data was collected for NSCLC and SCLC cases. The details of the data collected can
be found in Tables 1 and 2. The data from SCLC and NSCLC were combined based on
mutual variables and any duplicates were removed.

2.3 Feature Selection

Feature selection (FS) is a technique that is used to reduce the number of variables before
it is run through a machine learning algorithm. The objective of this feature selection
is to reduce large number of variables based on its importance and redundancies. This
reductionwill be beneficial in reducing computational power and process time during the
building of a predictive model. The FS used here was the Tree Based Feature Selection
(TBFS)method,whichmeasured the impurity-based feature importance of each variable,
hence can be used to remove irrelevant data in the sample [31]. TBFS is based on random
forest which comprises of many decision trees. In the tree, there will be nodes that
represent variables of the dataset, and this node then will be branching out into several

Table 1. SCLC dataset used which includes their origin, data type and number of data

Dataset Number of data Data type(s) available References

Small Cell Lung Cancer
(CLCGP, Nat Genet
2012)

29 Gene mutation [22]

Small Cell Lung Cancer
(Johns Hopkins, Nat
Genet 2012)

80 Gene mutation [16]

Small Cell Lung Cancer
(U Cologne, Nature
2015)

120 Gene mutation
mRNA Expression

[15]

Small-Cell Lung Cancer
(Multi-Institute, Cancer
Cell 2017)

20 Gene mutation [23]

Thoracic PDX (MSK,
Provisional)

21 Gene mutation Data generated in Charles
Rudin Lab

Lung Cancer (SMC,
Cancer Research 2016)

4 Gene mutation
mRNA expression

[24]

Total 274
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Table 2. NSCLC dataset used which includes their origin, data type and number of data

Dataset Number of data Data type(s) available References

Non-Small Cell Lung
Cancer (MSK, Cancer
Cell 2018)

75 Gene mutation [25]

Non-Small Cell Lung
Cancer (MSKCC, J Clin
Oncol 2018)

240 Gene mutation [26]

Non-Small Cell Lung
Cancer (TRACERx,
NEJM & Nature 2017)

447 Gene mutation [27]

Non-Small Cell Lung
Cancer (University of
Turin, Lung Cancer 2017)

41 Gene mutation [28]

Non-small cell lung
cancer (MSK, Science
2015)

16 Gene mutation [29]

Pan-Lung Cancer
(TCGA, Nat Genet 2016)

1144 Gene Mutation [30]

Thoracic PDX (MSK,
Provisional)

100 Gene mutation
CNA

Data generated in Charles
Rudin Lab

Lung Cancer (SMC,
Cancer Research 2016)

18 Gene mutation
mRNA expression

[24]

Total 2081

other nodes [31]. The node’s importance can be calculated by:

niA = wACA − wleft(A)Cleft(A) − wright(A)Cright(A) (1)

where ni is the node importance of node A. wj indicate the weighted sample reaching
node A and CA indicate the impurity value of node A. left(A) and right(A) indicate
branches node in the left and the right respectively.

The feature importance can be calculated by:

fiA =
∑

A:node A splits on feature i niA
∑

k∈ all nodes nik
(2)

which indicate the feature importance of variable and niA is the importance node of A.
The value of feature importance can be normalized to a value between 0 and 1. This

can be achieved by the following formula application:

norm fiA = fiA
∑

j∈ all features fiA
(3)
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The average of the feature importance in all the trees in Random Forest is calculated
and this value will be the final feature importance. The formula for average feature
importance is;

RFfii =
∑

j∈ all tress normfiiA

T
(4)

where isRFfii theRandomForest feature importance andT is the total tree in theRandom
Forest. The feature importance value will be assigned to a value between 0 and 1. A
relative value of the feature importance is calculated by dividing the feature importance
and the highest feature importance in the Random Forest and multiply it by 100. This
is performed as there is a large number of variables and calculating the relative value
would make it easier to interpret the results. The relative feature importance is calculated
as such:

Relative feature importancei = RFfii
RFfimax

× 100 (5)

2.4 Principle Component Analysis

Principal component analysis (PCA) is a method of reducing the dimensionality of
robust datasets, increasing its interpretability while preserving as much variability and
minimizing information loss [32]. This statistical technique creates new uncorrelated
variables or principal components, that successively maximize variance. The PCA was
performed using the scikit-learn package through the ‘PCA’ function in Python and
plotted using the ggplot package in Rstudio [33].

