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Abstract. The millimeter-wave of 5G will usher in a new era in Vehicle-to-
Vehicle (V2V) communication. The ensuing radiation from a millimeter-wave of
5G bounces off most visible things, creating enriched multi-directional environ-
ments, particularly in sub-urban scenarios. Physical impediments were once pri-
marily connected with signal attenuation; nevertheless, their existence now intro-
duces complicated, non-linear phenomena such as reflections and scattering. As
a result of the impediments faced, a multipath propagation environment emerges,
suggesting the presence of concealed spatial information within the received sig-
nal for a dense vehicular environment. The key contributions of this research are
to discuss and evaluate a self-proposed deep neural network for the beamformed
fingerprint location problem in connected cars. Training of deep learning model
and simulation environment has been performed using AMD Ryzen 7 GPU envi-
ronment. Results show that in a realistic outdoor sub-urban scenario with predom-
inantly non-line-of-sight (NLoS) positions, average estimation errors of less than
1.69 m can be achieved, paving the way for novel positioning systems beneficial
for V2V links with low computational power. Furthermore, the self-proposed deep
learning model is compared with the long-short-term memory (LSTM) in terms
of computational complexity. Self-proposed DNN outperform LSTM in terms of
training time by 50 min.

Keywords: V2V Technology - V2X - 5G - mmWave of 5G - Deep learning -
AloT

1 Introduction

The introduction of 5G is expected to deliver new Vehicle-to-Vehicle(V2V) capabilities,
but it will also bring new challenges. The introduction of millimeter- wave communi-
cation is one of the 5G’s revolution, opening a substantial block of previously unused
capacity [1]. The propagation properties of mmWave alter dramatically. The resulting
radiation has significant excess path loss features and reflects on most visible barriers,
which can be disastrous in a vehicle and a vehicle-related environment [2]. As a result,
any mmWave communication between two locations that are not in direct line-of-sight
(LoS) communication may only be accomplished through an indirect propagation path,
such as a reflection. To overcome the aforementioned characteristics, beamforming (BF)
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is commonly utilized in systems using multiple-input multiple-output (MIMO) anten-
nas, allowing for a steerable and directional radiation pattern that may subsequently be
used for non-line-of-sight (NLoS) communications [3]. The recent focus on mmWave
communications led to the development and research of more sophisticated V2V envi-
ronments with new vehicle location systems [4]. In certain environments, ultra- dense
line-of-sight (LoS) communications are used incorporating mmWave of 5G for outstand-
ing results [5]. For best V2V environments, localization and position system of connected
cars should be precise in NLoS settings, where communication link formation is a dif-
ficult task, which had been enhanced using mmWave of 5G. In contrast, model-centric
communication approaches were determined by analyzing fingerprint positioning [6].
Fingerprint positioning methodologies helped to target numerous areas [7]. Fingerprint
contains important information from a certain link, which can be a useful data collection
method in mmWave of 5G for dense vehicular network.

Machine Learning (ML) approaches can be used in prediction of different parameters
of V2V links. ML precisely in domain of communications creates accurate solutions,
but with increased complexity. Beamforming Fingerprint (BFF) helps to collect dataset
and important information from V2V links, which can be processed in ML models. The
key problem with the fingerprint dataset is choosing the right parameters. A model can
be as good as data is big and clean, else it would produce differences in results. Even
beamforming fingerprint datasets were used with deep learning approaches before in
4G networks, but the median error of prediction was 65 m. In order to enhance the
and estimate error rate precisely, mmWave of 5G was used with sub-urban realistic
positionings for connected vehicles using a self-proposed deep learning model with the
introduction of the GRU layer to reduce computational complexities and training time.
Contributions of this paper are summarized as follows:

1) Self-proposed deep learning model is introduced to enhance and predict channel
estimation in V2V links using mmWave of 5G with NLoS positions in sub-urban
scenarios.

2) Dataset has been created using beamforming fingerprint pattern technique that
contained crucial information for V2V links.

3) Simultaneous behavior for connected cars over time are observed, computational
complexity is analyzed and compared with state-of-the-art long-short-term-memory
(LSTM).

Paper organization is as follows:

Section 2 contains a literature review and previous research gaps. Section 3 con-
tains dataset and its relation with DNN. Section 4 contains detailed architecture of
self-proposed neural network for estimation error in V2V links. Section 5 consists of
results & discussion analysis. Furthermore, Sect. 6 contains conclusion.

