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Abstract. In indoor positioning, the real-world scenario often involves a multi-
floor indoor environment, resulting in the construction of a large Bluetooth low
energy (BLE) fingerprint database. Subsequently, high computational complexity
and increased computational time are usually associated with such a large scale
indoor environment. To circumvent this issue, a clustering-based indoor position-
ing system (IPS) known as DECIPS is proposed in this paper to reduce the com-
putational complexity and execution time required by the localization algorithm
for location prediction. The proposed DECIPS leverages on deep embedded clus-
tering (DEC) algorithm to group the dataset into several subsets before using them
to train separate classifiers and regressors specifically customized to handle only
data from one cluster. Subsequently, the performance of DECIPS is benchmarked
against several state-of-the-art clustering-based IPSs. Numerical results demon-
strate that DECIPS is capable of outperforming the existing clustering-based IPSs
in terms of average positioning error and execution time.
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1 Introduction

In this globalized era, the demand for an accurate and real-time IPS rises to fulfill the need
for indoor location-based services (LBS) which are popularly used in sectors such as
hospitals, indoor parking lots, airports and shopping malls for location identification and
indoor navigation [1, 2]. While current mature technology such as the global positioning
system (GPS) is widely used for outdoor navigation and positioning, it is nevertheless
not suitable for indoor localization purposes due to the requirement for a direct line of
sight (LOS) between the satellites and the user [1–3].

In view of that, various approaches such as Bluetooth, radio frequency identification
(RFID), ultra-wideband (UWB), geomagnetism, visible light and Wi-Fi are considered
and researched for their potential applications in the field of indoor positioning [2,
3]. Nonetheless, among the many existing technologies, the received signal strength
(RSS) based fingerprinting method has garnered the most attention since it does not
require any additional hardware besides the readily available Wi-Fi access points (APs)
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or BLE beacons and mobile devices with built-in network interface card (NIC) for RSS
measurements [2, 4].

Generally, the RSS based fingerprinting IPS involves the offline and online phases.
In the offline phase, a site survey must first be performed at the indoor environment
to construct a radio map which contains the location labeled RSS measurements from
surrounding APs or beacons at specific reference points (RPs). Meanwhile, in the online
phase, the RSS values measured from APs or beacons that can be detected from the
user’s unknown location creates a test sample which will then be compared with the
RSS stored in the constructed radio map via a localization algorithm, thus predicting the
user’s current location [2, 3].

Larger space in an indoor environment will correspondingly result in a larger finger-
print database being constructed. Hence, applying a localization algorithm directly over
the large fingerprint database causes high computational overhead and also increased
computational time. To overcome this issue, various clustering based fingerprinting
method have been proposed. Instead of comparing the observed RSS values at the user’s
unknown location with the RSS values at all RPs, a narrowed down search is performed
on only a particular cluster that contains a smaller number RPs for location prediction.
Apart from reducing the overall computational complexity and computational time, a
classifier or regressor trained per cluster would also be able to learn the data subset
dynamics better [5].

In this paper, a clustering-based IPS called DECIPS is proposed to overcome the
high computational complexity and long computational time caused by a large dataset.
DECIPS adopts the DEC clustering algorithm to partition the large dataset into several
subsets before performing location prediction using separate localization algorithms
explicitly established for each cluster.

The rest of the paper is organized as follows. Section 2 presents the background and
related work on clustering-based IPS, while Sect. 3 elaborates on the proposed DEC
clustering-based IPS known as DECIPS. Thereafter, the performance evaluation and
discussion of findings are presented in Sect. 4. Finally, the conclusion is made in Sect. 5.

2 Background and Related Work

In this section, the related work on clustering based IPSs and DEC clustering are
introduced.

2.1 Related Work

Ezhumalai et al. proposed a strongest AP (SAP) based clustering technique that labels
each RP according to the AP that yields the strongest RSS value for that particular RP.
The RPs are then grouped into several clusters subsequently by using the SAP labels.
This clustering technique enables the SAP information based clustering results to be in-
linewith the position distribution of the RPs. TheweightedK-nearest neighbor (WKNN)
algorithm is then utilized to estimate the user’s unknown location [2].