Given a data matrix, X, of n × p, where n is the number of rows of instances and
p is the number of features, the principal component for each variable, x, is calculated
as the weighted average of the original variables. The matrix containing the principal
components of the data is referred to as matrix Y and can thus be calculated as:

Y=W · X (6)

where W is a matrix of coefficients that is obtained from the calculation of covariance,
eigenvalues and eigenvector. Eigenvalues and eigenvectors are the linear algebra con-
cepts that needed to be computed from the covariance matrix in order to determine the
principal components of the data [34]:

yij = WliXlj + W2iX2j + . . . + WpiXpj (7)

The covariance between two variables, xi and xj can be calculated as:

Cov(xi, xj) = 1

n − 1

n∑

i=1

(
xi − xi

)(
xj − xj

)
(8)

The eigenvalues and eigenvectors are then determined from the covariance matrix.
The eigenvectors (principal components) determine the directions of the new feature
space, and the eigenvalues determine their magnitude.
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2.5 Odds Ratio

Odds ratio (OR) is defined as a measurement of association between the exposure and
the outcome [35]. In this study, the OR is used in the gene mutation data to measure the
association of the genes with the types of lung cancer.

An OR of a value of> 1 signify a high association of the exposure and the outcome,
while a value of < 1 signify otherwise. An OR value of 1 signify that there is no
association between the exposure and the outcome. In this study, the odds ratio was
calculated for both SCLC over NSCLC and vice versa. OR is calculated as such:

OR =
(
nA
tA

)

( nB
tB

) (9)

where nA is the total amount of occurrence/frequency of a specific gene mutation in
NSCLC and tA is the total amount of the occurrence/frequency of all of the genes occurs
in NSCLC. While nB is the total amount of occurrence/frequency of a specific gene
mutation in SCLC and tB is the total amount occurrence/frequency of all the genes
occurs in SCLC.

2.6 Predictive Model

Predictive model is constructed from first learning the functional relationships between
variables and outcome in a training set using a classification algorithm. Then, prediction
of a possible outcome from variables of new instances can be performed.

2.6.1 Training Set

The training set here contains the mRNA expression of NSCLC and SCLC patients
containing 20 genes identified in the previous phase.

2.6.2 Random Forest Classification Algorithm

Random forest is a technique for classification based on an ensemble, or forest, of
decision tree [36]. As the name suggest, a prediction will be made using tree-based
algorithmmethod by constructing a forest from the production of several or large number
of trees (known as decision trees). The trees were built using training sets consisting of
multiple feature or variables for each of the instance in the training set. Then, output
results were produced from the variables of the training set of interest. The result was
obtained by aggregating all the outputs from different trees. There are two stages in
Random Forest which are: (i) random forest creation and (ii) prediction from the random
forest classifier created in the first stage [36].

Firstly, the algorithm will build m amount of decision trees. Each of the decision
trees will be initiated with a single node where a number of randomly selected samples
will serve as the data set. Then, a bootstrap sample of n number of variables of the
training data were drawn and selected at random.From the random selected subset, the
variable that provides the best split, measured using the Gini index, will split the node
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into two daughter nodes, specifying possible outcomes [36]. The tree was further split
until a maximum size is reached without pruning. Gini index (S) is calculated as follow:

Gini(s) = 1 −
2∑

j

P. (10)

where P is the relative frequency of class j in S. Each time, the split then was divided
into two subsets of S1 and S2 in which gini (S) data was divided into:

Ginisplit(s) = n1

n
gini(s1) + n2

n
gini(s2). (11)

This process will repeat until the tree has reached a specified number of branches and
assigned a terminal leaf node. At the end of the tree, class probability will be calculated.
In this study,mwas set at 100 and nwas set as the square root of total number of variables
[36]. The outcome was calculated as the mean of class probability from each decision
trees. The algorithm was written in Python and using the scikit-learn package.

2.6.3 Internal Validation

Fivefold cross validationwas employed to internally validate the predictionmodel. Here,
the training set was divided into 5 folds of equal number of data. One fold will serve
as the test set while the rest serves as the training set. The process repeats until each
fold has served as the test set. At each iteration, the performance of the model will be
determined which will be compiled at the end.

2.6.4 Performance Measure

Sensitivity and specificitywereused tomeasure theperformanceof themodel. Sensitivity
is used evaluate the model’s ability to predict true positive and can be calculated as such:

Sensitivity = TP

TP + FN
(12)

where TP is true positives and FN is false negatives.
Specificity evaluates the model’s ability to predict the proportion of actual negative

cases and can be calculated as such:

Specificity = TN

TN + FP
(13)

where TN is true negatives and FP is false positives.

2.7 Protein–Protein Interaction Using STRING

Protein–Protein Interaction (PPI) predictionusingSTRINGwas employed to seewhether
two proteins may interact. STRING measures both direct (physical) and indirect (func-
tional) interactions between two proteins, based on experimental data of protein–protein
interactions [37].
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Fig. 2. PCA plot of mRNA expression of NSCLC and SCLC patients

A score is provided for each protein–protein association. The scores represent con-
fidence scores, ranging from 0 to 1, indicating estimated likelihood that the associa-
tion is biological significant, given the supporting evidence. The supporting evidence
is based on seven factors, which are neighbourhood in genome, gene fusions, cooc-
currence across genomes, co-expression, experimental/biochemical data, association in
curated databases and co-mentioned in PubMed abstracts. These factors are represented
by colour coded edges. Based on the seven factors, a combined and final confidence
score is computed. A good interaction should not only have a high combined score, but
also having more than one factor contributing to the score.