2 Literature Review

Available signal bandwidth increases the temporal resolution of received signal which
shows that mmWave of 5G can improved up to extra-ordinary accuracy. In theoretical



Deep Learning Approach for Precise Positioning 99

analysis and experimental analysis, it is proved that inaccuracy is as minimum as 1m for
LoS environment, whereas, on the other hand previous techniques were not that superior
specifically in positioning methods which is key factor in V2V assessments. Producing
accurate estimations for NLoS placements, as indicated in the previous section and
proven in [8], is a difficult undertaking. The works created in [9] aim to find vehicles in
both LoS and NLoS outside settings, addressing the aforementioned concern. Different
access points are employed to construct and locate finger point database of received
powers with a specific parameter of angles-of-arrival (AoA) [10], whereas, different
(beam forming) BF transmissions are used with iterative algorithms to check positions
and distance from vehicle-to-vehicle [11].

Similar, techniques were used to determine angles of arrival AoA, time of arrival
(ToA) and angle of departure (AoD) from one car to another car by incorporating LoS,
and NLoS transmissions.

In research [12], it was assumed that each car is always within specific range of
different static transceiver’s, moving further in details, issue analyzed by this scenario
was assessed NLoS locations, which required different transmission paths with at least
34 different surface reflection for mmWave of 5G. This problem was addressed with
solution in [13], which overcomes the limits noted by NLoS locations by providing
fingerprint database features for uplink of mmWave of 5G for V2V links. For successful
pilot testing, single massive MIMO base stations with many scattered antennas were
used as experimental settings, over small area. In other work [14], root-mean-square-
error (RMSE) was obtained of 34m by using Gaussian regression methods to solve
the issue of position in vehicle to vehicle. Currently, for practical connected cars the
technology used so far was long-term-evolution (LTE) and global-navigation-satellite-
system (GNSS) based observed time difference with respect to position [15]. But, this
method is costly, and inaccuracies can sometimes enhance to more than 10m. Moreover,
for a regular GNSS receiver’s accuracies can be superior, averaging at around 3m for
continuous measurements scenarios [16], because of high use of Kalman filters. But, in
NLoS environment for V2V with or without channel tracking there is huge performance
differences. Specifically, for mmWave of 5G performance parameters are much more
precise in V2V environment as compared to current existing techniques of V2V.

Workflow of our research is that majority of barriers for 5G BSs, which are likely to
be positioned in elevated areas in metropolitan environments, will be buildings, which
will remain static for an extended period of time. Unless there is a major change in envi-
ronment, recursive measures for power delay profile (PDP) at a specific position shall
remain similar. Receiver can receive many PDP by broadcasting BS using concentrated
and directed sequence of BFF patterns to cover whole area for vehicular network. Infor-
mation in BFF is series of non-linear concatenations. In order to solve non-linearity of
BFF and estimate correct error for V2V links, deep neural network approaches emerged
as strong option for solving non-linearity of BFF for dense vehicular networks. Deep
neural network also consumes less power, whereas in previous studies high power con-
sumption was analyzed for V2V environment. The physical constraints of brief series of
positions are investigated in this research using sequence learning to improve the BFF
vehicle positioning system by estimating error analysis.
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3 Dataset

Stability is a very crucial and important parameter for any trainable dataset since it helps
the deep neural system to extract useful information from a trained model using transfer
learning, or can also be helpful to get useful results from the cold start of the model
without transferable weights. In our case for V2V links error estimation, BFF analysis
and data extraction are important. BFF contains crucial information about specific V2V
links. Information such as interference, transfer rate, and obstacle tackling analysis is
present. In our analysis, specifically for V2V links, the resolution of information is
stored in BFF. In BFF, the direction of beam and radiation effects determine the quality
of data. So, there is a direct relationship between the directivity of transmission and
specific V2V links carrying more concentrated information for specific propagation
channels. Furthermore, by concentrating the directed radiation, a number of information
is enhanced which in results increases the possible coverage of V2V routes and links.
By close observation of data, it is analyzed that visual patterns emerged when sequence
BF are transmitted with concentration. In more detail, we observe that measurements of
patterns from the same position contain more comparable clusters with some redundant
information as well. Similarly, we observe that by decreasing BFF directivity there is an
increase in redundancy and decreased accuracy for position inference. So, data is formed
in terms of special resolutions by increasing directivity of BFF, collecting samples, and
after proper data cleaning, insertion in a deep neural network for further analysis.