In [6], Altintas et al. developed an improved RSS based indoor positioning algorithm
via K-Means clustering. After the K-nearest neighbor (KNN) algorithm had identified
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a set of RPs as the K nearest neighbors, they would then be classified into k number
of clusters. The cluster with the closest proximity to the user would be identified as
the delegate cluster whose centroid would be used for the indoor position estimation.
Nevertheless, this technique did not help to reduce the overall computational complexity
and time of the IPS since clustering is only performed after localization.

However, the K-Means clustering based IPS as described in [6] belongs to a type
of hard clustering which divides each observation into exactly one cluster only. Hard
clustering is unable to group the Wi-Fi fingerprints of a radio map into clusters that
are robust to noises such as multipath interference. Thus, fuzzy C-means (FCM), which
is a type of soft clustering is proposed in [7] to compensate for the environmental
effects besides reducing the online computational time. The membership grade allows
the realization of soft clustering such that aWi-Fi fingerprint can belong tomore than one
cluster simultaneously. KNN algorithm is then utilized to estimate the user’s unknown
location after performing soft clustering via FCM.

An IPS based on a deep neural network (DNN) integrated with an improved KNN
algorithm was presented in [8]. Firstly, the indoor environment is separated into 4 sec-
tions, thus splitting theWi-Fi fingerprint database into 4 clusters. The trained DNN algo-
rithm is then used to predict the cluster of the user’s unknown location. Next, weights are
given to the K nearest neighbors according to their number of matching APs. The final
user position is predicted among all the K nearest neighbors in the same cluster. This
technique is a supervised machine learning technique that requires manual separation
of the indoor environment into k number of clusters.

Akram et al. proposed a Wi-Fi fingerprinting based IPS named HybLoc which inte-
grated the Gaussian mixture model (GMM) based soft clustering and random decision
forest (RDF) ensembles for indoor positioning [5]. GMM based soft clustering splits the
Wi-Fi fingerprint database of each building into overlapping or non-overlapping data
subsets, thus achieving soft clustering. The RDF ensembles combine the strength of
many weak learners to improve the overall indoor positioning accuracy and the gen-
eralization capability. The clustered data subsets are then assigned to different RDF
ensembles established to handle the respective data subsets so that they could learn the
underlying data dynamics better.

2.2 Deep Embedded Clustering (DEC)

The clustering algorithm to be applied in the proposed DECIPS is known as DEC.
In recent years, DEC has been applied in various fields such as coral reef bioacoustic
detection and the characterization of the patient clusters at high risk of mortality and
kidney injury apart from exploration of the striatal functional connectivity alterations
associated with Parkinson’s Disease [9–11]. As of thus far, there is no existing work that
uses DEC for the clustering of RSS data of the fingerprint database in the area of indoor
positioning yet.

The first phase of DEC focuses on parameters and centroids initialization with a deep
autoencoder. In this phase, a stacked autoencoder (SAE) network is initialized layer-wise
with each layer functioning as a denoising autoencoder having a 2-layer neural network
defined in (1) to (4) below. The denoising autoencoder attempts to reconstruct the output
of previous layer after suffering random corruption [12].

x̃ ∼ Dropout(x) (1)
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Fig. 1. DEC autoencoder network [12]

h = g1(W1x̃ + b1) (2)

˜h ∼ Dropout(h) (3)

y = g2(W2˜h + b2) (4)

where Dropout(·) arbitrarily sets some of its input dimensions to 0, g1 and g2 are the
activation functions for the encoding and decoding layers respectively and θ = {W1, b1,
W2, b2} are the model parameters.

The training is carried out byminimizing the least-squares loss. After training a layer,
its output h is used as the input for the training of the next layer. At the end of the greedy
layer-wise training, all encoder layers are concatenated followed by the decoder layers
to form a multilayer deep autoencoder and fine-tuned to minimize the reconstruction
loss, as shown in Fig. 1. The decoder layers are removed and the encoder layers are used
for initial non-linear mapping between the data space and feature space to obtain the
embedded data points. The initial centroids are obtained via K-means clustering in the
feature space [12].

In the second phase, parameter optimization is performed in 2 steps. First, a soft
assignment between the embedded data points and the cluster centroids is computed.
Subsequently, with the aid of the auxiliary target distribution, the model learns from
current high confidence soft assignments in order to update the deep mapping and refine
the cluster centroids. In this self-training strategy, the dataset is labeled with a classifier
to train on its high confidence predictions [12].

