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Abstract. Relation extraction is one of the essential tasks of information extrac-
tion, and it is also a fundamental part of knowledge graph construction. Many
works have been proposed for supervised relation extraction, which commonly
requires a massive amount of human-annotated data with both time and cost. To
reduce the labeling time and cost, active learning has been proposed with the
assumption of a single perfect annotator that always furnishes the correct label.
However, more generally, the annotator will provide incorrect labels according to
their labeling capabilities, and different labeling capabilities correspond to distinct
costs. To unleash the power of annotators with diverse expertise level and unla-
beled data for better model performance with the lowest cost, we develop PNRE,
a novel proactive learning based framework for neural relation extraction that
actively select the most suitable sample-annotator pairs to construct high-quality
relation extraction corpus. Specifically, PNRE utilizes (1) Expert Performance
Estimationmodule to precompute each annotator’s performance considering class
prediction probability; (2) Sample Selectionmodule to select themost informative
and representative sample based on a hybrid query strategy; (3) Sample Alloca-
tion module to allocate appropriate sample to each annotator under the condition
of annotation utility maximization. The framework is evaluated on three corpora
and is shown to achieve promising results with a significant reduction in labeling
costs.
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1 Introduction

RelationExtraction (RE) is a fundamental yet challenging subtask of InformationExtrac-
tion (IE), which involves extracting structured information, that can be interpreted easily
by a machine or a program, from plain unstructured text [3]. It plays an important role
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in many natural language processing (NLP) applications like knowledge graph comple-
tion, question answering (QA) and search engine [16] Given a corpus, RE is to recognize
the semantic relationships between all entity mention pairs. However, many state-of-art
research on relation extraction focuses on improving performance on benchmark corpus,
which are high-quality annotated by human. As is known to all, manually annotating a
corpus for RE task is both time-consuming and costly, especially domain-relevant cor-
pus. To address this issue, approaches such as distant supervision and active learning
have been proposed.

Distant supervision is a method for automatically constructing datasets for relation
extraction tasks. However, the generated datasets have wrong labels and long-tail prob-
lems due to the strong assumptions. The assumptions proposed in [8] results in that
although a pair of entities appear in the same sentence, the corresponding relationship
does not appear in the knowledge graph. If wrong instances have a large proportion,
the model is more likely to fit noisy data. In addition, distant supervision mainly uses
the knowledge graph of the general domain, which leads to the fact that the number of
samples of general relations is much larger than that of non-general relations, resulting
in extremely unbalanced training samples. Therefore, manual annotation by experts is
critical, especially for domain-specific long-tail relationships.

Active learning, a semi-supervised machine learning algorithm, aims to achieve bet-
ter accuracy with fewer labeled data [1]. At each iterative annotation, active learning
select the most informative and representative samples to annotators, which can produce
a high-quality annotated corpus in less time and at lower cost than traditional label-
ing methods [7]. Several studies have shown that active learning can select the most
beneficial instances to be labeled for further improving the model performance in a
variety applications, including information extraction, network/graph analysis [9], etc.
Nevertheless, active learning relies on two strong assumptions, resulting in real-world
applications: (1) it assumes the existence of a single perfect annotator, however more
generally the annotator from multiple sources may have different reliability varies by
experience level; (2) it assumes that the labeling of different samples has a uniform cost,
ignoring the difficulty of the samples and the distinction in annotation ability.

To relax the above-mentioned, proactive learning has been proposed to jointly select
the optimal annotator and instance by casting the problem as a utility optimization
problem subject to a budget constraint [14]. Proactive learning assumes that (1) not
all annotators are perfect, there is at least one “perfect” annotator and one “fallible”
annotator; (2) the higher the reliability of the annotator, the higher the annotation cost.
Same as the annotation process of the traditional active learning, at each annotation
iteration, proactive learningquery label fromannotators for the selected unlabeleddataset
and append new labeled to the labeled dataset. However, the difference with active
learning is that, proactive learning select the optimal sample-annotator pair to reduce
annotation cost.