Data set gathering structure can be depicted in Fig. 1. V2V links information is col-
lected and analyzed in the form of beamformed prints inculcating important information
of mmWave of 5G for vehicle positioning and obstacle analysis. V2V links are shown
in Fig. 2. These sample beamformed prints would be passed through proposed deep
learning architectures for further analysis. Deep neural network contains good capac-
ity to predict training samples. For appropriate results, generalization of information is
necessary during training steps in order to get effective unknown evaluative parameters.
Generalization can be more important for a deep neural network when network is noisy
or dense, as in our case vehicular network is dense as well as noisy. In order to achieve
generalization of information, deep neural network should have large training data amal-
gam with regularization methods (specifically for wireless communication’s data). An
efficient deep learning-based system must collect data fast, and efficiently. Moreover,
Beam formation fingerprint systems, its employ’s GNSS to identify the acquired input
data correctly, which is than processed in deep neural network for analysis. System input
and dataset is in the form of beamformed prints. Beamformed prints contains each and
every information of specific V2V links. System input is in the form of dataset in specific
neural network for further processing.
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Fig. 1. Beam Formation Fingerprint structure for V2V links.
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Fig. 2. Detailed architecture of V2V and DNN.

4 Architecture of Self-proposed Deep Neural Network

The self-proposed deep neural network has been introduced. Useful data is extracted from
Vehicle-to- Vehicle links. A neural network of three hidden layers has been introduced
with maximum pooling layers after every hidden layer, Similarly, after hidden layers
the test data was stated up to 20% and train data up to 80%. A gated recurrent layer is
added to enhance the optimization and reduce computational complexity as compared to
LSTM. Furthermore, robust dense layers are introduced to develop efficient model error
estimations in vehicle-to-vehicles links. Detailed architecture can be viewed in Figure 3.
The detailed layer modelling can be shown in Fig. 4. It contains batch normalization
as parameter for fast and stable network. Input layers with parameter details are used.
Connection of one layer to another layer is described in detail in the model. Convolutional
layers are introduced with activation function at different connections.
Hyperparameters of the DNN for training analysis and experimental settings are
listed in Table 1. Reason for choosing above mentioned parameters are to reduce com-
putational complexity. Learning size is enhanced at two decimal places for appropriate
learning analysis of DNN. Furthermore, NMSE is most appropriate criteria to cross
check the error for DNN. Adam is one of the most sophisticated optimizers with low
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Fig. 4. Layer specifications for self-proposed model for V2V links analysis and estimation error.
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Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) 8]

[(None, 256, 256, 3 @
)

conv2d (Conv2D) (None, 256, 256, 16 448
)

batch_normalization (BatchNorm (None, 256, 256, 16 64
alization) )

activation (Activation) (None, 256, 256, 16 @
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rmalization)
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batch_normalization_2 (BatchNo (None, 256, 256, 16 &4

rmalization) )

activation_1 (Activation) (None, 256, 256, 16 ©
)

conv2d_3 (Conv2D) (None, 128, 128, 32 4648
)

batch_normalization_3 (Batchno (None, 128, 128, 32 128
rmalization)

conv2d_S (Conv2D) (None, 128, 128, 32 544

activation_2 (Activation) (None, 128, 128, 32 @
)

batch_normalization_4 (Batchno (None, 128, 128, 32 128
rmalization)
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[*conv2d_1[e][e]",

‘batch_normalization_1[e][e]"']

["ada[e]fe]’]

['batch_normalization_2[e][e]"]

[*activation_1[e][e]']

[*conv2d_3[e][e]"])
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[*activation_2[e][e]']

['batch_normalization_s[e][e]’,
‘conv2d_s[el[e]']
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Table 1. Hyperparameters for self-proposed DNN.

Hyper-Parameters Values
Kernel/Convolutional 10
Layer
Learning rate 0.005
Loss function criterion NMSE
Optimizer Adam
Epoch size 5670
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Fig. 5. Error estimation over number of vehicles.

computational power. Moreover, epoch size is increased to 5670 for least error and high
accuracy, because accuracy is directly proportional to high epoch size and large dataset.

