)

Check for
updates

A Hybrid Teaching Model for the Software
Requirement Analysis and Modeling Course

Haibo Li®® and Miao Chen

College of Computer Science and Technology, Huaqiao University, Xiamen, China
lihaibo@hqgqu.edu.cn

Abstract. The Software Requirement Analysis and Modeling course, as a core
course of software engineering, is extremely difficult to provide knowledge to stu-
dents because of its ambiguity, uncertainty, variability and subjectivity. To solve
the problem, a hybrid teaching model is proposed in which flipped classrooms,
case-centered teaching, and scenario-based teaching are integrated used. In addi-
tion, designing software prototype as a part of requirements verification is added
into course. By comparing to traditional prototyping tools, the preliminary soft-
ware requirement and modeling can be validated better. Through practice, the
hybrid teaching model can further improve students’ learning and has guiding
significance for the reform of the courses in software engineering.

Keywords: software engineering - software requirements analysis - software
modeling - software prototype

1 Introduction

At present, all colleges and universities in China are promoting the construction of
“first-class undergraduate majors” with engineering education professional certifica-
tion. Under the OBE teaching model, the selection of teaching contents, the allocation
of teaching resources and the organization of teaching steps are all proceeding revolving
around the teaching goals achievement [1]. The Software Requirements Analysis and
Modeling course, as an important core course of software engineering, has the character-
istics of boring basic theory and strong practicality. Therefore, the traditional teaching
method based on lectures already has many shortcomings [2]. Simultaneously, as soft-
ware requirement is vague, uncertain, variable and subjective [3], there is no mature
method to follow to capture user requirement. For students without software design
experience and social experience, it is even more difficult to learn such knowledge [4].
Therefore, Software Requirements Analysis and Modeling course reconstruction accord-
ing to course objectives, content and student characteristics has become the top priority
of course reform.

Based on the 15-year teaching history of this course, the problems existing in teaching
procedure is analyzed in this paper. The course reconstruction and teaching mode design
around the teaching goals are proposed, which include specifically how to carry out case-
centered teaching method and scenario-based teaching method, and how to organize

© The Author(s) 2022
V. Balakrishnan et al. (Eds.): ICMEIM 2022, AHSSEH 6, pp. 548-552, 2022.
https://doi.org/10.2991/978-94-6463-044-2_69


http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-044-2_69&domain=pdf
https://doi.org/10.2991/978-94-6463-044-2_69

A Hybrid Teaching Model for the Software Requirement Analysis 549

a flipped classroom. The valuable methods are also provided for the construction of
software engineering courses.

2 Analysis of Traditional Teaching Model

User requirements are the source of software development. As many requirements are
difficult to describe clearly and objectively, the main means of requirement acquisition
is the combination of methods such as interviews, rapid prototyping, and requirements
tracking matrices. This makes the teaching process of the software requirement analysis
and modeling courses generally suffer from boring knowledge, uncertain theoretical
approaches, and low student interest. Four particularly important aspects were addressed.

1. It is difficult to arrange course practice for students to experience the real software
requirements analysis process due to the lack or absence of course practice.

2. If teachers lack software project development experience, they seldom use real-life
examples to illustrate the requirements analysis process in the teaching process.

3. Requirements verification is very weak. The current method mainly uses the pro-
totype method to verify the requirements. However, the prototype tool is good at
showing the human-computer interaction, not the verification of the software model.

4. Therole of human factors in needs analysis is often disregard. Students do not realize
the role of interpersonal communication in the requirements acquisition process.

3 Design of Teaching Model

3.1 Teaching Model

The training goals of the Software Requirements Analysis and Modeling course include
software modeling for complex software engineering problems, defining and formulating
problems to be solved in complex software engineering projects, etc. [5]. To achieve
these goals, a hybrid teaching model is proposed to solve the problems in the traditional
teaching model, as shown in Fig. 1.

The software requirements analysis process consists of four phases: requirements
acquisition, requirements analysis, requirements specification, and requirements verifi-
cation [6]. Among them, the sources of requirements acquisition include users, hardcopy
data (forms or report), relevant documents and domain experts. Interviews are the main
way to obtain requirements from people and are full of uncertainty and subjectivity.
Therefore, it is ideal for students to experience this process by designing specific scenar-
ios and role-playing, to learn to flexibly grasp the different ways of obtaining information
from different sources.

We select typical categories of projects, such as inventory management, procurement
management, intelligent transportation, smart medical, etc. We prepare some relevant
reports, rules and regulations and other documents in advance to performance and inter-
pret requirements acquisition process. Finally, although software requirements has no
permanent form, and its acquisition has no permanent approach, interpreting the pro-
cess according to the theory allows students to fully understand the ways and means of
acquiring software requirements.



550 H. Li and M. Chen

Knowledge Structure Training Goals Teaching Method

A

/
l Requirement Acquisition l

I

Suryoedy |~

paseq
-OLIBUODS

l Requirement Analysis l 3

l Requirement Specification l :

ﬂ Requirement Verification l o

SuIyoea], paseq-ose)) ‘

l Software Modeling F: :

WOOISSE[D)
paddiyg

Second !
Lo
Review |

’ spoyjow SUIYILs) [BO1)AI0AY _L‘

Fig. 1. Hybrid teaching model

Students are divided into teams, each of which is assigned a project to learn require-
ments analysis, requirements specification, requirements verification, software model-
ing, and building a prototype system. The course of studies covers the theory first, and
practice which depends on self-study through document review, MOOC, etc.

