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Abstract. In the real world, network systems are ubiquitous such as supply chain
inventory systems. In addition, resource allocation is an important research direc-
tion in the inventory control. Also, it inspired us to study the inventory resource
optimization problem from the view of the network system. Thus, this paper inves-
tigates a class of resource allocation problem by applying terminal iterative learn-
ing control (ILC) strategy. According to the terminal ILC approach, the lowest
cost can be obtained for a certain amount of inventory, i.e., the resource alloca-
tion problem is effectively solved. The main results are proposed with the help of
consensus theory and iterative learning method. Different with the existing dis-
tributed optimization algorithms, our scheme provides another effective method
of resolution. Finally, an example is given to verify the effectiveness of the main
results.

Keywords: Terminal consensus · Distributed learning strategy · Distributed
convex optimization · Multiagent systems · Inventory resource allocation

1 Introduction

Over the past decades, many works have been devoted to studying the iterative learning
theory and its applications ([1, 14, 18] and references therein). Different with most
conventional control methods, iterative learning control (ILC) approach provides an
effectiveway to achieve the target trackingwithout a strictmathematicalmodel. And ILC
algorithmhas strong robustness and adaptability at the same time.As a result, this control
technology is widely applied in the filed of engineering, for example, robot manipulator
[2], network systems [8, 9, 17], the robust tracking [10, 15] and so on. Undoubtedly, ILC
approach provide an effective control scheme to solve the tracking problems. And until
now, the ILC researches still attract the interest of engineering and science communities.

It is well known that distributed coordination problems have been widely studied
because of the broad application scenarios. These problems also attract attention on the
consensus [12], cooperative tracking [3], etc. Especially, distributed optimization is a
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hot topic in the applications of distributed cooperation [11]. And various distributed
algorithms such as consensus approaches [16, 22], zero-gradient-sum algorithms [7]
are designed to solve the optimization problems. Also, these distributed algorithms are
applied in economic dispatch [19] and resource allocation [5] and so on. The above
methods provide feasible algorithms for solving distributed optimization problems, but
they are a little complicated. Therefore, it inspires us to study a class of distributed
convex optimization problems with other effective strategies.

In the field of management and information, the modelling and analysis of sup-
ply chain management, particularly the research on optimization and control in supply
chain inventory, has received a lot of attention. The research methods include operations
research, optimization and control theory, information technology, etc. Andmany schol-
ars conduct research with the help of control theory to solve dynamic problems in the
supply chain system. For example, control strategy based on inventory fluctuation [4],
fuzzy control [21] and H∞ control scheme [6], etc. In addition, inventory optimization
is another hot topic in supply chain management [13]. Then it is worthy to study the
optimization issue in supply chain system. Modern inventory system has a typical dis-
tributed network structure. Thus, it is practical to study inventory optimization issue from
the perspective of the network. Through coordination among multiagent, the distributed
technique can simplify the calculation and reduce the difficulty of solving optimization
problems. Therefore, it is meaningful to study the inventory optimization problem by
means of the distributed optimization strategy.

According to the above discussion, a convex optimization problem is investigated
by using the distributed terminal ILC strategy. And the contributions of this paper are as
follows: 1) From the perspective of network systems, a terminal ILC strategy is used to
analyze and solve the convex optimization problems. Moreover, different with existing
algorithms, the strategy in this paper provides another effective method of resolution.
2) The optimization target is obtained without the global information of the multiagent
network. It is a fully-distributed scheme. Further, the main results show that our learning
strategy is effective to tackle the resource allocation problem.

The rest part of this paper is organized as follows: Necessary notations and the
problem formulation are proposed in Sect. 2. And the terminal consensus optimization
problem is considered, then themain results are obtained in Sect. 3. In Sect. 4, an example
is given to verify the theoretical results. At last, the conclusion of this paper is shown in
Sect. 5.

2 Preliminaries

2.1 Notations

A collection of nodes in a network is denoted as Sn = {1, 2, · · · , n}. I represents the
identity matrix with appropriate dimension. For a vector x = [x1, x2, · · · xn]T ∈ Rn,
||x||∞ = max1≤i≤n|xi| is a vector norm. And ||A|∞ = max1≤i≤n

∑n
j=1|aij| is a matrix

norm of A ∈ Rn×n. [0,T ] denotes the time interval, and T is the terminal time.
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2.2 Graph Theory

The network model is described as G = (V ,E,A), where V = {vi : i ∈ Sn} denotes the
set of nodes. E ⊆ V ×V denotes the set of edges. A directed edge from vi to vj is denoted
by an ordered pair (i, j) ∈ E, which means vj can receive the information from vi. The
neighborhood of vi is denoted as Ni = {vj ∈ V |(j, i) ∈ E}. The weighted adjacency
matrix of network graph G is represented as = (aij)n×n. Specially, aii = 0, aij > 0 if
(j, i) ∈ E, aij = 0 otherwise. The Laplace matrix of G is defined as L = (lij)n×n, where
lij = −aij if i �= j, and lii = ∑

i �=jaij. A spanning tree is a directed graph, which has
exactly one root vertex. Other vertexes are the child nodes of the root vertex. And a
graph has a spanning tree if V and a subset of E can form a tree. Furthermore, graph G
is called balanced if

∑n
j=1,i �=jaij = ∑n

j=1,i �=jaji holds for all i ∈ Sn.