5 Results and Discussions

Results are analyzed in three different categories. Firstly, channel error is estimated for
BFF patterns using a self-proposed deep learning model. Secondly, V2V links has been
observed for three different vehicles in dense environments with the least estimated
errors. Thirdly, the computational costs are analyzed for self- proposed DNN, compu-
tational cost and the effect of GRU on computational cost are also analyzed. Firstly, in
Fig. 5, it is observed that accuracy estimation improved by increase in number of vehi-
cles. This regression analysis shows that with the increment of vehicular environment,
error estimation is reduced. It is observed that error estimation at median calculation
came out to be 1.69m, which is quite competitive. Error estimation is observed from
formula in Eq. 1:

0= |Vo — Vi) (1)
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Fig. 6. Vehicle-to-Vehicle (V2V) connectivity analysis Over time for 3 connected cars.

Secondly, three vehicular connectivity was observed as shown in Fig. 6 with respect
to obstacle and dense environment. So, in error vs time graph, the stable connectiv-
ity of vehicles was achieved at 36" second with continuous safety message exchange
using mmWave of 5G which represented reliability and precision of mmWave for V2V
environments. The results were analysed using simulated environment by setting up
MATLAB toolbox for 5G and incorporating BFF patterns obtained for deep learning
modules. Least error was incorporated and observed with time analysis.

Thirdly, the computational cost is computed for self- proposed DNN. Initially in
Figure 7, loss and accuracies for DNN are observed for estimation of channel analysis at
specific obtained datasets. Loss are decreased smartly, after 50 epoch size, and accuracies
started enhancing after 50 epoch size which shows that the addition of the GRU layer
made DNN more stable and faster.

Moreover, computational power was analyzed. Computational complexity and uti-
lization of GPU was analysed for self-proposed DNN model with GRU layer and was
compared with long-short-term-memory (LSTM) on defined beamforming fingerprint
(BFF) dataset. Outcomes are shown in Table 2. As shown in Table 2, there is a signif-
icant time difference between GRU and LSTM networks. Even though LSTM slightly
outperformed from GRU, but at the cost of computational resources which is inevitable
factor for vehicular a connected cars environment.

As shown in Table 2, 11.7% of time is saved by adding GRU layer with respect
to LSTM. Even though LSTM slightly outperformed from GRU, but at the cost of
computational resources which is inevitable factor for vehicular a connected cars
environment.

LSTM layer had been incorporated before in the same vehicular network for esti-
mation. Reason to compare proposed GRU system with standard state of the art LSTM
system was to cross-verify computational complexity and procedural settings.
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Fig. 7. Loss and accuracy graphical analysis for self- proposed deep learning model on BFF
dataset for V2V environment.

Table 2. Computational comparison of self-proposed DNN with GRU layer and self-proposed
DNN with LSTM.

Methods Training Times Accuracy mAP
Self-proposed DNN (with GRU layer) 7 h and 6 min 91% 92.6%
DNN with LSTM layer 7 h and 56 min 91.16% 93.12%

6 Conclusion

In a nutshell, Vehicle-to-Vehicle networks with increased density start’s creating several
issues, such as increased errors between V2V links. In order to improve this scenario,
mmWave of 5G has been used and errors are estimated using self-proposed deep learn-
ing model. Initially, dataset was formed using beamforming patterns which contained
crucial information for mmWave of 5G. After this, deep neural network has been pro-
posed with GRU as its added layer for reduced computationalcomplexities.Furthermore,
hyperparameters of DNN inculcated 0.005 as learning rate, Adam as optimizer. Training
was performed for 5670 epoch size, and results were analyzed by four different dimen-
sions. Firstly, error estimation of V2V links were analyzed, and it resulted out to be
1.69m, a very competitive figure. Secondly, connected environment, and connectivity
were observed over time for mmWave of 5G among 3 cars. Moreover, computational
complexity was analyzed keeping in view accuracy and precision, so GRU outperformed
state of the art LSTM in terms of training time. For future work, mmWave of 5G cyber
secure analysis shall be conducted for V2V environments, because safety parameters
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are very important. Moreover, Blockchain techniques can be added by combining to
V2V architecture for secure and sound vehicular environment to avoid cybersecurity
and personal breach attack.
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