3 Results

3.1 PCA Profile of mRNA Expression of SCLC and NSCLC

The mRNA variables were reduced from 17,793 to 20 using feature selection to reduce
overfitting, complexity and the curse of dimensionality. Table 3 shows the summary of
the 20 genes used in the PCA. The data were then analysed using PCA, where PC1 and
PC2 were plotted (see Fig. 2).

From Fig. 2 and Table 3, several observations can be made. Firstly, there is a clear
separation between the two lung cancer subtypes from the PCA plot. This suggests that
the subtypes could be differentiated by looking at theirmRNAexpression in the 20 genes.
Secondly, as can be seen in Table 3, majority of the genes are linked to lung cancer, where
some can be directly linked to the specific subtypes, or to just lung cancer in general. An
example of this is Recoverin (RCVRN), which is found to be a paraneoplastic antigen
for lung cancer. The gene is found to be expressed in both SCLC and NSCLC. RCVRN
have also been suggested to be a candidate for targeted therapy (42). Another example
is Cholecystokinin (CCK), where several studies showed CCK to have an association
with lung cancer. Han et al. [38], showed that CCK inhibit the P53 gene transcription,
which is involved in cells apoptosis, and also a candidate for targeted drug therapy [38].
The subtypes of the genes, CCK-A and CCK-B were found to be mainly expressed in
SCLC [39]. BARHL2 gene has been found to be associated with DNA methylation in
Squamous Cell Carcinoma (SCC), a subtype of SCLC where this methylation process
is not found in any normal lung cell [40].
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Table 3. The details of the 20 genes identified through feature selection to construct the PCA
between SCLC and NSCLC. RFI refers to relative feature importance

Gene name Gene symbol Description RFI

brain protein 44-like protein 2 LOC347411 This mRNA shows an association with
lung cancer. Study by Pang et al. [41]
demonstrated that LOC347411 is among
the many targets for miRNA
hsa-miR-106b-3p, which exhibit tumour
suppression properties

100

Transcription Factor 23 TCF23 No information or study that link TCF23
to any type of lung cancers

86.34

E3 ubiquitin-protein ligase TRIM63 TRIM63 TRIM63 is involved in the de novo
inhibition of skeletal muscle protein
synthesis under amino acid starvation

70.07

Transition Protein 1 TNP1 TNP1 is involved in the normal
spermatogenesis process. The gene is
found to be heavily deregulated in
patient with smoking habit [42]. Hence,
it might have an indirect association to
lung cancer

67.92

Chromosome 1 open reading frame 185 C1orf185 This is a protein coding gene. No
information or study that link
C1orf185to any type of lung cancers

64.12

Glucose-6-phosphatase 2 G6PC2 Downregulation of G6PC2 was observed
in SCC although no further information
was provided. [43]

62.65

Defensin Beta 134 DEFB134 No information or study that link
DEFB134 to any type of lung cancers

58.76

Golgin A6 Family Member B GOLGA6B No information or study that link
GOLGA6B to any type of lung cancers

58.76

Homeobox protein Nkx-6.2 NKX6-2 NKX6-2 is from the family of
homeodomain transcription factors
where members of this family have
association with various cancer such as
lung and thyroid cancer. The family of
gene is important in normal development
of lung, heart, prostate, thyroid and CNS
[44] but no direct associations are found
between NKX6-2 and lung cancer type

58.64

BarH-like 2 homeobox BARHL2 BARHL2 is associated with DNA
methylation in SCC where this
methylation process is not found in any
normal lung cell [40]

58.64

(continued)
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Table 3. (continued)

Gene name Gene symbol Description RFI

Somatostatin receptor type 4 SSTR4 The expression of this gene transcript is
found to be high in inflamed tissue of the
lung [45]. SSTR4 also is found to be
highly expressed in pulmonary carcinoid
tumours [40, 46]

54.14

Transmembrane Protein 235 TMEM235 No information or study that link
TMEM235 to any type of lung cancers

54.11

Schwannomin Interacting Protein 1 SCHIP1 No information or study that link
SCHIP1 with any type of lung cancers.
However, SCHIP1 is found to be
associated with asthmatic in paediatrics
[47]

54.11

Recoverin RCVRN This gene is found to be a paraneoplastic
antigen for lung cancer. The gene is
found expressed in both SCLC and
NSCLC [48]