The encoder is fine-tuned by optimizing the objective which is defined as a Kullback-
Leibler (KL) divergence loss between the soft assignments and the auxiliary target
distribution as shown in (5):

L = KL(P||Q) =
∑

i

∑

j

pij log
pij
qij

(5)

where qij is the similarity between the embedded data point zi and cluster center μj

measured by Student’s t-distribution as defined in (6):

qij = (1 + ||zi − μj||2)−1
∑

j(1 + ||zi − μj||2)−1 (6)
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while pij is the target distribution defined in (7):

pij = q2ij/
∑

iqij
∑

j(q2ij/
∑

iqij)
(7)

The joint optimization of the cluster centers and the encoder mapping are carried
out using stochastic gradient descent (SGD) with momentum. The gradients of L with
respect to the feature space embedding of each data point ∂L

∂zi
and cluster center ∂L

∂μj
could

be determined during backpropagation. The gradient ∂L
∂zi

is then passed down to update

the encoder mapping while ∂L
∂μj

is used to update the cluster center μj as shown in (8):

μj = μj − λ
∂L

∂μj
(8)

For discovering cluster assignments, the procedure is repeated until the convergence
criterion is met, whereby less than tol% of points change their cluster assignments
between 2 consecutive iterations [12].

3 Proposed Clustering-Based IPS

The block diagram for the proposed DECIPS is depicted in Fig. 2. After the site survey,
the FOE BLE fingerprint dataset is constructed. Nevertheless, this dataset requires some
data preprocessing since the coordinates are initially recorded in the form of a mixture of
categorical and numerical variables for the x-coordinates and y-coordinates respectively.
Thus, the x-coordinates must first be represented in the form of a numerical variable.
Apart from that, there are also several rows of BLE fingerprints that contain outlier
RSS values that happened due to human errors made during RSS data collection or data
entry. In view of that, those instances with outliers are removed since they occupy only
a negligible portion of the entire dataset.

Subsequently, the preprocessed dataset is split into 2 subsets, namely the training
and the testing datasets. During the training phase, the RSS vectors of the RPs recorded
in the training dataset are provided as the input to the DEC clustering algorithm in

Fig. 2. Block diagram for DECIPS
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its original data space x. The encoder layers in the autoencoder performs nonlinear
mapping of the input RSS vectors between the data space x and the feature space z,
thus producing embedded RSS data points. The process is then followed by K-Means
clustering carried out in the feature space z to obtain k initial cluster centroids {μj}kj=1.
With the embeddedRSSdata points and initial cluster centroids obtained in the first phase
of DEC, the second phase continues to alternate between two major steps in order to
further improve the clustering. In the first step, soft assignment is performed between the
embedded RSS data points and the initial cluster centroids. Subsequently, the nonlinear
mapping is updated and the cluster centroids are refined iteratively by minimizing the
KL divergence loss between the soft assignments and the auxiliary target distribution
until the convergence criterion is met. The output of the DEC clustering algorithm is the
cluster labels for the RSS vectors of each RP.

The cluster labeled training dataset will be split into several data subsets and then
used to train separate WKNN classifiers for floor prediction and WKNN regressors for
coordinates prediction that are established to handle only data subsets from a particular
cluster. Meanwhile, during the testing phase, cluster matching is performed for each
instance in the testing dataset using the trained DEC clustering algorithm in order to
select one cluster as its delegate cluster. Soon after, the location of each clustered testing
instance is predicted using the corresponding WKNN classifier and WKNN regressor
trained specifically for that cluster.

The WKNN classifiers and regressors first determine the K nearest neighbors by
calculating the distance between the RSS of the test sample X and the RSS of each
training sample Y as shown in (9):

d(X ,Y ) = (

n
∑

i=1

|xi − yi|p)
1
p (9)

where xi refers to the RSS measured from the ith beacon for the test sample while yi
refers to the RSS measured from the ith beacon for the training sample, n refers to the
total number of beacons and p is the power parameter. Note that the Euclidean distance
metric is selected by taking p as 2. Depending on the number of K selected, the first K
nearest neighborswith the shortest RSS distancewill contribute to the location prediction
of the test sample. For a classifier, the concept of majority voting is applied whereby
the floor with the highest vote among the K nearest neighbors will be chosen. As for
a regressor, the mean coordinates of the K nearest neighbors will be predicted as the
user location of the test sample. The WKNN algorithm applies a weight wi to each K
nearest neighbors as defined in (10) where N denotes the RSS of the training sample
belonging to one of the K nearest neighbors. More weight would be assigned to nearer
neighbors, and the larger the weight, the higher the influence of the neighboring point
on the location prediction of the test sample.

