)

Check for
updates

A Review: Methods of Acceptance Testing

Ryan Then Ye Tong, Yeow Kai Yuan, Ng Wen Dong, and R. Kanesaraj Ramasamy®?

Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Malaysia
r.kanesaraj@mmu.edu.my

Abstract. This study article seeks to establish promising research areas by iden-
tifying the acceptance testing method with the best performance in the literature.
Accuracy and correctness, which are the most important metrics in acceptance
testing, are used to evaluate performance. Acceptance testing is a method of eval-
uating a system to see if it meets the requirements. In other words, it is a process
for determining whether or not software fits the client’s requirements.

There are various types of acceptance testing, including User Acceptance Test-
ing, Alpha Testing, Beta Testing, and Business Acceptance Testing. The accep-
tance testing tasks are carried out in stages so that if the present conclusion is
satisfactory, it can be used for the more difficult testing activities. One sort of
acceptance testing, namely User Acceptance Testing, will be covered in this study.
As aresult, itis critical to employ these testing procedures in order to assist prevent
software failures and needless losses. In the literature review section, a variety of
reviews on the topics of acceptance testing using various approaches have been
studied and addressed. Recommendations would be made based on the research
study of the many testing techniques, with the goal of proposing one specific
suitable testing method among the many that have been examined.

Keywords: User Acceptance Testing - Diabetes Mobile Health system -
Acceptance Test Generation - Natural Language Processing - Object Constraint
Language - Test case prioritization

1 Introduction

1.1 Problem Statement

Software acceptance testing plays a pivotal role in the fate of a software product. The
outcome of an acceptance test is critical for the customer in deciding whether to accept or
reject the software product [11], and by extension, this determines the success or failure
of the product. To ensure that the software is judged with the highest possible standard
of objectivity against the acceptance criteria, which is the criteria that the product must
satisfy in order to be accepted by the customer [11], it is necessary for the acceptance
testing method to be capable of performing the comparison with the highest possible
degree of accuracy and dependability [10]. As such, a great deal of focus has to be paid
on the rigorousness of the test case scenarios and inputs generated by an acceptance
testing model.

© The Author(s) 2022
A. Asmawi (Ed.): ICTIM 2022, AEBMR 228, pp. 76-86, 2022.
https://doi.org/10.2991/978-94-6463-080-0_7

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-080-0_7&domain=pdf
https://doi.org/10.2991/978-94-6463-080-0_7

A Review: Methods of Acceptance Testing 77

1.2 Objectives

e To study different coverage metrics with respect to acceptance testability.

e To recommend methods or algorithms that facilitate better acceptance testing
performance.

e To provide empirical and theoretical information on acceptance testing.

1.3 Expected Findings

In this study, we have reviewed several research papers, proposals and exploratory articles
on acceptability testing. Several approaches that may be utilised while undergoing testing
have also been highlighted. The primary goal of this approach is to check and confirm
that the software tested has satisfied the needs of the client while also being dependable.
Furthermore, descriptions of journals that were discovered are given in the report to
assist the reader in comprehending all of the approaches that were discussed. That is
to say, each method from the review would be analysed according to the ways on how
the method works, the ways on how the algorithm is designed, and the ways on how
the algorithm is being implemented. Based on the research findings, we would then
select one preferable testing technique which is considered the best among all the other
methods gathered from the literature reviews, as the recommendation of this report.