54.11

Oxytocin-neurophysin 1 OXT Péqueux et al. [49] found that OXT is
expressed in ≥ 50% in both lung cancer
types, indicating its possibility as a
potential new target for targeted therapy

54.11

Mas-related G-protein coupled receptor
member E

MRGPRE This gene is found mainly in the brain
region and no information or study that
link MRGPRE to any type of lung
cancers

54.11

Cholecystokinin CCK Several studies show the association of
CCK n with lung cancer. Han et al. [38],
showed that CCK inhibit P53 gene
transcription, which is involve in cells
apoptosis, hence the cancer cells can
replicate and grow[38]. The subtypes of
the genes, CCK-A and CCK-B were
found to be mainly expressed in SCLC
[39]

54.11

Chromosome 9 open reading frame 170 C9orf170 No information or study that link
C9orf170 to type of lung cancers

54.11

Homeobox protein prophet of PIT-1 PROP1 This gene seems to be involved in lung
atelectasis [50]. Although atelectasis can
be linked with lung cancer
pathophysiology [51], further studies are
needed to support this

51.15

chromosome 17 open reading frame
102

C17orf102 No information or study that link
C17orf102 to any type of lung cancers

50.17
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3.2 Odds Ratio Profile of Gene Mutation of SCLC and NSCLC

Table 4 shows the top 20 significantly mutated genes of NSCLC against SCLC and
their details. A high odds ratio indicates that the gene mutation is more prominent in
NSCLC than SCLC. Several of the genes listed in Table 4 have already shown association

Table 4 Details of the top 20 mutated genes of NSCLC.

Gene name Gene symbol Log OR Description

Nuclear Pore associated Protein 1 NPAP1 1.45 Gene encoded for protein
associated with nuclear pore
complex. Jiang et al. [52] found
that NPAP1 mutation is among
the most common mutation in
lung cancer, accounting for
17.7% among all the other gene
mutation

Leucine Rich Repeat
Transmembrane Neuronal 4

LRRTM4 1.27 No information or study that link
LRRTM4 to any type of lung
cancers

BMP/retinoic acid-inducible
neural-specific protein 2

BRINP2 1.21 No direct studies on this gene
and lung cancer were found. But,
an association link between low
expression of the gene in the
fibrosis causes by inflammation
of the lung such as in COPD and
asthma [59], which, can
increased risk of getting lung
cancer [60]

Protein Phosphatase 1 Regulatory
Subunit 3A

PPP1R3A 1.21 The gene transcript are present in
some of the human cancer lines
including SCLC and NSCLC
[61]. Mutation of the genes were
also found in both lung cancer
types [62]. PP1R3A is found to
be downregulated in SCLC,
specifically Squamous Cell
Carcinoma (SCC) [63]

Transmembrane
O-Mannosyltransferase Targeting
Cadherins 1

TMTC1 1.20 TMTC1 transports mannosyl
residue to hydroxyl group of
serine or threonine residue.
TMTC1 is found to be involved
in lung function [64] and a study
showed that a down regulation of
TMTC1 is present in NSCLC,
specifically LUAD [65]

(continued)
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Table 4 (continued)

Gene name Gene symbol Log OR Description

Myosin Heavy Chain 11 MYH11 1.19 MYH11 as a major contractile
protein. Several studies
demonstrated that
down-regulation of MYH11 gene
are associated with lung cancer.
[66–68]

Disks large-associated protein 2 DLGAP2 1.18 DLGAP2 is a signalling
molecule in postsynaptic
neuronal cells. DLGAP2 seems
to have an association with
Central Nervous System (CNS)
disorder such ss Alzheimer and
autism. Krishnan et a., [69],
showed that DLGAP2 is uniquely
found in Asians with NSCLC. In
addition, DLGAP seems to be
involved in highly in epigenetic
modification (DNA methylation),
which leads to LUAD [70]

Nuclear factor erythroid 2-related
factor 2

NFE2L2 1.16 NFE2L2 regulate antioxidant
protein expression, which protect
against any oxidative damage
induced by inflammation or
injury. Several studies have
shown the gene to be associated
with NSCLC. Goeman et al. [53]
demonstrated that Kelch-like
ECH-associated protein-1
(KEAP1) and NFE2L2 mutation
can be defined as a molecular
subtype of LUAD. Furthermore,
Jessica et al. [71] showed that
KEAP1-NFE2L2 pathway is
among the most common
mutation pathway in NSCLC.
Paul et al. [72] demonstrated that
NFE2L2 is a frequently mutated
oncogene which can drive
NSCLC

(continued)
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Table 4 (continued)

Gene name Gene symbol Log OR Description

Tenascin-X TNXB 1.15 TNXB is an extracellular-matrix
glycoprotein and have
anti-adhesive properties, which
can cause matrix maturation in
wound healing process. Low
TNXB expression is found is
some cancers including lung and
breast, which suggests its
possibility as a potential
biomarker for NSCLC [73]