wi = 1

d(X ,N )2
(10)
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4 Simulations and Analysis

The performance of the proposedDECIPS is compared to those of the existing clustering-
based IPSs reviewed in theSect. 2.1which adopted theGMM,SAP information andDNN
based clustering techniques in terms of their floor prediction accuracy (the percentage of
correctly predicted floors over the total number of floors predicted), average positioning
error, maximum positioning error, 75th percentile for the positioning error, clustering
testing time, localization testing time and also overall testing time. Moreover, the effects
of the number of clusters are also investigated. WKNN is used for the indoor location
prediction after DEC, SAP and DNN clustering is performed, while the random forest
is used for the GMM based clustering technique instead.

Extensive computer simulations are performed using the FOE dataset [13]. The
region of interest covers the 2nd and 3rd floor of the Faculty of Engineering (FOE) Wing
B building of the Multimedia University Cyberjaya campus. The FOE dataset consists
of 12637 instances in which 6300 instances are recorded for the 2nd floor while the
remaining 6337 instances are recorded for the 3rd floor. The number of RPs defined for
the 2nd floor and 3rd floor are 126 and 125, respectively. The 20 attributes of this dataset
include the BLE fingerprint for 16 beacons, x-coordinate, y-coordinate, floor number,
and the relative height of the reference point from the 2nd floor. The RSS intensity values
are represented as negative values ranging from −100 dBm to −54 dBm.

Table 1 shows the results for the performance of different clustering-based techniques
with a varying number of clusters. The number of clusters investigated are 2 and 4
clusters for all the clustering techniques except for SAP information-based clustering,
which has 16 clusters since 16 beacons are deduced as the strongest beacons in the
indoor environment. Note that the localization testing time represents the time needed
for the trained localization algorithms to predict the indoor location while the clustering
testing time represents the time required for the trained clustering algorithms to group
the testing dataset into several clusters. On the other hand, the overall time represents
the total time needed for clustering and localization to be carried out in the testing phase.
For all techniques which involved WKNN, the results are shown for K = 1.

For the SAP-based clustering technique, the cluster formation, which should theo-
retically be consistent with the position distribution of the RPs lacks consistency since

Table 1. Performances of various clustering based indoor positioning techniques

Technique Number
of
Clusters

Floor
Accuracy
(%)

Average
Positioning
Error (m)

Maximum
Positioning
Error (m)

75th Percentile
of Positioning
Error (m)

Localization
Testing
Time (s)

Clustering
Testing
Time (s)

Overall
Testing
Time (s)

SAP-WKNN 16 100 0.8890 26 1 0.0394 0.4543 0.4937

GMM-RDF 2 100 1.0208 12.8320 1.3350 422.0839 0.0130 422.0969

GMM-RDF 4 100 1.0077 13.4240 1.2776 455.4051 0.0186 455.4237

DNN-WKNN 2 100 0.7066 16 0 0.0504 0.2236 0.274

DNN-WKNN 4 100 0.7876 41.4367 1 0.0490 0.2811 0.3301

DECIPS 2 100 0.7068 16 0 0.0416 0.1232 0.1648

DECIPS 4 100 0.7175 15 1 0.0366 0.1356 0.1722



A Fast and Precise Indoor Positioning System 45

RPs in the same region (located adjacent to each other) could belong to different clusters.
Apart from that, the clusters for quite a number of test points (TPs) are inaccurately pre-
dicted since they are assigned to a cluster which is different from that of the RPs sharing
the same coordinates as them. In view of that, this clustering technique might not be
feasible for the FOE testbed with many beacons detected since this results in a large
number of clusters formed which complicates the clustering process besides defeating
the purpose of reducing the computational complexity and time.

Moving on to the GMM based clustering technique with 2 clusters, similar situation
whereby the TPs are assigned to a cluster which is different from that of the RPs sharing
the same coordinates as them has occurred. Consequently, the location prediction of TPs
grouped into a wrong cluster would now be based on the locations of RPs in that wrong
cluster which is located further away from the ground truth locations of the TPs.

As the number of clusters increases to 4, the average positioning error generally
increases. Note that the number of TPs with wrongly predicted clusters increases appar-
ently with an increase in the number of clusters, thus producing less accurate results
during the indoor location prediction.

