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Abstract. In recent years, the research community around the globe has con-
tributed significantly to improve the brain-computer interface based assistive tech-
nologies. Electroencephalographic brain-computer interface enables the person
to communicate with the outside world by creating an advanced communication
protocol between the brain and the computer. Motor imagery-based BCIs aim to
predict the specific patterns elicited by imagining some plannedmovements. Stan-
dard BCI systems incorporate the use of spatial features from the motor cortex.
However, several researchers claim to have the intercommunication of different
brain regions during the motor task. Thus, a unique approach like brain connectiv-
ity is essential to extract the intercommunication of brain regions through several
electrode channels during a MI task. In this work, brain effective connectivity
has been estimated using partial directed coherence, and it has been used as the
feature extraction method. An extensive 2-class motor imagery dataset from Phys-
ionet database incorporating 91 subjects has been used for the validation purposes.
Our proposed work reached the average classification accuracy of 97.45% using
an SVM classifier. The findings of this study revealed the significance of brain
connectivity features over the conventional features extracted from a single brain
region.
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1 Introduction

For peoplewith neurological disorders, it would be really appreciable to have an indepen-
dent system which can communicate via a non-muscular pathway to the outside world.
Brain-Computer Interface (BCI) is a modern innovation in the field of engineering that
offers an effective solution for assisting disabled people [1]. Electroencephalographic
brain-computer interfaces provide an advanced communication pathway between brain
and computer using non-invasive methods to aid differently-abled people to interact
with devices such as neuroprosthetics, spelling application and wheelchairs. Electroen-
cephalography (EEG) is a standard neuroimaging method of measuring the electrical
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current of brain cells using non-invasive metallic electrode sensors [2]. Several clas-
sical BCI paradigms, including evoked potentials such as steady-state evoked poten-
tials (SSVEPs), event-related potentials (ERPs) such as P300 and motor imagery-based
event-related synchronization/ desynchronization are used extensively in BCI research.

Motor imagery-based brain-computer interfaces intend to detect specific EEG pat-
ternswhile the person performs the imagination of some plannedmovement such aswrist
or feet movement [3]. Motor imagery-based BCI’s makes it easier to boost the living
standards of such physically disabled individuals. The motor cortex is triggered during
a trial and creates modifications to its state [4]. Centered on this principle, researchers
monitor electrical brain activity by placing a metallic electrode on the scalp for signal
analysis of user intentions. Moreover, it is necessary to record brain signals without any
artifacts to achieve significant outcomes.

The standard BCI signal processing systems comprises three key stages including
pre-processing, feature extraction and classification. In pre-processing, raw EEG signals
are cleaned to remove unwanted components such as eye blinks. It also provides an
improvement in signal to noise ratio. In feature extraction, specific characteristics that
encode special commands evoked in the brain are extracted from the signal; whereas
classification allows the BCI system to discriminate different mental tasks.

To date, neuroimaging research investigating the neurological substrates behind
motor imagery tasks have primarily focused on spatial features of the brain from individ-
ual channels which may not provide sufficient information. Since MI tasks involve the
activation of multiple brain regions, awareness of brain connectivity tends to become a
key element of neuroscience to understand the intercommunication of different regions.
In this study, partial directed coherence (PDC) has been used in the estimation of
brain effective connectivity. The extracted features have been used with support vec-
tor machines (SVM) for 2 class motor imagery prediction. Electroencephalographic MI
dataset from Physionet database has been used in the proposed work.

2 Dataset Description

EEGmotor imagery dataset from Physionet database [5] has been used for the validation
of the proposed work. The database incorporates 109 subjects who performed the real
and imagined movement of the left and right hand. However, for this study, we have
only used the imagination dataset. The dataset has been recorded using the BCI2000
instrumentation system. The dataset is available online at [6], and it does not require any
further authorization to be used in this study.

EEG data has been recorded as per 10–10 international system using 64 electrode
channels with the sampling rate of 160 Hz. Out of 109 subjects, 91 subjects have been
used in this work whereas 18 subjects including subject 29, 30, 34, 37, 41, 51, 64, 72,
73, 74, 76, 88, 89, 92, 100, 102, 104 and 106 have been excluded owing to incorrect data
recording.

From 91 subjects, three sessions of motor imagery tasks have been recorded where
each session comprises seven to eight random trials for two-class MI. Each left and the
right trial has been recorded for 4 s, followed by the rest time of 4 s (see Fig. 1).

The overall description of the dataset is presented in Table 1.
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Fig. 1. Trial diagram of motor imagery dataset.

Table 1. Dataset description

Dataset Physionet Database EEG Motor Imagery Dataset

Sampling Rate 160 Hz

Channels 64

Subjects 91

Trials 45 (Each Subject)

4095 (Total Trials)

Classes 2 Classes 2 Classes

3 Methodology

The methodology used in this analysis to infer findings on connectivity across different
brain regions for motor imagery tasks is depicted in Fig. 2.

