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Abstract. A simulation model of microwave photonic filters (MPF) based on
Brillouin Raman fiber laser (BRFL) is demonstrated. A wide tunability filter in
terms of its bandwidth and free spectra range is achievable by controlling BRFL
optical channel numbers and wavelength spacing thanks to the high optical chan-
nels count offered by the BRFL. Characteristics of MPF based on the BRFL
parameters were investigated and reported. This model serves as the reference for
practical MPF design using multiwavelength BRFL. A high selectivity filter could
be achievable with 38.1 MHz 3 dB bandwidth.
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1 Introduction

Microwave photonics which is a multidisciplinary field of utilizing properties of photonic
technologies has been widely explored to improve on the microwave/wireless systems [1,
2]. Microwave Photonics Filter (MPF) is a photonic system that perform tasks equivalent
to microwave filters in a radio frequency (RF) system. The interest in MPF is due to
the advantages inherent to photonics such as low loss, high bandwidth, insusceptible to
electromagnetic interference, tunability and reconfigurability [3-6].

As shown in Fig. 1, RF to optical conversion is realized by directly or externally
modulating a single continuous wave (CW) source or an array of CW source. The input
RF signal carried by the optical carrier is sent to a photonic circuit that samples the signal
in the time domain, weights the samples and combines them in a subsystem of optical
delay lines or other photonic components. Finally, at the output of the subsystem, the
resulting signal is optically RF converted by single or array of optical receivers producing
the output RF signal [6].

The use of multiwavelength fiber laser in microwave photonic filter has been reported
in [4, 5]. There are several approaches of obtaining multi wavelength fiber laser operation
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which are Brillouin-Raman fiber laser (BRFL) [11, 13-15], Brillouin-erbium fiber laser
(BEFL) [8, 10], erbium-doped fiber laser (EDFL) [7], and Brillouin fiber laser (BFL)
[9]. However, due to the low erbium gain and the spectral shape of the erbium gain, low
number of optical channels and non-flat channels amplitude are generated in EDFL and
BEFL [7-10]. A BRFL is achieved through the Raman amplification in fiber laser cavity
to continuously generating optical channels. [16]. It has several desirable traits such as
stable operation at room temperature, flat and large gain bandwidth, compatibility with
fiber properties, and design simplicity [8, 10-15]. BRFL generates multiple-channel
output with wavelength spacing ~0.08 nm, ~0.16 nm, or ~0.24 nm, due to the single,
double and triple Brillouin frequency spacing, respectively. Reported works have shown
that BRFL have been able to generate from 215 up to 443 optical channels [10, 12].
From previous works, it has been found that a higher number of channels can improve
the Q-factor of the filter response [5]. Meanwhile, a flat gain from the multiwavelength
fiber lasers can improve the resolution of the filter response.

In this work, BRFL in MPF is studied through computational means. Parameters
such as evenness of optical channels, number of optical channels, and wavelength spac-
ing were varied using realistic parameters in reported literatures. The large number of
higher order Brillouin Stokes channels generated by BRFL shows the potential for high
selectivity MPF. The FSR of can also be manipulated using the wavelength spacing and
the dispersion of the dispersive medium. The study shows that BRFL is a promising mul-
tiwavelength fibre laser that can be incorporated in MPF for high selectivity, tunability
and flexibility.

2 Modelling of MPF Based on BRFL

The configuration of the MPF of a multi-wavelength BRFL is depicted in Fig. 1. A BRFL
based MPF was simulated with Matlab program, based on the transfer function given

by [16]
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Fig. 1. A basic architecture of MPF.
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where R is the photodetector responsivity, Ag is the central wavelength of multiwave-
length light source, D corresponds to total dispersion of the dispersive medium, N is
the total number of optical carriers, P, is the relative optical power of tap n and A\
is the wavelength spacing between adjacent optical channels. The central frequency, A
is set at constant 1550 nm, while the photodetector’s sensitivity is set at 0.6. The other
parameters such as wavelength spacing, number of optical taps (fiber laser channels)
and total dispersion were varied to study the output spectrum of the setup.

3 Results and Discussion

The relationship of the evenness of the BRFL channels amplitude and the normalized
frequency response of the MPF is shown in Fig. 2. The wavelength spacing is set at
0.08 nm, number of optical taps at 50, and total dispersion of 450 ps/nm in a 25 km
singlemode fiber (SMF) as the dispersive medium. A perfectly flat top or even optical
channels is simulated by setting all relative optical power coefficients at 1, while the
uneven optical taps were generated as random coefficients between 0.8—1.0, which is a
reasonable amplitude variation in BRFL channels [8, 11, 13—15]. By looking at Fig. 2(b),
it is observed that noiselike ripples exist at the side lobes of the frequency response
generated by uneven taps, as compared to smooth sidelobes generated by flat top optical
taps. However, when comparing the center passband around 27.78 GHz, no significant
difference is observed. Therefore, an MPF constructed using BRFL optical channels that
are slightly uneven will still be serviceable for practical situations.
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Fig. 2. (a) Filter response and (b) magnified view with even optical taps and uneven optical taps
at AX = 0.08 nm and n = 50.
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Fig. 3. (a) MPF filter response and (b) magnified view with 0.08, 0.16 and 0.24 nm wavelength
spacing at n = 50.