To unleash the power of annotators with diverse expertise level and unlabeled data
for better model performance with the lowest cost, we develop PNRE, a novel proactive
learning based framework for neural relation extraction that actively select the most
suitable sample-annotator pairs to construct high-quality relation extraction corpus. To
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the best of our knowledge, Our work is the first study to apply proactive learning to
neural relation extraction considering multiple noisy annotators.

For the purpose of evaluation, we train BERT-based relation extractionmodel [22] on
training data with different ratios to simulate different performance annotators. To verify
the effectiveness of the method, we conduct experiments on three common corpora, two
general domain, and one in AI domain. The results demonstrate that using proactive
learning can improve the quality of data annotationwhile reducing the cost of annotation,
thereby improving model performance.

To summarize, we make the following main contributions:

• We propose PNRE framework on relation extraction task to construct high quality
labeled corpus with the lowest cost considering multiple noisy annotators.

• We present a hybrid query strategy to select a batch of samples with more valu-
able information and use the optimization objective based on the maximization of
annotation utility to allocate the selected samples to the right annotators.

• By conducting extensive experiments on three corpus, it is proved that our method is
applicable to multiple fields and has certain practical value.

The rest of this paper is organized as follows. In Sect. 2, we review the related work
on neural relation extraction and proactive learning. In Sect. 3, the propose method is
introduced. Section 4 presents the experiments, followed by the conclusion and future
work in Sect. 5.

2 Related Work

Active Learning for Relation Extraction: Active learning approaches proposed in
recent years are mainly query-based methods. Active learning aims to spend less anno-
tation costs while maintaining an acceptable quality of annotated data or improve model
performance, that is, selecting the instance with the most informative and representa-
tive by designing query strategies (sampling rules) [10], including (1) selecting samples
with the most uncertainty [4 5, 20]. (2) selecting an optimal subset based on diver-
sity [12], and their combinations [17]. Zhang and Huang [6] present an unified active
learning framework for biomedical relation extraction, addressing some practical issues
during active learning process. Mallart and Nouy [2] proposed a lightweight active-
learning based relation extraction pipeline for newspaper scenario, where dedicated to
local information, various relation and highly specific type. As a generalization of active
learning, proactive learning also applied in several NLP task, such as NER (name entity
recognition) [7].

Cost-Effectiveness Active Learning: Cost-effectiveness active learning is a type of
active learning method that considers the annotation cost, e.g., budget, time or effort
required to complete the annotation process [19]. Since proactive learning also models
the reliability or expertise of each annotator in addition to the annotation cost, it can
be considered as another case of cost-effectiveness active learning [21]. There are a
few studies trying to select annotators with matching expertise on the specific instance
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to be labeled [11, 13]. A common shortcoming of these algorithms is that they do not
consider the difference on the costs of multiple annotators, and thus may get an accurate
yet expensive solution. Proactive learning considers a simple case where two annotators
exist: one perfect which always returns the ground truth, and one fallible which make
mistakes with a probability. Although they assume different costs for the two annota-
tors, the oversimple setting limits its application [14]. Huang and Chen [19] expands
two experts to multiple experts, under the same utility function. Chakraborty [18] pose
the optimal sample and annotator selection as a constrained optimization problem and
derive a linear programming relaxation to select a batch of (sample-annotator) pairs.
The datasets evaluated by the above algorithms are all one sample corresponding to one
label instance, however, for relation extraction tasks, a sentence may contain multiple
relation instances.

3 Methodology

In this section, we present a proactive learning framework for relation extraction when
multiple noisy annotators are present. Before introducing the framework, we need to
formulate two problems, one is relation extraction, and the other is proactive learning.
Next, we describe the methods corresponding to the three modules–Expert Performance
Estimation, Sample Selection, Sample Allocation in detail.