2.3 Problem Formulation

Similar as [22], a class of convex optimization problem in this paper is considered as
follows:

minx1,...,xn
∑n

i=1
fi(xi(t)) (1)

subject to
∑n

i=1
xi(t) = XD, (2)

where fi(xi(t)) = aix2i (t) + bixi(t) + ci is the subobjective function. xi(t) ∈ R, and ai,
bi, ci are the coefficients of the quadratic function fi(xi(t)). And XD is a constant and
provides a constrain to the sum of xi(t). In inventory management, XD also represents
the total resource or total inventory quantity, which is needed to be allocated and stored.
The convex quadratic optimization problem (1) with equality constraint (2) appears in
the economic dispatch, the resources allocation, etc. Thus, the research on this problem
has theoretical and practical significance.

Remark 1. The problem (1) with constraints (2) can be tackled by traditional optimiza-
tion algorithms. However, the centralized optimization method needs an information
center to obtain the information of all nodes and integrate and handle them. And the
centralized schemes are a little inefficient and uneconomical. Hence, the distributed
coordination strategy is used to allocate the resources of each node, which helps to
quickly minimize the target function. Based on the Lagrange multiplier method, one
knows that the solution of (1) with (2) is equal to the solution of following issue.

∂f1(x1(t))

∂x1(t)
= · · · = ∂fn(xn(t))

∂xn(t)
= λ∗ (3)

where λ∗ is the optimal Lagrange multiplier.
Further, (3) is equivalent to

2a1x1(t) + b1 = · · · = 2anxn(t) + bn = λ∗ (4)

According to (2) and (4), it is not difficult to obtainλ∗ = (XD+∑n
i=1

bi
2ai

)/(
∑n

i=1
1
2ai

)

and x∗ = λ∗−bi
2ai

.
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Let zi(t) = 2aixi(t) + bi, then (4) is rewritten as

z1(t) = · · · = zn(t) = λ∗ (5)

Therefore, the problem (1) with constraints (2) is transformed as the consensus
problem (5). And the original optimization problem is solved as z1(t) → λ∗. In the next
section, the terminal ILC algorithm is proposed to solve the problem (5).

3 Theoretical Analysis

In this section, the main purpose is applying terminal iterative learning algorithm to
obtain the distributed optimization target.

3.1 Consensus Terminal ILC Strategy

Inspired by (Meng, Jia and Du 2014, Zhang, Luo and Xiong 2022), the dynamic of each
agent in multiagent systems is as follows:

d

dt
zk,i(t) = uk,i,∀t ∈ [0,T ], i ∈ Sn (6)

where k denotes the k th iteration. uk,i denotes the learning control input, and it is a
constant at the k th iteration. Then, the purpose is applying terminal ILC strategy to
obtain the consensus state zc, i.e.

lim
k→∞

zk,i(T ) = zc, i ∈ Sn. (7)

In addition, the consensus state zc is generally not equal to the optimal Lagrange
multiplier λ∗. Thus, making zc equals to λ∗ is another target.

The terminal consensus ILC strategy is as follows:

uk+1,i = uk,i + ri
∑

j∈Ni
aij[xk,j(T ) − xk,i(T )], (8)

where aij is the (j, i) entre in the adjacency matrix A. ri > 0 denotes the learning gain
parameter. And the initial input u0,i is arbitrarily.

Next, the following assumption is necessary in the theoretical analysis.

Assumption 1. There is no offset for the initial state of agent, i.e., xk,i(0) = xk+1,i(0) ≡
xi(0). Moreover, xi(0) always satisfies the constraint (2).

Since zi(0) = 2aixi(0) + bi, it is obviously that there is no offset for zi(0).

Remark 2. The purpose of this paper is different with previous research work [20]. We
try to solve the optimization problem (1) with constraint (2) on the basis of achieving
terminal consensus.
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3.2 Related Lemmas

The following two lemmas are necessary, which play an important role in the analysis
of the main results. More details can be seen in (Meng, Jia and Du 2014). And these
two results imply that the consensus states can be achieved through the information
interaction between adjacent agents.