Frequency responses of MPF with different wavelength spacing are depicted in Fig. 3
(a) and (b). The choices of wavelength spacing are based on commonly reported fre-
quency spacing from multiwavelength fiber lasers of single wavelength spacing (10 GHz)
[13], double spacing (20 GHz) [8, 11, 14, 15] and triple spacing (30 GHz) [ 10, 12], respec-
tively. Tunability can be achieved by varying the wavelength, as evident in Fig. 4(a). The
increase in wavelength spacing to 0.16 nm shifts the center passband from 27.8 GHz
to 13.9 GHz, and a further increase to 0.24 nm shifts the passband to 9.25 GHz. The
3-dB bandwidth or the Q factor of the frequency response can also be tuned using dif-
ferent wavelength spacing. In Fig. 4(b), the 3-dB bandwidth of the frequency response
narrowing from 276 MHz to 86.8 MHz as it increases from 0.08 nm to 0.24 nm.

Figure 4(a) and (b) illustrate the frequency response spectrum and its magnified view
at 50, 100 and 200 number of optical channels. BRFL have been shown to be able to
go up to 200 optical taps [10, 12]. The results are generated using the 0.8—1.0 uneven
optical channels and 450 ps/nm SMF. The tunability of the bandwidth in this design can
be achieved by increasing the number of taps. The 3-dB bandwidth of the frequency
response decreases from 276 MHz to 8§9.6 MHz. Note that the peak amplitude of the
first passband also increases when the number of optical taps increase.

Frequency response of the MPF can be adjusted by using different length of fiber as
the dispersive medium as depicted in Fig. 5. Frequency response at total dispersion of
360 ps/nm, 450 ps/nm, — 390 ps/nm and —585 ps/nm were simulated. These parameters
were based on 20 km SMF, 25 km SMF, 10 km dispersion compensated fiber (DCF) and
15 km DCEF, respectively, while other parameters were set atn =200 and Ak = 0.028 nm.
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Fig. 4. (a) MPF filter response and (b) magnified view of 50,100 and 200 optical taps at AN =
0.08 nm.

As shown in Fig. 5(a), the higher the dispersion, the smaller the FSR. When the length
of the SMF increases, so does the attenuation, therefore alternate delay lines can be
used such as a linearly chirped fiber Bragg grating(LCFBG) which can reach very high
dispersion without the attenuation. This also gives the device another option of tuning
its FSR such as manipulating LCFBGs with applied strain, temperature, electrical and
magnetic effects [17-19].

Table 1 shows all the computed FSR and 3 dB bandwidth by varying the number of
optical taps and wavelength spacing. The lowest achievable FSR and 3 dB bandwidth was
found to be 9.25 GHz and 29.6 MHz, respectively, when n = 200 and AX = 0.024 nm.
Compared to previous MPF based on BEFL, which yielded a FSR of ~1.99 GHz and
bandwidth of about 220 MHz [5], a higher selectivity in a BRFL based MPF is shown
due to the high number of optical channel generated. The tunability of the MPF by using
a BRFL is significantly improved as compared to a BEFL, as the higher number of
optical channels translates to a wider range of tunability. Please note that in the previous
BEFL work, a tuning bandwidth of ~24 MHz per optical channel was achieved [5]. The
MPF in this setup is able to achieve tunability in terms of bandwidth as the number of
optical channels can easily be changed by changing the pump power [8, 11, 13—15].
Figure 6 shows the relationship of the 3 dB bandwidth and number of taps, which shows
that the bandwidth decreases exponentially against the number of channels. This means
that at high number of taps, fine tuning of the frequency response bandwidth can be
achieved. At 10 optical taps and 0.08 nm wavelength spacing, a large 3 dB bandwidth
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Fig. 5. (a) MPF filter response and (b) magnified view of 360 ps/nm, 450 ps/nm, —390 ps/nm
and —585 ps/nm at n = 200, AX = 0.08 nm

Table 1. FSR and 3dB bandwidth using different BRFL wavelength spacing and channels.

Wavelength spacing (A\) No. of channels | FSR (GHz) 3 dB bandwidth (MHz)
0.08 nm 50 27.80 4379
100 27.80 225.0
200 27.80 1134
0.16 nm 50 13.90 224.1
100 13.90 111.9
200 13.90 57.5
0.24 nm 50 9.25 149.0
100 9.25 76.6
200 9.25 38.1

of 1920.8 MHz is achieved while 38.1 MHz is achieved at 0.24 nm and 200 optical taps,
which corresponds to a tuning range of ~ 1.88 GHz.

With its high selectivity and tunability, a potential novel spectral zoom function can
be realised. Whereby any RF region of interest can be selected and centered on with the
appropriate bandwidth [20].
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Fig. 6. MPF 3-dB bandwidth at different number of taps and wavelength spacing.

4 Conclusion

This study proposed and modelled an improved MPF based on multiwavelength BRFL.
Fine tuning of filter bandwidth can be achieved by tuning the number of optical channels,
offered by amultiwavelength BRFL translates to a wider range of tunability of ~1.88 GHz
in the MPF. Using realistic parameters based on reported works, a narrow bandwidth
of 38.1 MHz was demonstrated, showing the potential for a high selectivity filter. The
study shows that there is potential for multiwavelength BRFL to achieve a highly tunable
MPF that is controlled using a combination of different optical channel, wavelength and
dispersion.
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