Mucin 6 oligomeric
mucus/gel-forming

MUC6 1.11 MUC6 provide protective
mechanism of epithelial cells.
This gene is suggested to be
involved in the progression of
LUAD [74]. Kishikawa et al. [75]
demonstrated the presence of
MUC6 on unique
clinicopathological subset of
Invasive Mucinous
Adenocarcinoma (IMA), a
subtype of LUAD. Another study
showed that the expression of
this gene alongside MUC2 are
associated with the prognosis of
lung cancer and lymph node
metastasis [76]

SLIT and NTRK like family
member 4

SLITRK4 1.09 No direct association was found
between the gene and lung
cancer. However, mutation of
SLITRK4 have been associated
with the metastasis of cancerous
cell from colon cancer to the lung
[77]

SLIT and NTRK like family
member 5

SLITRK5 1.08 SLITRK5 is involved in
neurite-modulating activity. This
gene is associated with neuronal
disorder [78, 79] but a study by
Jiang et al. [80] found a mutation
of SLITRK5 with TP53 in
post-treatment with carboplatin

(continued)
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Table 4 (continued)

Gene name Gene symbol Log OR Description

POTE ankyrin domain family,
member G

POTEG 1.08 POTEG is encoded for
cancer-testis antigens (CTAs) or
cancer-germline genes. Study by
Qiu et al. [81] revealed potential
association between POTEG and
SCLC. This gene has been
suggested to have biomarker
properties for lung cancer as it is
tumour specific [82]

Kell antigen system KEL 1.07 No study shows direct
association between the gene and
lung cancer. However, mutation
of KEL has been seen in NSCLC
[83]

Solute carrier family 12-member
5

SLC12A5 1.07 SLC12A5 is involved in
electroneutral potassium-chloride
cotransport. SLC12A5 is linked
to high proliferation rate,
metastasis rate, and G1-S cycle
transition in lung Xia et al. [84]
discovered the presence of
SLC12A5 in LUAD, where it is
linked to a poor prognosis

Protocadherin Gamma Subfamily
A, 3

PCDHGA3 1.05 PCDHGA3 is involved in
immunoglobulin regulation
expression. No information or
study that link PCDHGA3 with
any type of lung cancers

Rho GTPase Activating Protein
35

ARHGAP35 1.05 ARHGAP35 is involved in cell
differentiation, cell adhesion as
well as cell migration. Héraud
et al. [85] demonstrated the
association between ARHGAP35
and NSCLC and suggested its
potential as an oncogene..
Ouyang et al. [86] showed that
the mutation spectrum of
ARHGAP35 display tumour
suppressing properties

(continued)
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Table 4 (continued)

Gene name Gene symbol Log OR Description

NOD-like receptor family pyrin
domain containing 10

NLRP10 1.04 NLRP10 is involved in apoptosis
and immune system of the
mammal. No information or
study that link NLRP10 with any
type of lung cancers

Kirsten rat sarcoma KRAS 1.03 KRAS is involved in cell
communication, which include
signals for cell growth,
proliferation, maturation and
differentiation. KRAS is among
the most commonly mutated
gene found in NSCLC
specifically LUAD [87–89]. This
mutation has never been seen in
SCLC, hence, it can serve as a
specific biomarker for NSCLC
[87]. This mutation also is found
frequently in lung cancer patient
with history of smoking
compared to non-smoker [87].
Many of the point mutation in
KRAS affect codon 12 of the
proteins involve in NSCLC [89]

Vav Guanine Nucleotide
Exchange Factor 3

VAV3 1.03 No direct association between
VAV3 and lung cancer types are
found. However, Chen et al., [90]
showed that the activation of
VAV3 by up-regulation of
LINC01234 is important in
NSCLC metastasis

to NSCLC such as NPAP1, PPP1R3A, TMTC1, DLGAP2, NFE2L2, TNXB, MUC6,
KEL, SLC12A5,KRASandVRAV3. Several genes listed such as PPP1R3AandPOTEG
are found in SCLC.