Different pre-processing techniques including DC offset correction (i.e., high pass
filter at 0.1 Hz), electrical interference removal (notch filter at 60 Hz) and bandpass
filtration has been applied to clean EEG data. The raw EEG data was bandpass filtered
between 7 Hz and 30 Hz to eliminate all the frequency components other than mu and
beta as the studies [7–9] revealed the occurrence of MI patterns in the stated frequency
range.

In addition, the EEG data from 91 subjects was pre-processed to select 14 out of 64
electrode channels from allmajor regions of the brain (i.e., left, right and central). Among
these 14 channels, six (i.e., T7, P7, C3, P3, FC3 and CP3) are located in the left region,
six (i.e., T8, P8, C4, P4, FC4 and CP4) are present in the right region, whereas only two
(i.e., Cz and Fz) are located in the central region. These 14 channels are suggested by
several researchers [10–13] for the implementation of motor imagery BCI system using
a limited number of channels.

Moreover, the data was pre-processed in order to acquire the component of the signal
in which the participant performed the activity of motor imagery through the elimination
of the undesirable section of the signal. So, during an 8-s trial, 4-s rest state data was
discarded, whereas the remaining 4s MI data was saved for further processing (see
Fig. 1).
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Fig. 2. Block diagram for the proposed methodology.

Eventually, brain connectivity has been determined using partial directed coherence
(PDC), and the estimated connectivity has been used as a key feature in this work.
Moreover, the support vector machine (SVM) has been used to classify two-class motor
imagery tasks using computed features.

3.1 Feature Extraction

Partial directed coherence has been evaluated for the estimation of brain effective con-
nectivity for the prediction of two-class MI. The connectivity estimation has been used
as the feature extraction technique in the proposed study.

Effective connectivity can be expressed as a direct or indirect effect of a neural
system on another at the synaptic or cortical level [14]. It can be estimated through
various methods, including bivariate and multivariate connectivity estimators as well.
Position of the electrode at different distances provides imprecise results while using
bivariate connectivity estimator. However, multivariate estimation provides the solution
to this problem by using Granger causality (GC).

Baccala and Sameshima [15] presented a multivariate based analysis method called
the Partial Directed Coherence (PDC). It is a commonly used method to estimate the
directional influence among different pair of channels usingMultivariate Autoregressive
Model (MVAR) through Granger causality. PDC has the capability to measure the active
direct directional coupling among the multi-channel data.

The 1st step in Connectivity estimation is to adjust the multi-channel EEG data by
performing the trial separation. The overall data comprising 14 selected channels from
91 subjects is divided into several trials, and the connectivity analysis is carried out for
each trial separately.

Next step involves the estimation of Multivariate Autoregressive Model (MVAR)
model coefficient, which has been conducted using Eq. 1.

A(t) =
∑p

r=1
C(r)A(t − r) + E(t) (1)

Here A(t) illustrates the 14-channels time-series EEG data, p is the model order which
has been estimated using the ARFIT toolbox with the Schwarz’s BIC optimizer, E(t)
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is the prediction error whereas C(r) is the covariance matrix representing the MVAR
coefficients.

C =
⎡

⎢⎣
c11(1) c12(1) . . . c1x(1)

...
...

...

cx1(1) cx1(1) . . . cxx(1)

⎤

⎥⎦ (2)

...

C =
⎡

⎢⎣
c11(p) c12(p) . . . c1x(p)

...
...

...

cx1(p) cx1(p) . . . cxx(p)

⎤

⎥⎦

In Eq. 2, C is a matrix containing the MVAR values, where p is the model order and
x is the number of electrode channels. This “x x x” matrix C is calculated for each value
of z ranging from 1 to z. These parameters express the influence of one channel over the
other; for example, c12(1) shows the influence of channel 2 over channel 1 at order 1.

After the calculation of the MVAR matrix, the next step is to estimate the partial
directed coherence by defining the sampling frequency (i.e., 160 Hz) and the number
of frequency bins (i.e., 64). The number of bin defines the number of portions in which
the total frequency range (i.e., 7 – 30 Hz) will be divided for the connectivity analysis,
which means that the PDC estimation process will be repeated for 64 times for each bin
of the frequency.

After obtaining the MVAR coefficients matrix and assigning the above-mentioned
parameters, C matrix is calculated by subtracting the matrix C from identity matrix I . .
(See Eq. 3)

C(r) = 1, r = 0

−C(r), r > 0
(3)

Time to frequency transform (see Eq. 4) has been performed to convert the time
series MVAR matrix C into the frequency domain C(f ).

C(f ) =
∑p

r=0
C(r)e−j2π fr (4)

Finally, the frequency domainmatrixC(f ) is normalized (see Eq. 5) to get the desired
output called the partial directed coherence (PDC).

PDCij(f ) = cij(f )√∑x
k=1|ckj(f )2|2

(5)

In above Eq. 5, the number of analyzed channels (except the current channel j) are
denoted by x, while PDCij represents the PDC correlation indicators from Aj to Ai at
specific frequency f .