2 Literature Review

One of the more straightforward methods of implementing a User Acceptance Testing
(UAT) method is described by Otaduy & Diaz [3]. Verifying software in a real-world
environment by the intended audience is known as user testing. The goal of this testing is
to guarantee that the software fits the established criteria as well as the client needs. Some
extra approaches must be introduced in order to lower the cost of developer- customer
communication when this testing is being conducted. When doing this User Acceptance
Testing (UAT), developers will create the UAT scaffolding that will guide consumers
through the testing process. To ensure that the consumer has a better comprehension of the
testing, a mind map editor named FreeMind is often used. Normally, the software testing
includes different levels of testing which are unit, functional, integration and system.
The above-mentioned tests are not performed until the client needs are completed in
a real- world situation, and they cannot determine if the customer criteria are met or
not. The programme will only be tested in a real-world situation by the target audience
during the UAT. First, acceptance tests are developed to outline the program’s intended
functionality. UAT is conducted after the product has been developed and launched in
order to verify and accept the software. The authors of this study report offered a way
for supporting self-paced UAT. UAT sessions are described in terms of mind maps,
which are usually referred to as test maps. The study’s main contribution is a method
that combines mind mapping and wikis to allow customers to do UAT independently.
Wikis were recognised to be advantageous in the workplace for organisations in need
of a collaborative medium. This is followed by a DSL for an UAT with concrete syntax
realised using mind maps, which is then implemented. The third and final stage will be

78 R. T. Y. Tong et al.

Development

Iteration Potential

backlog release
Iteration
Planning

START
Product
Requirement @
gathering
[

ncorporate
Changes e

List of
changes

Fig. 1. Outline of the Process.

6

elease

the implementation of self-paced testing using Wiki, Fitnesse and the Freemind mind
map editor. Testmap is used to connect both systems. This study’s primary emphasis is
on UAT inside Agile techniques. In these methods, small sets of needs are developed in
a short amount of time, known as ‘iterations’, and these small groups of requirements
are iterated upon (Fig. 1).

The author also indicated in the article that UAT sessions would gather three sorts of
data: scaffolding, UAT cases, and UAT scripts. Mind maps may be used to collect all of
the above described data. Scaffolding refers to both the Sprint features that are going to
be tested and the ready to go kickoffs that compose the scenario of UAT. In general, the
feature to test becomes a node on the map from which its many kickoffs hang up. A set of
test variables, circumstances of the execution, and expected outcomes in UAT scenarios
are all documented as part of the UAT test set. UAT Actions are test cases that describe
a series of actions and will be arranged into Pages to help customers comprehend.
UAT Scripts are executable artefacts produced by UATCases. Each UATScript runs a
UATCase with a distinct set of input data to test the application’s behaviour in various
circumstances. To conclude, Agile approaches place high demands on user acceptance
testing, if only because of the regularity with which it must be performed. During user
acceptance testing, in-person meetings with customers and engineers may need to be
supplemented by asynchronous means for them to communicate.

Acceptance testing is one of the black box testing according to the situations such as
system action sequences done by the user. Testing the systems of 10T, such as DiaMH,
comes with remarkable challenges due to the involvement of various interconnected
components, and the possibility of independent failure [5]. For instance, DiaMH (Dia-
betes Mobile Health) is an IoT system that keeps track of the level of glucose of the
patient, alerts both the patient and doctor when the level of glucose is out of the speci-
fied range, and adjusts the insulin dosing. Generally, an entire plan of testing includes
the unit testing on the components at the early phase, the integration testing on the
components altogether, and most importantly, the acceptance testing carried out at two
distinct stages. For the first stage of the acceptance testing, the testing on the virtualized
IoT systems would be conducted using the virtual device to examine the algorithms of
the system such as the communication among each module. During this stage, physical
issues such as hardware problems would not be perceived. Besides that, the second stage

A Review: Methods of Acceptance Testing 79

[1==TOT AND 0 <= countValues(READ, THRESHOLD) < 4] /
0

StartApp() /
@ TOT =20;1=0; THRESHOLD = 160: iniREAD) . [~ Normal

>

[countValues(READ, THRESHOLD) >= 4] /
inject():; DISCARD = 5: 1 =0

Z VAL = readGlucoselvi() /
READ[I++] = VAL

[1 == TOT AND 0 <= countValues(READ, THRESHOLD) < 4] /
1=0

Insulin — VAL = readGlucoseLwi() [DISCARD == 0]
ZJ READ(I++] = VAL
[€] VAL = readGucoseLwi() [DISCARD >0 1/
DISCARD--