KRASwas among the 20 genes summarised in Table 4 and as previously mentioned,
it is found to be significantly mutated in NSCLC. NPAP1, which has the highest odds
ratiomight be a potential biomarker for NSCLC. Several studies have shown that NPAP1
is the most mutated gene found in NSCLC. Jiang et al. [52] demonstrated that NPAP1
has a prevalence of 17.7% in the tissue samples tested. Another gene worth mention-
ing here is NFE2L2, which is involved in the Kelch like ECH associated protein-1 and
Nuclear Factor Erythroid 2 like-2 (KEAP1/NFE2L2) stress response pathway. KEAP1
is involved in the degradation mediation of NFE2L2, while NFE2L2 provides cyto-
protective mechanism through transcription of genes encoded for antioxidant proteins
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and detoxifying enzyme. The mutation of both KELCH and NFE2L2 are significant
in LUAD and SCC respectively [53]. NFE2L2 does not directly cause lung cancer but
rather its mutation drive lung cancer progression [54] by promoting the cancerous cell
survival and its drug resistance [55]. Lung cancer patients withmutation and co-mutation
of EGFR and KEAP1/NFE2L2 were significantly correlated to failure when treated with
EGFR Tyrosine Kinase [56]. Hence, NFE2l2 has been deemed to have poor prognosis
in lung cancer.

Table 5 shows the top 20 significantly mutated genes of SCLC against NSCLC
and their details. Unlike NSCLC, the role of the listed genes to SCLC is not as clear
or direct based on literature search. However, one particular gene, HNRNPAB, have
been found to be significantly mutated in SCLC. The mRNA of Heterogeneous nuclear
ribonucleoprotein A/B (HNRNPAB) is found to be altered in both lung cancer types.
The HNRNPAB transcription is found to be most highly expressed in SCLC rather
than NSCLC [57]. This is further supported by Ocak et al. [58], which found that
HNRNPAB is overexpressed in three samples of SCLC. Thus, HNRNPAB may be a
potential biomarker for SCLC.

3.3 Predictive Models Based on mRNA Expression

Table 6 shows the result of the classification model using mRNA data of NSCLC and
SCLC. The 20 genes filtered using feature selection previously were used as variables
for the model. The model showed both sensitivity and specificity values of 100% in its
performance measurement. This indicates that the predictive model is able to predict
NSCLC and SCLC based on mRNA gene expression. However, the high performance
may be due to the low number of data and hence the results should not be inflated.

3.4 Decision Tree of mRNA Gene Expression

Figure 3 shows a single Random Forest tree of mRNA data. Note that this is only an
example of single decision tree, and a random forest contains hundreds of predictive
trees (here it is set at 100). Here, the gene HIST1H4A is at the root node (uppermost
node) of the decision tree, which is the most important feature for that decision tree. Gini
value indicate probability of misclassifying an instance and a lower value indicates a
better split. Value indicates the number of data sampled at particular node. From Fig. 3,
if the z-score of HIST1H4A is less or equal to 1.22, it will be classified as NSCLC.
Here, the gini value is 0 which indicate that this is a terminal node. If HIST1H4A is
more than 1.22, it will reach another node where now the expression of SCHIP1 gene
will be questioned. The branching of the decision tree will proceed until it has reached
the terminal node or the specified number of branches.
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Table 5. Top 20 mutated genes of SCLC

Gene name Gene symbol Log OR Description

Interleukin 1 Receptor
Associated Kinase 1 Binding
Protein 1

IRAK1BP1 1.91 No information or study that
link IRAK1BP1 with any type
of lung cancers were found

ATP synthase lipid-binding
protein

ATP5G1 1.81 No information or study that
link ATP5G1 with any type of
lung cancers were found

GDF5OS GDF5OS 1.81 This DNA methylation of this
gene is found to be associated
in asthmatic patient [91] but no
information or study that link
GDF5OS with any type of
lung cancers

Golgin subfamily A member
8A

GOLGA8A 1.81 This gene is found to be up
regulated in LUAD, a subtype
of NSCLC [92]

Glycoprotein Ib Platelet
Subunit Alpha

GP1BA 1.81 GP1BA is involve in blood
clotting process. No
information or study that link
GP1BA with any type of lung
cancers

Heterogeneous nuclear
ribonucleoprotein A/B

HNRNPAB 1.81 HNRNPAB is involved in
pre-mRNA processing and
mRNA metabolism. This gene
and its transcript (mRNA) is
found in both lung cancer
types, but a higher expression
is seen in SCLC compared to
NSCLC [57, 92]

lung carcinoma-associated 10 LCA10 1.81 No information or study that
link LCA10 with any type of
lung cancers are found

Membrane Bound
O-Acyltransferase Domain
Containing 4

MBOAT4 1.81 MBOAT4 is crucial in
growth-hormone release. The
protein is expressed in various
organ including lung [93]. No
information or study that link
MBOAT4 with any type of
lung cancers, but, this gene is
found to be over-expressed in
metastasized cancer [94]

(continued)
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Table 5. (continued)

Gene name Gene symbol Log OR Description

MicroRNA 146a MIR146A 1.81 MIR146A regulates the
expression of COX-2, which is
found to be overexpressed in
lung cancer. Deregulation of
MIR146A was linked to
overexpression of COX-2 in
lung cancer specifically
NSCLC [95]