In GMM based soft clustering technique, the number of RDF ensembles invoked
per clustered observation is dependent on the number of clusters that the observation
belongs to. This indirectly results in both higher computational complexity and longer
time.

Also, from Table 1, it is observed that a larger number of clusters would result in a
longer clustering time due to an increased computational complexity for all the clustering
based techniques applied.

Figure 3 illustrates the percentage of performance gain of various techniques in terms
of average positioning error benchmarked over GMM-RDF which acts as the baseline.
Meanwhile, the bar charts for the percentage of GMM-RDF’s localization and overall
testing time are shown in Fig. 4. Note that for SAP-WKNN, both the blue and orange
bars represent 16 clusters instead of 2 clusters and 4 clusters respectively due to the 16
strongest beacons detected for the indoor environment considered in the FOE dataset.

From Fig. 3, it is observed that the percentage of performance gain in terms of
average positioning error over GMM-RDF obtained for all techniques regardless of 2
clusters or 4 clusters are positive. This implies that all techniques with both number of
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Fig. 4. Percentage of GMM-RDF’s time for (a) localization testing time and (b) overall testing
time

clusters showed an improvement in average positioning error as compared to GMM-
RDF. When the number of clusters is 2, the highest performance gain is achieved by the
DNN-WKNN technique, while the proposed DECIPS has a slightly lower performance
gain followed by the SAP-WKNN technique with the lowest performance gain. As the
number of clusters increases to 4, the proposedDECIPS exhibits the highest performance
gain, followed by the DNN-WKNN and SAP-WKNN techniques. It is also noteworthy
that the percentage of performance gain decreases as the number of clusters increases
from 2 to 4. This is because the average positioning error for the investigated techniques
degrades with an increasing number of clusters.

From Fig. 4, it could be observed that the localization and overall testing time of the
investigated techniques for both number of clusters are much shorter than those of the
GMM-RDF technique. For both number of clusters, the localization and overall testing
time of the proposed DECIPS are the shortest compared to SAP-WKNN and DNN-
WKNN. As the number of cluster increases, the percentage of GMM-RDF’s localization
and overall testing time decreases for the investigated techniques due to the increase in
localization and overall testing time of the GMM-RDF technique with the number of
clusters.

To summarize, the proposed DECIPS yields the best performance among other clus-
tering based IPS. When the number of clusters is 2, DECIPS produces an average posi-
tioning error that is 0.0283% higher than that of DNN-WKNN which is capable of
producing the lowest average positioning error among all the techniques, but its overall
testing time is 39.8540% lower than DNN-WKNN counterpart. Besides, DECIPS also



A Fast and Precise Indoor Positioning System 47

attains a performance gain of 20.4949% and 30.7602% in terms of average position-
ing error along with 66.62% and 99.96% improvement in terms of overall testing time
compared to SAP-WKNN and GMM-RDF, respectively. When the number of clusters
is increased to 4, DECIPS produces the lowest average positioning error and also the
shortest overall testing time among all the other clustering-based IPSs.

The problem of the “curse of dimensionality” often associated with large RSS BLE
fingerprint datasets could be reduced with the DEC algorithm. The K-Means clustering
performed in the feature space with a lower dimensionality enables only the essential
features to be extracted without losing much information. This helps the K-Means clus-
tering algorithm to better identify the hidden patterns in the embedded RSS data and
can maximize the inter-cluster distance as far as possible, thus resulting in better cluster
formation. Besides, clustering performed in lower dimensionality will also have a lower
computational complexity, which is why the clustering testing time for DEC is shorter
than that of the DNN which is another neural network approach.

5 Conclusion

A clustering-based IPS known as DECIPS is proposed to overcome the high compu-
tational complexity and long computational time caused by a large dataset. It is found
that DECIPS is capable of outperforming the other clustering-based IPSs in terms of
average positioning error and execution time. Although its average positioning error is
0.0283% slightly higher than the lowest average positioning error achievable by DNN-
WKNN, nevertheless DEC still outperforms DNN in terms of the overall time by a sig-
nificant 39.8540%. Besides, DECIPS also produced a performance gain of 20.4949%
and 30.7602% in terms of average positioning error along with 66.62% and 99.96%
improvement in terms of overall testing time compared to SAP-WKNN and GMM-
RDF respectively, which makes it completely outperforms the SAP and GMM based
clustering techniques in all aspects presented.
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