(1 == TOT AND 4 <= countValues(READ, THRESHOLD) <= 15 [| MOre!
inject(): DISCARD = 5; 1 =0

(I == TOT AND countValues(READ, THRESHOLD) > 15}/ [1 == TOT AND 4 <= countValues{READ, THRESHOLD) <= 15]
inject(); sendAlarm{); DISCARD = §; | = 0 injecti); DISCARD = 5:1=0
(== VAL = readGlucoseLvi() [DISCARD == 0] /
‘ Problematic] READ(1++] = VAL
== TOT AND 0 <= counValues(READ, THRESHOLD) < 4]/ | [€] VAL = readGiucoseLwi() [DISCARD >0/
1=0 — DISCARD-

[== TOT AND countValues(READ, THRESHOLD) > 15]
inject(); sendAlarm(): DISCARD = 5; 1= 0

Fig. 2. The key anticipated activities of DiaMH.

of the acceptance testing would be conducted using the proper set of the real devices,
hardwares, and applications. In short, the intention of the first stage is to test software
created such as the applications of DiaMH running on various mobile devices, while
the intention of the second stage is to test the system in real-life situations including the
connection between the applications and the hardwares.

From the perspective of acceptance testing, it requires a detailed representation of
the system actions. With that, the actions of the system throughout the testing tasks are
formalised as a state machine based on the study of several techniques of modelling
tests. As shown in Fig. 2, the condition of a patient could be represented by the states of
Normal, Morelnsulin, as well as Problematic. When the application of DiaMH is started,
the initial condition of a patient is set to Normal, and then the level of glucose is monitored
every second with a sampling rate of 1 Hz so to adjust the condition accordingly. Once the
actions and states of the application have been formalised according to the state machine,
the test scripts would be performed in accordance with the available structure of testing,
where it contains the test case with a list of instructions. Hence, input data is expected in
order to derive the concrete test cases that are operable. Suppose the acceptance testing
on the localisation of Ul elements is conducted on a web application, there would be two
core processes which are visual-based and structure-based, where the former is used for
determining the elements by using the techniques of image recognition, and the latter is
used for locating the elements by using the information found. With that, Fig. 3 shows
the simple test script which implements the test case of from_S_To_Problematic.

As shown in Figure 3, each implementation of the scenario is separated to attain
maintainability and reusability of codes, as well as the design principle of Separation
of Concerns. Since the state is dependent on the time elapsed, the test scripts are also
dependent on the timing from the moment of starting the application. Apart from that,
mutation testing is also applied to access the test script quality. It is useful in discovering
errors that could be produced in the phases of development and maintenance. All in all,
it comes to a conclusion that the testing is able to accomplish an effectiveness of 93%
after eliminating the mutants that could cause the unexpected actions on the DiaMH
application [5].

On the basis of research [4], there are five important points that are generalised
such as context, objective, method, results and conclusion. According to the context,

80 R. T. Y. Tong et al.

public void from_S_To Probleman:()(
((xnmonFur\zrmn init(); // sets threshold to 160 mg/dl and number of readings to 20
DiaMH app = new DiaMH();
Timer t = new Timer();
GlucoseSensor gs = new GlucoseSensor();
gs.setSamplingRate(1); ets glucose sen 3 ing rate at 1 read/sec
gs setPatternTo(“Problenatic”) sets mock g ensor to “problemat
ble E = 0.5; ing delay

2 app has starte driver. findElement(By.id("diamh:id/normal’))
ormal®));

driver.findElement(By.id("diamh:id/more-ins))

o '<_
t.ua)t[lapscdhm?romStar(Is(Z‘) + z)

assertTrue(app.isStateProblematic("Problematic”));
} - driver. findElement(By.id("diamh:id/problematic))

t. srar(()
app s!art()

asserlTrue(app lssta(e»ormal

// asserts that an ir
t. ualtElapsedTmeFromS
assernrue(app 1sStateMore!nsulln(

tart of the 2

Fig. 3. The test script of the method of from_S_To_Problematic.