Ras-related protein Rab-41 RAB41 1.81 RAB41is involved in
autophagy pathway. This gene
is found to expressed in LUAD
and associated with poor
outcome of LUAD [96]

RAS Like Family 10 Member
A

RASL10A 1.81 This gene is found to be
involved in the EGFR-TKI
resistant in NSCLC [97]

RP1-202O8.2 (Clone-based
(Vega) gene)

RP1-202O8.3 1.81 No information or study that
link RP1-202O8.3 with any
type of lung cancers are found

S100 Calcium Binding Protein
P

S100P 1.81 S100P is involved in cell cycle
progression as well as
differentiation. This gene is
overexpressed in LUAD,
specifically in stage T1 of
cancer but not in more
advanced stages such as T2
[98]

Sperm acrosome associated 6 SPACA6P 1.81 Downregulation of SPACA6 is
induced by XAV939, which
promote apoptosis in
NSCLC[99]

T Cell Receptor Alpha Variable
10

TRAV10/ Vα24 1.81 TRV10 is found to be
associated with invariant
Natural Killer T cells (iNKT)
receptor [100], which is
involved in anti-tumour
activity. iNKT have been
deemed to be targeted therapy
for NSCLC [101]

(continued)
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Table 5. (continued)

Gene name Gene symbol Log OR Description

T Cell Receptor Alpha Variable
8–2

TRAV8-2 1.81 No information or study that
link TRAV8-2 with any type of
lung cancers are found

AC092653.5 (Clone-based
(Vega) gene)

AC092653.5 1.75 No information or study that
link AC092653.5 with any
type of lung cancers are found

ATP synthase, H+ transporting,
mitochondrial F1 complex,
epsilon subunit pseudogene 2

ATP5EP2 1.75 This gene is a pseudogene
which is found to be one of the
top gene found in various
cancer line, but the gene
expression in lung cancer
types such as LUAD and SCC
is found to be moderately
expressed [102]

DKFZP667F0711 DKFZP667F0711 1.75 No information or study that
link DKFZP667F0711 with
any type of lung cancers are
found

Dickkopf-3 DKK3 1.75 This gene is believed to be a
tumour suppressor gene but
further study has shown that
this gene has other function
that may be responsible for
LUAD [103]. This gene is also
downregulated by DNA
methylation, leading to
Docetaxel-resistant NSCLC
and demethylation of the gene
can induce apoptosis in
NSCLC [104]

Table 6. Performance of classification model using mRNA expression

TP FP TN FN Sensitivity Specificity

15 0 85 0 1 1

3.5 Protein–Protein Interaction (PPI)

3.5.1 PPI of mRNA Gene Expression of Lung Cancer

Figure 4 shows the potential protein–protein interaction (PPI) between the 20 genes used
in the PCA plot previously using STRING. The genes are represented by nodes and if an
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Fig. 3. One of the decision trees of the random forest generated in the study. Here, the most
important feature is the gene HIST1H4A

Fig. 4. PPI interaction between the 20 genes identified through feature selection

interaction is predicted between two genes, an edge connects the nodes. Three genes are
connected to CCK, which are SSTR4, OXT and TMEM235. Both of SSTR4 and OXT
genes are associated with lung cancer, but no literature support could be found linking
TMEM235 to lung cancer currently. RCVRN was predicted to interact with BARHL2,
where one is associated with SCLC and another with NSCLC respectively. This may
indicate potential pathways that both types may share in lung cancer progression.

3.5.2 PPI of Top 20 Mutated Genes of NSCLC

Figure 5 shows the STRING plot of mutated genes of NSCLC. In this plot, KRAS
gene may be central in lung NSCLC progression. Three genes are linked to KRAS,
which are NFE2L2, MUC6 and ARHGAP35. All three are associated with NSCLC
such as NFE2L2, which was explained previously. The presence of MUC6 on unique
clinicopathological subset of Invasive Mucinous Adenocarcinoma (IMA), a subtype of
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Fig. 5. PPI interaction between the top 20 mutated genes of NSCLC

Fig. 6. PPI interaction between the top 20 mutated genes of NSCLC

LUAD have been recently demonstrated [75]. ARHGAP35 has been suggested to be
a potential oncogene for NSCL [85, 86]. Thus, these protein–protein interaction plot
might indicate that these genes can be a combined biomarker for NSCLC.

3.5.3 PPI of Top 20 Mutated Genes of SCLC

Figure 6 shows the STRING plot of mutated genes of SCLC. The only association is
between ATP5G1 and ATP5EP2, where ATPS5EP2 is associated with lung cancer type,
albeit with NSCLC.