Lemma 1. Consider (6) and (8) with a directed graph G, and let the positive learning
gain satisfy the inequality Tri

∑
j∈Ni

aij < 1, i ∈ Sn. Then, the consensus objective (7)
can be achieved as k → ∞ if and only if G has a spanning tree.

Lemma 2. Consider (6) and (8) with a balanced directed graph G, the positive learning
gain satisfies the inequality Tri

∑
j∈Ni

aij < 1, i ∈ Sn. Meanwhile, the initial input is
zero. If G has a spanning tree, the consensus objective (7) can be achieved as k → ∞
with the consensus state zc, which is given by zc = ∑n

i=1r
−1
i zi(0)/

∑n
i=1r

−1
i .

3.3 Consensus Analysis

Theorem 1. With assumption 1, consider (6) and (8) with the directed and balanced
graph G. let the learning gain ri = 2aiτ , τ is a constant, and the initial input u0,i = 0.
Then, the agent’s state at each iteration satisfies the constraint (2).

Proof. According to (6), one has zk,i(t) = zk,i(0)+tuk,i. Then, one has 2aixk,i(t)+bi =
2aixi(0) + bi + tuk,i, i.e., xk,i(t) = xi(0) + (t/2ai)uk,i. Then, one obtains

∑n

i=1
xk,i(t) =

∑n

i=1
xi(0) + t

∑n

i=1

1

2ai
uk,i. (9)

Combing with (8) and ri = 2aiτ , one has

∑n

i=1

1

2ai
uk+1,i =

∑n

i=1

1

2ai
uk,i

+
∑n

i=1
τ
∑

j∈Ni
aij

[
xk,j(T ) − xk,i(T )

]
.

The above equality is rewritten as the compact form:

[
1
2a1

· · · 1
2an

]
⎡

⎢
⎣

uk+1,1
...

uk+1,n

⎤

⎥
⎦

=
[

1
2a1

· · · 1
2an

]
⎡

⎢
⎣

uk,1
...

uk,n

⎤

⎥
⎦ − [

τ · · · τ
]L

⎡

⎢
⎣

xk,1(T )
...

xk,n(T )

⎤

⎥
⎦.
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Since graph G is balanced, it is not hard to obtain [τ · · · τ ]L=[0 · · · 0]. It means

[
1
2a1

· · · 1
2an

]
⎡

⎢
⎣

uk,1
...

uk,n

⎤

⎥
⎦ = · · · =

[
1
2a1

· · · 1
2an

]
⎡

⎢
⎣

u0,1
...

u0,n

⎤

⎥
⎦.

Note that the initial input u0,i = 0, one obtains
[

1
2a1

, · · · 1
2an

][
u0,1, · · · u0,n

]T = 0, i.e.,
∑n

i=1
1
2ai

uk,i = 0. Therefore, according to (9), it is easy to get

∑n

i=1
xk,i(t) =

∑n

i=1
xi(0) = XD (10)

The equality (10) indicates that the constraint (2) holds. Theorem 1 shows that ILC
strategy (8) does not change constraints. �

Theorem 2. With assumption 1, consider (6) and (8) with the directed and bal-
anced graph G. let the initial input u0,i = 0. Then, one has the following equality∑n

i=1r
−1
i zk,i(t)/

∑n
i=1r

−1
i zk,i(0), ∀t ∈ [0,T ].

Proof. According to (6), one has zk,i(t) = zi(0) + tuk,i. Thus, one has

∑n

i=1

1

ri
zk,i(t) =

∑n

i=1

1

ri
zi(0) + t

∑n

i=1

1

ri
uk,i. (11)

Similar as the derivation of Theorem1, it is not hard to obtain
∑n

i=1
1
ri
uk,i = 0. Therefore,

from (11), one immediately gets the result. �

Remark 3. The result of Lemma 2 can be directly obtained by combining Theorems
1 and 2. And Lemma 2 demonstrates that, when the graph G is balanced, selecting
appropriate learning gain parameters can achieve the consensus state zc under equality
constraints. It implies us to choose appropriate parameters and initial values to achieve
the optimal state λ∗.

Theorem 3. With assumption 1, consider (6) and (8) with the directed and balanced
graph G. let the learning parameter ri = 2aiτ , τ is a constant, and ri satisfies
Tri

∑
j∈Ni

aij < 1. The initial input u0,i = 0. Then, the agent’s state at each iteration
satisfies the constraint (2). If G has a spanning tree, the consensus objective (7) can be
achieved as k → ∞ with the consensus state zc = λ∗. And the original problem (1)
with constraint (2) is solved.