with the development of software-based systems, the requirements are changed. The
change in demand will impact the relevant acceptance tests that must be adjusted appro-
priately. However, the acceptance tests for them are not always current or consistent,
and such a lack of coherence can lead to quality issues in software, unplanned costs
and project delays. Based on this purpose, a GuideGen method is developed to keep
consistency with changing requirements and its acceptance tests. When requirements
change, GuideGen automatically creates natural language information on how to update
the tests of acceptance. Besides, the outcomes of the evaluation demonstrate that Guide-
Gen’s recommendations are greater than 80 percent accurate for the agile requirements
in the real world, and approximately 67 percent accurate for conventional specifications.
It shows that the provided method uses a complete guide to upkeep of acceptance tests
and staying consistent with ever-changing specifications.

Based on the method study, GuideGen is implemented as a test tool and there are
also two studies that are analysed. At first, utilising three industry data sets to examine
the created guidance scheme for its correctness, completeness, understandability, and
relevance; second, by engaging 23 practitioners from ten firms to assess the approaches
and tool’s applicability and utility. The current method investigated for change impact
assessment can determine the tests that are truly influenced by changes in a rule as a first
step toward solving this restriction. In the first study of the result, in around 67 to 89
percent of all adjustments, GuideGen provided accurate guidance. By this metric, this
method outperforms traditional methods on agile requirements. In the second study of
the result, GuideGen is considered valuable. However, practitioners might recommend a
GuideGen plug-in for profitable solutions over an independent application. In addition,
the impacted acceptance tests can be identified for 63 percent to 91 percent of the criteria
changes in trial. It can be difficult to determine which acceptance test is impacted in
response to new requirements if the relationship is one- to-many. Both NARCIA and
ImpRec have been analysed and shown to be useful for change effect analysis and it is
shown that NARCIA might have a 90 percent accuracy rate; however, further research is
needed to determine if ImpRec can be used for this purpose or not. The technique makes
it easier to connect acceptance tests with actual requirements and can help specifications
engineers and testers communicate more effectively.

Subjectivity, which is another important aspect of acceptance testing, is covered by
Acceptance Test Generation (UMTG), which is a model that generates requirements

A Review: Methods of Acceptance Testing 81

specifications from statements written in natural language. It is an automated accep-
tance testing approach that focuses on embedded systems, as described in the journal
[2]. A domain model and use case requirements are used by the authors to automate the
production of test cases in the embedded system domain. They employ constraint solv-
ing and Natural Language Processing (NLP) to automate the identification of use case
scenarios and test inputs. They also utilise NLP to extract behavioural information from
use case requirements using a limited use case modelling technique called Restricted
Use Case Modelling (RUCM). They create Object Constraint Language (OCL), a declar-
ative language for describing rules that apply to Unified Modelling Language (UML)
restrictions and capture the pre and post conditions of use case phases, using an advanced
NLP approach termed semantic role labelling. It was decided that the branch, def-use,
and subtype coverage criteria would be used to determine which use cases to consider.
Route conditions that incorporate OCL limitations are used to implement alternate flows
in each scenario generated by this tool. The test inputs are determined by using the Alloy
analyzer to solve the route conditions (Fig. 4).

The authors demonstrate that UMTG efficiently creates acceptance test examples
for sensor systems in automobiles in two industry case studies. UMTG can produce 96
percent of the OCL restrictions for test case creation automatically and accurately. The
OCL creation procedure has a high level of accuracy, with 99 percent of the created
constraints being correct. The coverage criteria introduced in UMTG allow engineers to
identify use case situations that might otherwise go unnoticed, demonstrating its use in
the safety sector.