The estimated PDC for each trial was in the form of a 3d matrix. So, matrix reshap-
ing has been carried out to convert the 3d matrix to a 2d matrix for further signal
processing (i.e., classification process). The PDC estimation resulted in a 14× 14× 64
matrix. Where 14 × 14 represents the interconnectivity of 14 electrode channels, and
64 represents the number of frequency bins.
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3.2 Classification

Brain connectivity features in terms of partial directed coherence (PDC) extracted in
the previous stage has been used as input to the Classification algorithms. Therefore,
support vector machine (SVM) has been used with PDC for the 2-class MI prediction.

SVM is the machine learning (ML) based supervised learning technique widely used
for the purpose of regression and classification. The SVM seeks to identify the hyper-
plane in an N-dimensional space that explicitly classifies data variables. Hyperplanes are
decision boundaries that help classify the training points. The selection of hyperplane
depends on the margin (i.e., the distance between the closed data point) and the hyper-
plane with maximum margin is selected. Such simple SVMs are called linear SVM. In

Fig. 3. Illustration of SVM. a) Linear SVM. b) Non-Linear SVM.
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contrast, when the training data is not linearly separable, Kernel function helps to create
a non-linear SVM in which the data can be mapped into another space with much higher
dimensionality. There are several kernel functions, but Gaussian is the most common
kernel function used in BCI research. Figure 3 provides an illustration of the linear and
non-linear SVMs.

The imagination of the left-hand and right-hand movement is labelled as 0 and
1, respectively. However, Gaussian kernel function with rigorously tuned kernel scale
of 0.9399 has been used with 10-fold cross-validation for two-class motor imagery
classification.

4 Results and Discussions

This section portrays the performance of the proposed methodology based on motor
imagery-based EEG data. In this work, 2-class MI has been classified using brain
connectivity-based feature extraction technique with support vector machine (SVM).

To evaluate the classification performance of 91 subjects, confusion matrix has been
computed as shown in Fig. 4. From the confusion matrix, we can see that the true
prediction value (i.e., true positive rate or TPR) of class-0 is less than the true prediction
value (i.e., true negative rate or TNR) of class-1. Left-hand (i.e., class-0) achieved the true
prediction of 95.98%, whereas the right-hand (i.e., class-1) obtained the true prediction
of 97.96%. However, the false prediction index (i.e., false-positive rate or FPR) of the
left-hand class is less than the false prediction rate (i.e., false-negative rate or FNR) of
right-hand class, where FPR and FNR are as low as 2.04% and 3.02%, respectively.

Furthermore, in order to evaluate the performance of each subject, Fig. 5 illustrates
the comparison of classification accuracies (CA) against all 91 subjects. From Fig. 4,
there is a clear trend of the classification accuracy above 95%; however, only two sub-
jects (S24 and S91) have marked the CA less than 95%. The results also identify the
maximum classification accuracy (i.e., 98.45%) which has been achieved by subject 67
and the minimum CA (i.e., 78.15%) which has been obtained by subject 91. However,
the proposed BCI system achieved the average classification performance of 97.45%
against 91 subjects of MI data.

Furthermore, in order to evaluate the performance of each subject, Fig. 5 illustrates
the comparison of classification accuracies (CA) against all 91 subjects. From Fig. 4,
there is a clear trend of the classification accuracy above 95%; however, only two sub-
jects (S24 and S91) have marked the CA less than 95%. The results also identify the
maximum classification accuracy (i.e., 98.45%) which has been achieved by subject 67
and the minimum CA (i.e., 78.15%) which has been obtained by subject 91. However,
the proposed BCI system achieved the average classification performance of 97.45%
against 91 subjects of MI data.

In addition, we have compared our proposed work with several most recent stud-
ies which have used similar MI-based EEG data (i.e., Physionet MI data). Table 2
presents the comparison of MI-based classification studies, where the proposed method
(i.e., brain effective connectivity estimation) has outperformed all other techniques with
significantly improved performance.
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Fig. 4. Confusion matrix

Fig. 5. Comparison of classification accuracy among 91 subjects
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Table 2. Performance comparison

Work Classification Accuracy

Xiaying et al. [16] 82.43%

Dalin et al. [17] 81.64%

Hesam et al. [18] 93.03%

Michael et al. [19] 76.21%

Chen et al. [20] 82.88%

Yimin et al. [21] 96.00%

This work 97.45%

5 Conclusion

In this study, we proposed a BCI system in which we have estimated brain connectivity
using partial directed coherence (PDC) for motor imagery prediction. Two-class MI
data from Physionet database incorporating 91 healthy subjects, where each subject
performed the imagination of left and right-hand movement over several trials, has
been used for the validation of the proposed work. Among 64 electrode channels, 14
channels covering all major regions of the brain were used in the proposed technique.
The brain connectivity estimation was carried out to obtain 196 pairs of estimated PDC
referring to 14x14x64 connectivity matrix for every single trial of each class. The 3-
dimensional matrix was transformed into a 2-dimensional matrix by performing the
matrix reshaping in order to feed the extracted features for the purpose of classification.
SVMwas used for the prediction of 2-classMI, and it achieved the average classification
accuracy of 97.45%, which outperformed several recent studies using the same dataset
for MI classification. The findings of this study reveal the importance of analyzing the
interconnection of multiple brain regions using brain connectivity estimation.
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