Building a prototype system complements requirements verification and is a closed-
loop design. Currently, most of the requirement verification use prototyping tools, such
as Axure RP, to facilitate requirement confirmation with users through rapid design
of human-computer interaction systems. We believe that there are shortcomings in
this verification method. Most of these tools specialize in human-computer interac-
tion design. However, more and more software projects now show data-intensive and
algorithm-intensive characteristics. The core parts in these projects lack effective means
of verification.

Therefore, in view of the shortcomings of the existing prototype tools, we extend
the software requirements analysis and modeling process to the software development
stage. It is a helpful complement to the traditional requirements verification by designing
our own preliminary software prototypes.

3.2 Course Reconstruction

According to the model proposed in the previous section, the teaching content should
be reconstructed. A seminar-style lecture mode is created with the help of software
project cases and a problem-oriented approach. The OBE-based teaching goals drive the
course content into two categories: requirements modeling and software modeling. A
case is a task for a team, for example, an inventory management system. In case-centered
mode, the team starts from the data flow diagram of requirements analysis to software
modeling, and finally the design of a prototype system to verify the requirements and
modify them, forming a complete closed loop. If there is insufficient course time, the
teaching of requirement acquisition could be limited to a typical case. In the scenarios,
the teacher team acts as the software project party A as far as possible, and sets up
“ideal” and “undesirable” practices to cooperate with party B, which is acted by students.
Specifically, these practices can be the completeness of the forms provided, the attitude
of the staff, the clarity of the description of the requirements, and a variety of other



A Hybrid Teaching Model for the Software Requirement Analysis 551

.

° oo mmTmmmommmoemeomooooooooooooooooooo- i |
e fjis 'l Requirement Acquisition %T_L'!H
% Cases i Software Project: ERP/Algorithm/Business Software ~ ™~ |

ey | Requirement Analysis
Data Flow Diagram/State Transition Diagrams/

’ Purchasing Management System ‘C>i Entity-Relationship Diagram/Data Dictionary Hi

Inventory Management System ‘

@ Requirement Specification

K N 1l Requirement verification
’ Intelligent Transportation System ‘E>: Axure RP/Design and Develop Prototype System
'm Software Modeling

’ """ ‘E:>i Class Diagram /Time-series Diagram /Activity Diagram :

Fig. 2. Software Requirement Analysis and Modeling course reconfiguration

ways to examine the student’s ability to grasp the software requirements. The course
reconstruction is shown in Fig. 2.

4 Effect Evaluation

The software engineering of Huagiao University has been approved as a construction
of national first-class undergraduate majors. Using the teaching model proposed in this
paper, the teaching team of Software Requirements Analysis and Modeling course has
completed 5 semesters of teaching practice at both undergraduate and master’s levels.
Specifically, the effectiveness is obvious very much, and includes the following aspects.

1. The students gained a deeper understanding of the requirements acquisition process
for complex software projects. Simultaneously, the students learned about respon-
sibilities of software requirement engineers and how to deal with the interpersonal
communication.

2. The students have a clearer understanding of the purpose and role of requirements
modeling and software modeling. The students could identify and determine the
core problems or bottlenecks, and the scope of requirements in complex software
engineering projects. They were able to improve the process through self-study,
verification and re-improvement.

3. The development of software prototype systems is added to the process of require-
ments verification. The students skilled in development tools were able to develop
a software prototype system using SSM framework or Python to verify the
requirements.

However, there are still some problems in the teaching practice process. For example,
both undergraduate and master students have deficiencies in using software development
tools. Only half of them could master the tools through self-learning, which has a greater
impact on the requirement verification of algorithm-intensive software project cases.



552 H. Li and M. Chen

5 Conclusion

Based on 15 years of experience in teaching Software Requirement Analysis and Mod-
eling courses, under the background of promoting the construction of “first-class under-
graduate majors” with engineering education professional certification, an OBE-based
hybrid teaching model is proposed in this paper. In this model, flipped classrooms,
case-centered teaching, and scenario-based teaching are integrated used. Especially in
software requirements verification process, students appropriately develop software pro-
totypes to validate software requirements according to the new characteristics of the cur-
rent development of the software industry. A complete cognitive and logical closed-loop
of the software requirements analysis process can form.

References

1. Yin, Zhigiang, Liu, Zenghui, Zhang, Zhixiong, Chang, Jucai, and Hu, Xuelong. Experiences
from a new project-driven and outcome-based educational concept in a blasting engineer-
ing study program [J]. International Journal of Emerging Technologies in Learning, 2021,
16(8):145-161.

2. Li, Xiaoyan; Bi, Bing; Xu, Zhiru; Wang, and Jingying. Construction of multi-dimensional
teaching reform system of Biochemistry based on outcome-based education [J]. Chinese
Journal of Biotechnology, 2020, 36(10):2226-2233.

3. Gren, Lucas. A Flipped Classroom Approach to Teaching Empirical Software Engineering [J].
IEEE Transactions on Education, 2020, 63(3):155-163.

4. Zheng, ShanHong, Zhao, Hui, Peng, Xinyi, Wang, Guochun, and Dong, Yaze. Exploration
and practice of four-in-one teaching model for the software engineering course [J]. Software
Engineer, 2019,22(9):41-43,40.

5. L.X. Xu and H.Y. Wu, "Collective intelligence based software engineering [J]. Computer
Research and Development 2020,57(3):487-512.

6. K.E. Wiegers, and J. Beatty, Software Requirements [M]. 3rd ed., Microsoft Press, 2016.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by-nc/4.0/

	A Hybrid Teaching Model for the Software Requirement Analysis and Modeling Course
	1 Introduction
	2 Analysis of Traditional Teaching Model
	3 Design of Teaching Model
	3.1 Teaching Model
	3.2 Course Reconstruction

	4 Effect Evaluation
	5 Conclusion
	References