As a consequence of insufficient requirements, the def-use coverage age and the sub-
type coverage criteria are used to build test cases that cover all of the situations and input
partitions tested by expert-written test cases. Automated test suites may be created to
mimic manual test suites without increasing testing costs. The experience demonstrates
that requirements modelling, which in UMTG is essentially limited to RUCM use case
descriptions and domain modelling, is feasible in a commercial environment. Further-
more, manual test case creation is much more time consuming than utilising UMTG
since use case requirements and domain models are often employed for other purposes.

In ajournal paper [7], Geetha et al. examined regression testing to address its primary
issue, which is a lengthy and costly testing process. With regression testing, whenever
changes are made in the code, the testing process ensures that the code still functions
as expected after any code updates. To do this, the testing involves the re-execution of
previously executed test cases to ensure existing functionalities still work as expected.
Because of this, regression testing is a very resource-intensive form of testing, as the
test cases increase with the complexity of the code, making the overall test suite more
cumbersome and time-consuming.

To address this issue, the authors identified acceptance-based test case reduction and
prioritisation as the most efficient technique in terms of fault detection rate because it
provides the earliest detection possible. New prioritisation techniques, which are based
on fault prediction in acceptance testing, were developed on this basis. The authors
propose a combination of both reduction and prioritisation techniques with optimization
techniques in this paper. Test case reduction and prioritisation is meant to find faults as
early as possible if test cases are prioritised properly. To accomplish this, the authors took

82 R. T. Y. Tong et al.
1. Elicit Use Cases | o
il 2. Model the Domain \ —_’ J
2 SIS
3. Evalt he Domain
C : / Model

Model Completencss

Use Cases ‘ r

List of Missing ‘) 4 Refine Model
Entities | ‘

B

CAPACITANCE 1S ABOVE 600 : capacitance > 600 6. Specify |
NO FRROR IS DETECTED: crrocisDetected = false| ™= Missing

TEMPARATURE IS VALID Constraints :
OCL:Constraints: @ ====ssc=soecece :
1. Generate the

[CAPACITANCE IS ABOVE 600
NO ERROR IS DETECTED: error
Use Case Test Model TEMPARATURE IS VALID: 1 5>= 0

l OCL Constraints

Use Case ~

Test & 8. Generate

1\'10(30”3 5 Scenanos and Inputs

[a] (6 ‘ ‘
9. Specify Mapping Table: 1—_’ 1 a1
S e o
121
‘ Object [5]3]Use Case

Diagrams 6 ErrSccn;:riw

N

Legend:
) data flow

activity performed by [Executable Test Cases
the software engineer

Mapping [TT I

Table

Step
activity automated by

Step UMTG

Fig. 4. Overview of UMTG Strategy.

the approach of studying genetic algorithms and multi-walk algorithms individually, and
then studied the performance of an algorithm where the two techniques were combined.

3 Recommendation

After evaluating and analysing all the methods, it is concluded that the Combinatorial
Logic Oriented Acceptance Test-Driven Development (CLO-ATDD) model as described
in [1], has outperformed the other testing techniques. This model devises a test case for-
mulated upon the rules of combinatorial logic. Combinatorial Testing is an approach
that is specification-driven. It enables the methodical selection of test sets of programme
inputs. It is a valuable approach for evaluating hardware or software systems since it
detects faults depending on input or output parameter combinations. Testers can discover

A Review: Methods of Acceptance Testing 83

Request Request
. Web Semer
Client Dalabase
o s . (Express Nodz ;s)
(Vue JS Framework) framework) {MongoDE)
Response Response

Fig. 5. The client-server architecture of CMSS.

probable n-way combinatorial interactions between input variables using the combina-
torial testing approach. In the CLO-ATDD paradigm, user acceptance tests that uti-
lize combinatorial logic-oriented rules are written in Gherkin syntax which is given
in the business language. Gherkin syntax offers a systematic approach for illustrating
real-world application business rules.