4 Discussion

Based on the results, several key findingswere identified. Firstly, mRNAgene expression
of the 20 genes identified through feature selection could be used in differentiating the
two lung cancers. This is due to distinct pattern of mRNA profile of SCLC and NSCLC
observed in thePCAplot. The clear separation in thePCAbasedon themRNAexpression
was further corroborated by the predictive model where it showed a sensitivity and
specificity of 1. However, given the small number of samples, the result of the predictive
model should not be inflated. Further studies involving more data and external validation
are needed to corroborate this and to improve on the model before it can be an option
as a diagnostic tool. The distinction between both is supported by Shriwash et al. [105],
where gene expression between NSCLC and SCLC are well characterise. In the study,
there were 489 under expressed and 440 over expressed genes in NSCLC, and 525
under expressed 489 over expressed genes in SCLC, and some gene expression was
found to overlap between the two lung cancer types [105]. Similar results were observed
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byWatanabe et al. [106], where PCA analysis of 12 genes showed good characterisation
of four histopathological subtypes of lung cancer cells. Hence, this highlights that gene
expression may be used as a diagnostic tool as well as reveal potential biomarkers for
different subtypes of lung cancer.

Following up on the previous point, odds ratio analysis of the two subtypes showed
no overlap where no genes were listed in both Tables 4 and 5. This could point to
potential biomarkers for both subtypes. However, from surveying the literature it is
evident that the genes identified for NSCLC are much better substantiated compared to
SCLC. Additionally, several of the genes identified for SCLC were found to be linked
to NSCLC. This highlights the challenge of identifying the genetic landscape of SCLC
compared to NSCLC. This sentiment is shared in several studies such as Kim et al. [107]
where recurrently mutated genes in SCLC sample such as COL4A2 and COL22A1were
difficult to be associated with the pathogenesis of SCLC, probably due to the molecular
complexity of the SCLC pathophysiology. The complexity of SCLC may be further
complicated by the presence of passenger genes [108]. Passenger genes are mutated
genes that does not contribute to disease progression, which makes identifying specific
gene biomarkers for SCLC difficult, thus, leading to a poor diagnosis and prognosis of
SCLC [107]. In the case ofNSCLC, several geneswarrant further validation, in particular
NFE2L2, MUC6 and ARHGAP35. All three were connected to KRAS in the PPI and
have supporting evidence in their involvement in NSCLC. Individually, each gene could
be a potential biomarker for NSCLC but when considered together, these genes may
unveil a new pathway in NSCLC that may provide further understanding of the disease.

Lastly, epigenetic may play a role in lung cancer progression. This study does not
incorporate epigenome profile, however,mutated genes found in lung cancer, specifically
in NSCLC have shown association with epigenetic mechanism. The main epigenetic
mechanism found to be most associated with the genes identified in this study is DNA
methylation. DNA methylation involves the binding of methyl molecule in a certain
region of the nitrogenous bases, mainly cytosine in mammal organism [109]. This epi-
genetic mechanism can act as ‘on–off’ switch that regulates gene expression and hence
may contribute to lung cancer progression. One of the genes connected to epigenetic
mechanism is BARHL2, which is associated with NSCLC, specifically SCC. This gene
has a 12 CpG methylation and this epigenetic modification are not seen in any normal
lung cancer tissue or cell [40]. Another gene with epigenetic mechanism in this study
is DKK3, a tumour suppressor gene, where its hypermethylation of DKK3 is found in
NSCLC[110]. DNA methylation DKK3 have been shown to lead to its downregulation,
rendering it incapable of inducing apoptosis in Docetaxel-resistant NSCLC cell [111].
Another gene worth mentioning that participate in epigenetic modification is DLGAP2,
which is associated with KEAP1 mutation, a candidate for tumour suppressor gene in
NSCLC. DLGAP2 experience hypomethylation when KEAP1 is mutated in NSCLC,
hence impairing cancer suppression function of mutated KEAP1 gene in NSCLC [70].
Most of the epigenetic modification of genes in this study seem to be only associated
with NSCLC.
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5 Conclusion

This study looked at the genetic profile ofNSCLCandSCLC lung cancers using unsuper-
vised and supervised machine learning methods. Several key findings were determined,
which were: (i) mRNA expression can be used to differentiate between the two subtypes,
(ii) genetic biomarkers for SCLC are more challenging to be identified compared to
NSCLC, (iii) the KRAS-NFE2L2-MUC6-ARHGAP35 axis should be further explored
as both biomarkers as well as potential pathway in NSCLC progression, and (iv) epige-
neticmechanismmay play a role in lung cancer progression in particular NSCLC. Future
studies warrant the in vitro and in vivo validation of the genes identified here, as well
as using more data in the predictive model. One limitation of this study is that a general
mutation analysis using odds ratio was performed. A detailed analysis incorporating the
type of mutation as well as its location would provide more information. Nevertheless,
as this is a preliminary study, the results shown were corroborated by scientific literature
and could serve as the foundation for further studies.
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