3.1 Problem Formulation

Let S = {s1, s2, ..., sn} represent a sentence where n is the length of sentence and si
represent the i-th token. Let E = {e1, e2, ..., em} be the set of entity mentions with entity
types in the sentence, and R = {r11, r12, ..., rij} be the relation set between entity ei
and ej. Given an input sentence S and the entities set contained in the sentence, the RE
model is to predict a relation type yr for each entity pair (ei, ej) or no relation between
them. Therefore, it can be regarded as a classification problem. In this paper, we apply
the RE model proposed in [22].

Problem Definition 1: (Relation Extraction) Given a sentence S ∈ U , the relation
extraction model problem is to find the relation set R

∧

from S.
Let L = {(x, y)}L with nl examples be the corpus of labeled sentences, where y

may contains multiple relation labels, and U = {(x, y)}U with nu unlabeled instances,
typically nl � nu. There is a set of candidate annotators A = {a1, a2, . . . , am} with
all m annotators offering different annotation capabilities, corresponding to different
annotation costs.
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Problem Definition 2: (ProactiveLearning forRelationExtraction)Given an unlabeled
corpus U , it iteratively selects a sample-annotator pair for labeling in order to maximize
the performance of relation extraction until the budget is reached or the performance
requirements of the model are met.

3.2 Expert Performance Estimation

Inspired by the equation proposed in [15], different experts have certain biases for differ-
ent class of annotation capabilities. Therefore, we can estimated the annotation ability
of each expert by two probabilities: the class probability, p(label|k, c) and the sentence
probability p(ans|x, k).

3.3 Sample Selection

The difference from the previous related work is that each sample corresponds to only
one label instance, such as UCI repository. For example, each instance in spambase
labeled spam(1) or not(0), while a sentence may contain multiple relations in relation
extraction task. Therefore, it is necessary to propose a better query strategy to select
more informative samples.

We need a metric to quantify the utility score to determine the most informative set
of samples to query. Our study incorporates informativeness and redundancy criteria
to calculate utility scores. The sample selection module in which these two conditions
drive samples ensures that the selected samples are individually informativewithminimal
redundancy (duplication) between them.

3.4 Sample Allocation

After calculating each expert annotation ability and the ranking score of the unlabeled
sample, we can assign the samples to appropriate experts, getting the optimal sample-
annotator pairs. The pseudo-code of the proposed algorithm, termed PNRE is outlined
in Algorithm 1.

At each iteration of PNRE, the algorithm selects the most useful sample-annotator
pair (x∗, k∗), and queries the label of x∗ from k∗. Then x∗ is removed from the unlabeled
set U , and is appended into L with its queried label y∗ from annotator k∗. After that, the
RE model is retrained on the new labeled dataset L. Finally, we evaluate the retrained
RE model on the test set. This process is repeated until it meets a given condition, e.g.,
the given cost budget is reached or the expected model performance is reached.
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4 Experiments

4.1 Dataset

We evaluate our method on three popular relation extraction datasets: Conll04, ACE05,
and SciERC. The Conll04 and ACE05 are collected from general domains, such as
newswire and online forums, e.g. Work for, OrgBased in, Part-Whole, PER-SOC. The
SciERC dataset is collected from 500 AI paper abstracts and defines scientific terms and
relations, especially for scientific knowledge graph construction.

For ACE05 we only considered the top-level classes, ignoring that top-level relation
classes. All three datasets are divided into the train, test, and validation datasets. In
the experimental set, we divided the train set into two parts, 1% as the initial seed
labeled data and the rest as the data to be labeled. Table 1 shows statistic information
of the three corpora. The first column represents the dataset name, the second column
represents the relation types contained in the dataset, the third column represents the
number of sentences for each relation in the initial seed labeled data, and the fourth
column represents the number of sentences for each relation in the unlabeled data.
Sentences that do not contain relations are filtered. We save the optimal model on the
validation set to evaluate the experimental performance of the current iteration.