As all phases in the Software Development Life Cycle (SDLC) can benefit from com-
binatorial logic, hence it is a must to concentrate on how to better include combinatorial
logic into it. For the communication phase of the proposed model, the SRS document
is important. To generate combinatorial logic-oriented rules, the collection of situations
specified in the SRS will be applied to the combinatorial logic. These logics will be
applied to the systems using combinatorial testing. Test cases are created from the user
acceptance test’s requirements document. For the planning phase, team members with
combinatorial testing skills are favoured. As developing new techniques takes time and
money, previous combinatorial testing techniques like AETG and ACTS are utilised to
ensure that systems are completed on time and within budget. For the modelling phase,
to illustrate the requirements specification, UML diagrams with combinatorial logic are
created. Combinatorial logic is used to construct the needs specifications at this level.
There will be a large number of parameter-value combinations created for a small set of
parameters and values. For the construction phase, the principles of combinatorial logic
are used to design user acceptability tests.

To put it another way, user acceptability testing refers to putting software to the test
on behalf of the intended audience in order to determine whether or not it is acceptable.
Finally, for the deployment phase, It is expected that the final programme will be deployed
after user acceptance testing has been completed. This is the responsibility of the manager
responsible for deployment.

For the implementation plan for the Concession Management Subsystem (CMSS),
it contains multiple concession types and categories acting as the parameters where each
category consists of several types. However, it has several constraints such as a male-
type could not gain the available benefits from a widow-type due to an unworkable set
of parameter values. CMSS uses the client-server architecture for the implementation
where the client-side uses VueJS and the server-side uses NodeJS. As shown in Figure 5
and Figure 6, the former is presenting the architecture of CMSS while the latter is
presenting the GUI of CMSS.

The HTTP request containing the parameters, the query, the headers, and the body,
is sent from the client- side to the server-side. A response would be generated to store
the data corresponding to the concession data from the request. The concession type is
well-categorised so that the special type like widow could be applied based on the gender
of females only. The ticket has different prices for the child-type and adult-type where

84 R. T. Y. Tong et al.

Durm e ave Comtn

- @ e

2 = . -

i [e s (i [[s s

P Camp. T aec) e ST

B Ftaaet atieee 7TV Koty Pattare 73N asmastsins Satm 75

R L Vatgaes Swt - 75% Loy Pttt T2V Apiteemc Amamrin Patsers 20N Sickte Cut Armersis Pameen - 3%

yours e sbove - 5%

Concessions Appeoved: 3
+ Cancer Patent - 100%
= Wofmen-38 years and sbowe - 99%

== ===
Fig. 6. The graphical user interface (GUI) of CMSS.

[Multple ul

ppl o Adult Adu
passenger type | Chikd Chuld

Fig. 7. Categories and types of concession with selection mode.

the childrens from age between 5—12 years are priced only half the price of adult-type,
and the ticket for the childrens from age below 5 years is free-of-charge (Fig. 7).

e Step 1: The types of journey class are classified into a dictionary containing the names.

e Step 2: The dictionary containing the categories with keys is declared. For example,
Disability, Patient and others.

e Step 3: The empty dictionary containing the list of values of each type is defined.

e Step 4: The function calculates the values for the patient-category and the disabled-
category, as two-way for pairs and three-way for triplets. The length of the list is
calculated, sorted, and then multiplied by a concession value to reach the eventual
concession.

e Step 5: The function which accepts n and r for calculating the combination, nCr, is
declared as printCombination().

e Step 6: The function, namely combinationUtil(), accepts an array, a temporary data,
starting index, and ending index. All these calculated values are stored in the dictionary
of where the keys are located.