Proof. Since ri = 2aiτ and u0,i = 0, according to Theorem 1, one knows the agent’s
state at each iteration satisfies the constraint (2). Linking with Lemma 2, one can see the
consensus state zc can be achieved. Thus, we only show zc is equal to λ∗.

zc =
∑n

i=1

1

ri
zi(0)/

∑n

i=1

1

ri

=
∑n

i=1

1

2ai
(2aixi(0) + bi)/

∑n

i=1

1

2ai
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Fig. 1. Distributed network communication graph.

=
(∑n

i=1
xi(0) +

∑n

i=1

bi
2ai

)

/
∑n

i=1

1

2ai

=
(

XD +
∑n

i=1

bi
2ai

)

/
∑n

i=1

1

2ai
. (12)

Combining with previous analysis, one can see zc = λ∗. Further, one can immediately
get the solution of the original problem from x∗ = λ∗−bi

2ai
. �

Remark 4. Theorem 3 shows that the quadratic convex optimization problem (1) with
(2) can be solved by applying ILC algorithm (8). Thus, ILC strategy (8) is effectively.
Compared with the event-triggered algorithm [22] and consensus-based ILC approach
[16], the global information of the network is not required in this paper. It reduces the
conservatism of the theorem conditions to some extent.

4 Numerical Results

In this section, a numerical simulation is presented to demonstrate the effectiveness of
the consensus terminal ILC algorithm. And the similar example appears in [22].

The network is composed of six nodes, it is shown in Fig. 1. It can be viewed as
the distributed inventory system. Nodes 1–6 represent inventory warehouses in supply
chains. And the direction of information communication is represented by the red lines.
The values above represent the corresponding weights.

From Fig. 1, the communication network is a balanced graph with a spanning tree,
as can be seen from the graph, which meets the conditions of the theorem in this paper.
Further, the parameters of objective function fi(xi(t)) is shown in Table 1.

From Table 1 and by calculation, one knows XD = 4.1 and λ∗ = 0.482.Then the
solution of the original optimization problem (1) can be obtained, it is shown in Table 2.

Let t ∈ [0,T ],T = 1, and xk,i(0) = xi(0) in Table 1. Set τ = 0.1 and u0,i = 0, then
ri = 2aiτ satisfies the inequality Tri

∑
j∈Ni

aij < 1. And the conditions of Theorems
1–3 hold. Hence, the equality constraint (2) holds, consensus state can be achieved, and
zc = λ∗. The simulation results are shown in the following.
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Table 1. Parameters of objective function of each node.

fi ai bi ci xi(0)

Node 1 1.2 −1.2 5.1 0.4

Node 2 2 −3.01 3.1 0.2

Node 3 3 −2.53 7.8 0.5

Node 4 2.4 −4.02 4.2 1.2

Node 5 2.5 −2.9 5.7 0.8

Node 6 4 −2.72 4.9 1

Table 2. The optimal state of Optimization problem (1)

Nodes xi ∗
Node 1 0.7096

Node 2 0.8732

Node 3 0.5022

Node 4 0.9066

Node 5 0.6766

Node 6 0.4004

Fig. 2. The value of zk,i(t) at 50th iteration.

According to Figs. 2 and 3, one can see the consensus state zc is basically achieved
at the terminal time. The result also implies that our algorithm has good convergence
after the 20th iteration. Figure 4 shows the terminal value of xk,i(T ) of each agent at
1–100th iteration. Figure 5 shows the sum of xk,i(t) at each time of 1–100th iteration.
It means the constraint (2) always holds. Figures 4 and 5 also illustrate the original
quadratic optimization problem with equality constraint can be solved quickly by means
of the terminal ILC scheme. Furthermore, appropriate learning parameters can improve
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Fig. 3. The terminal value of zk,i(T ) of each agent at 1–100th iteration.

Fig. 4. The terminal value of xk,i(T ) of each agent at 1–100th iteration.

Fig. 5. The sum of xk,i(t) at each time of 1–100th iteration.

learning efficiency and convergence rate. Thus, appropriate learning control parameters
need to be selected to improve the applicability of the algorithm in practical application.
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5 Conclusions

This paper has studied a class of distributed convex optimization problem. Based on the
Lagrange multiplier method, the original optimization problem has been transformed
as the consensus problem. By using the terminal ILC strategy, the terminal consensus
problem has been studied through the information interaction between agents. Further,
the optimization target has been obtained by choosing the appropriate parameters. And
the terminal iterative learning strategy has been applied to solve the resource allocation
problem. The effectiveness of the proposed scheme has been verified by a numeri-
cal example. The main results demonstrate our strategy has provided another effective
method to solve the optimization problems. And it might provide a theoretical reference
for optimizing inventory in supply chains.
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