4.2 Expert Simulation

We simulated annotators with different annotation capabilities by using the RE model
proposed in [8] on different size of train set. The RE model processes each pair of spans
independently and inserts typed markers at the input layer to emphasize the subject and
object and their types. The final representation of span-pair is the concatenation of the
output representations of span start typed markers by pre-trained encoder, and feed into
a feed forward network to predict the probability distribution of relation type.

In our settings, we trained the RE model on 100%, 80%, 60%, and 40% training set
to represent experts with diminishing annotation ability and evaluate the performance
on the test set. The results of F1 score for each relation type on different percentage of
train set show on Tables 2, 3 and 4.

We use the macro F1 score evaluate on test set to represent the overall annotation
ability for each expert. As illustrated in Table 5, the more training data, the higher the
expert’s performance. For expert cost, similar to previous research [19], each expert was
assigned an integer between 1 and 4 in increasing order of macro F1 score.

4.3 Comparison with Baseline

We compare the proposed algorithm PNRE against the following baseline methods:

• RR: randomly select a batch of sample and query each label from one randomly
selected annotators.

• AR: select a batch of sample using Sample Selection module and query each label
from one randomly selected annotators.
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Table 1. Statistic information of the three corpora.

Corpus Relation labeled Unlabeled

Conll04 Work-For 5 251

Kill 1 178

OrgBased-In 2 269

Live-In 2 328

Located-in 0 247

ACE05 PHYS 9 1410

PART-WHOLE 7 971

PER-SOC 11 812

GEN-AFF 3 703

ORG-AFF 26 1944

ART 6 632

SciERC Used-of 12 1675

Feature-of 2 171

Hyponym-of 5 293

Evaluate-for 1 311

Part-of 5 174

Compare 1 165

Conjunction 5 395

Table 2. F1 score for each relation on Conll04.

Relation 100% 80% 60% 40%

Work-For 0.848 0.795 0.775 0.771

Kill 0.886 0.877 0.89 0.888

OrgBased-In 0.752 0.74 0.691 0.637

Live-In 0.775 0.75 0.755 0.687

Located-In 0.815 0.765 0.769 0.697

• RL: randomly select a batch of sample and query each label by the lowest cost
annotators.

• AL: select a batch of sample using Sample Selection module and query each label
from one randomly selected annotators.

• RG: randomly select a batch of sample and query each label using Sample Allocation
module.
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Table 3. F1 score for each relation on ACE05.

Relation 100% 80% 60% 40%

PHYS 0.83 0.781 0.764 0.711

PART-WHOLE 0.832 0.818 0.790 0.750

PER-SOC 0.861 0.844 0.817 0.779

GEN-AFF 0.70 0.678 0.621 0.604

ORG-AFF 0.905 0.903 0.882 0.863

ART 0.858 0.84 0.815 0.718

Table 4. F1 score for each relation on SciERC.

Relation 100% 80% 60% 40%

Used-for 0.777 0.776 0.747 0.720

Feature-of 0.5299 0.472 0.4314 0.326

Hyponym-of 0.8571 0.852 0.8209 0.808

Evaluate-for 0.6984 0.705 0.6809 0.604

Part-of 0.4848 0.455 0.419 0.278

Compare 0.6479 0.630 0.5758 0.64

Conjunction 0.83 0.808 0.83 0.801

Table 5. The overall label ability of each expert on the three corpora.

Corpus 100% 80% 60% 40%

Conll04 0.815 0.785 0.777 0.736

ACE05 0.831 0.811 0.781 0.738

SciERC 0.689 0.671 0.643 0.598

Figure 1 plots the F1 score curves with the increasing cost for all compared baselines.
In each graph, the x-axis denotes the current cost of each iteration and the y-axis denotes
the F1 score on the test set.