A Review: Methods of Acceptance Testing 85

e Step 7: Declare a final concession list with the same values as the final outcome. All
information for the broad category, as well as a combination of wide category and
concession issued, will be saved as values.

e Step 8: Iterate the loop to obtain the possible value of combination as calculated in
Step 5, from the dictionary of final_result.

e Step 9: Iterate the loop to obtain the journey class from the dictionary of class_dict,
to determine the customer type.

e Step 10: Declare two lists to add all sets in opposition to the corresponding travel
class along with concession.

e Step 11: After going through the initial list, make a new list with the travel class,
customer type, concession value, and specific combination. Use a second loop to get
the whole list, which includes all of the information about a certain combination that
will be saved later in another list called final.

e Step 12: Create the broad category final list and save in concession list

e Step 13: Modify the concession list using a loop based on the requirements. All test
cases that have the same concession for all travel classes will be combined into a
single test case.

e Step 14: Output all the outcomes to the data file, test cases to another file, and append
the unsuccessful cases in the end.

This proposed technique is able to enhance the testing results with a total of 665 test
cases created with the use of two-way approach, as well as a total of 1435 test cases
created with the use of three-way approach. As stated by the authors in [3], this technique
could yield complete efficiency and reliability, where the UAT is totally assured.

4 Conclusion

In conclusion, there are many acceptance testing models described in literature and
used in the software development industry. Many models have been used for acceptance
testing according to the needs of the developers and the nuances of different software
products. Finding a suitable testing model for testing software is very important.

Out of the large variety of methods used for software acceptance testing that can
be found in literature, we identified one as the best-performing method in terms of
efficiency and reliability, which are priorities in software acceptance testing. Although
other methods have merits in terms of ease of implementation and simplicity, as they
are already established and well-described in literature, their performance tends to be
somewhat compromised.

References

1. Tatale S, Chandraprakash V. Enhancing acceptance test driven development model with
combinatorial logic. Int J Adv Comput Sci Appl. 2020;11(10):268- 78.

2. Wang C, Pastore F, Goknil A, Briand L. Automatic generation of acceptance test cases from
use case specifications: an nlp-based approach. IEEE Transactions on Software Engineering.
2020 May 29.

86

10.
11.

R. T. Y. Tong et al.

. Otaduy I, Diaz O. User acceptance testing for Agile- developed web-based applications:

Empowering customers through wikis and mind maps. Journal of Systems and Software.
2017 Nov 1;133:212-29.

Hotomski S, Glinz M. GuideGen: An approach for keeping requirements and acceptance tests
aligned via automatically generated guidance. Information and Software Technology. 2019
Jun 1;110:17-38.

Leotta M, Clerissi D, Olianas D, Ricca F, Ancona D, Delzanno G, Franceschini L, Ribaudo
M. An acceptance testing approach for Internet of Things systems. IET Software. 2018 Oct
4;12(5):430-6.

Wang HW, Teng KN, Zhou Y. Design an optimal accelerated-stress reliability acceptance test
plan based on acceleration factor. IEEE Transactions on Reliability. 2018 May 24;67(3):1008-
18.

Geetha U, Sankar S, Sandhya M. Acceptance testing based test case prioritization. Cogent
Engineering. 2021 April 18; 8(1). Available from: https://www.tandfonline.com/doi/epub/10.
1080/23311916.2021.1907013?need Access=true.doi:10.1080/23311916.2021.1907013
Belzunce F, Lillo RE, Ruiz JM, Shaked M. Stochastic comparisons of nonhomogeneous
processes. Probability in the Engineering and Informational Sciences. 2001 Apr;15(2):199-
224.

Hsia P, Kung D, Sell C. Software requirements and acceptance testing. Annals of Software
Engineering 3. 1997; 291-317.

Hetzel W, The Complete Guide to Software Testing, QED Information Systems, 1984.
Systems and software engineering — Vocabulary, 2nd ed., IEEE, Park Avenue, New York,
USA, 2017, p. 5.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.tandfonline.com/doi/epub/10.1080/23311916.2021.1907013?needAccess=true.doi:10.1080/23311916.2021.1907013
http://creativecommons.org/licenses/by-nc/4.0/

	A Review: Methods of Acceptance Testing
	1 Introduction
	1.1 Problem Statement
	1.2 Objectives
	1.3 Expected Findings

	2 Literature Review
	3 Recommendation
	4 Conclusion
	References