In general, Using Sample Selectionmodule can usually converge to a higher F1 score
faster. Take the corpus Conll04 and ACE05 as examples to compare the AL and RL.
In the early iteration, the Sample Selection module can often select more informative
samples (plotted with yellow dot line), resulting in a larger model performance improve-
ment, compared with randomly selected samples (plotted with gray line). However, for
corpus SciERC, adding the Sample Selection module does not bring much performance
improvement. The main reason is that the corpus itself is complex (lower macro F1
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Conll04 

SciERC 

ACE05 

Fig. 1. The best PNRE results on the three corpora in comparison to the baselines.

score for 100% train set), and the AL and RL select the experts with the lowest cost for
labeling, the labels contain much noise, and the model is challenging to learn from the
noise samples effectively. The above conclusions verify the effectiveness of the Sample
Selection module.

Comparing PNRE (plotted with black solid line) with other baseline methods, we
can see that our proposed framework outperforms the baseline by different degrees.
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Fig. 2. Number of samples allocated to each annotator

Table 6. Percentage of saving cost compared with baseline.

Method Corpus

Conll04
Threshold:0.75

SciERC
Threshold:0.71

ACE05
Threshold:0.79

RR 2066 (61.2%) 1719 (26.8%) 4028 (46.2%)

AR 2025 (60%) 1377 (8.6%) 3410 (36.5%)

RL - 1602 (21.4%) 4059 (46.6%)

AL - 1552 (18.9%) 3939 (45%)

RG 1295 (38.2%) 1567 (19.7%) 3302 (34.4%)

PNRE 800 1258 2164

On corpus Conll04 and SciERC, although the AL strategy is better than PNRE in the
early iteration, with the increase of labeled samples, PNRE will more reasonably assign
samples to the most suitable experts for labeling. Therefore, we can see that after the
annotation is completed, the final F1 score of AL and RL is lower than that of PNRE.
Therefore, it can be concluded that PNRE can label more informative samples with less
cost, thereby bringing labeling efficiency and improving model performance.

In order to further verify the effectiveness of PNRE, we set a F1 score threshold for
each corpus, and calculate the proportion of the cost saved by PNRE when the threshold
is reached for the first time compared to the baseline, and the results are shown in Table
6. Finally, we take Conll04 as an example to show the changing trend of the number of
samples assigned to each expert by the PNRE strategy in the iterative process, as shown
in Fig. 2. At the beginning of the iteration, due to the lack of labeled data, the REmodel’s
performance is low. The samples filtered by the sample selectionmodule are mostly easy
samples, so most of the samples in the early stage are allocated the lowest cost annotator.
As the performance of the model increases, and the difficulty of the selected samples
also increases. Therefore, in the later iteration stage, experts with higher cost and better
labeling ability are required to label, which also verifies the effectiveness of PNRE.
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5 Conclusions

In this paper, we constitute the first attempt to apply proactive learning for neural rela-
tion extraction (PNRE) under a novel setting, where multiple noisy annotation costs. We
simulate different expertise level annotators by applying BERT-based RE model, and
calculate each expert performance by Expert Performance module. To save annotation
costs and to ensure acceptable quality of the annotated data, we design Sample Selection
module to choose the most informative and representative instance and Sample Alloca-
tion module to select appropriate sample-annotator pair under the object of annotation
utility maximization. Experimental results on three corpora demonstrate that the pro-
posed framework PNRE is able to achieve higher accuracy with lower query cost for
relation extraction task.

One potential limitation of our approach is that accurately estimating an expert’s
performance requires a gold standard corpus, however in some domains, such corpus
is more difficult to obtain. Another potential limitation is that, due to the use of pre-
trained language model, each iteration will take a long time, resulting in training slowly.
Therefore, we will explore how to estimate the annotator’s performance with a small
set of gold corpus and further verify that the PNRE framework utilizing lightweight
RE models is also practical. As a further extension to our work, we will explore the
deployment of our method on Crowdsourcing platforms.
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