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Abstract. The deep learning model will contain user-sensitive information dur-
ing training. When the model is applied, the attacker can recover the sensitive
information in the training data set through model inversion attacks, and directly
or indirectly disclose the user-sensitive information. The existing methods can not
solve the problem that the privacy budget accumulates with the increase of train-
ing times. This paper proposes a method of research on deep learning differential
privacy protection method based on multiple data sources, aim at making pri-
vacy consumption independent of the number of training epochs to guarantee the
potential to work with large datasets. First, we calculate the privacy budget upper
bound to optimal experiment selection for parameter estimation. Second, we use
the upper bound to determine the number of group, also to balance the number of
group and the data size of the subdataset, avoiding data relying on a single model
causes leakage of user sensitive information. Finally, we ensemble several mod-
els with majority voting, and perturb single model the traditional convolutional
deep belief network (CDBN) objective functions, to descend the dependence of
privacy budgets on the training deep learning model and improve machine learn-
ing results. We applied our model to a health social network dataset and MNIST
dataset, and the results show that our method has high privacy protection ability
than the existing method for sensitive information on the training dataset. More-
over, standardization can be a feasible path for the generalized application of the
technique, which is beneficial for the stability of the application of differential
privacy protection techniques and the subsequent feedback updates.
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1 Introduction

Deep learning allows computational models that are composed of multiple process-
ing layers to learn representations of data with multiple levels of abstraction. These
methods have dramatically improved the state-of-the-art in speech recognition, visual
object recognition, object detection and many other domains such as drug discovery and
genomics. Some deep learning applications involve training data that is sensitive, such as
themedical histories of patients in a clinical trial. Amodel may inadvertently and implic-
itly store some of its training data; careful analysis of the model may therefore reveal
sensitive information. For example, Fredrikson et al. demonstrated a model-inversion
attack that recovers images from a facial recognition system.With the recent upswing of
privacy protection in deep learning, a new field of research, known as federated learning,
has sparked global interest.

Differential privacy is an evaluation framework invented by Cynthia Dwork, Frank
McSherry, Kobbi Nissim, and Adam Smith to evaluate the privacy guarantees provided
by privacy-preserving mechanisms that address the limitations of previous approaches
such as “k-anonymity”.Since Dwork et al. proposed differential privacy theory in ICALP
(International Colloquium Automata, Languages and Programming) in 2006 (Dwork
2006), the theory 2006–2015 academics combined differential privacy with traditional
machine learning algorithms, and in 2016 Google Research Institute Martín Abadi et al.
combined differential privacy with deep learning for the first time, and in the same year
combined semi-supervised learning algorithms with differential privacy, we can see that
combining deep learning with differential privacy techniques is a hot spot for research
and needs to go deeper, and the current state of research on combining differential privacy
with deep models will be summarized in detail in the next section.

2 Our Approach

In this section, we introduce the specifics of the multi-group differential privacy protec-
tion method with upper bounds approach, which is illustrated in Fig. 1. The framework
is divided into tow parts. The first one describes how the data is partitioned to train the
deep learning model, and last one is describes how prediction made by this ensemble
are noisily aggregated. The detail as follows: First, we calculate the upper bound of
the corresponding privacy budget from the attacker’s perspective, with α and β are the
adversary’s prior belief and posterior belief on X = ω given a query response. to reduce
the scope of the experiment. Second, the single training model makes the data features
dependent on only one model, which easily leads to leakage of user-sensitive informa-
tion. Therefore,we are grouped the original dataset, and trainingmodels on each sub-data
set can improve the accuracy of the results. we use the privacy budget upper bound to
determine the number of packets, to ensures the balance in number of packets with the
data size of the sub-dataset. Finally, we ensemble several models with majority voting,
and perturb single model the traditional with Chebyshev polynomial convolutional deep
belief network (CDBN) objective functions. Themost important reason behind the usage
of Chebyshev polynomial is that the upper and lower bounds of the error incurred by
approximating activation functions and energy functions can be estimated and proved,
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Fig. 1. Multi-group differential privacy protection method with upper bounds

we propose to preserve differential privacy in themodel before applyingGibbs sampling.
to descend the dependence of privacy budgets on the training deep learning model and
improve machine learning results. Figure 1 shows the framework of the method.

3 Upper Bound of the Privacy Budget ε and Grouping

Differential privacy technology can provide a strong degree of privacy protection, the
parameter ε measures the ability of the random algorithm A to resist attacks, and the
smaller the parameter ε, the greater the privacy protection provided by it.

Definition 1 (ε-differentially private mechanism). A randomized mechanism A is
ε-differentially private if for all data setsD andD0 differing on at most one element, and
all O ⊆ Range(A) (Dwork 2014):

Pr[A(D) ∈ O] ≤ exp(ε) × Pr[A(D0) ∈ O] (1)

The parameter ε is called the privacy budget.
Definition 2 (privacy budget). Privacy budget ε is a probability ratio of algorithm A

to obtain the same output on two neighboring data sets, which in fact reflects the level
of privacy protection A can provide.

In practical applications, ε usually takes a small value, the smaller, the higher the
level of privacy protection. When ε is equal to 0, the protection level is maximized.
For any adjacent data set, the algorithm outputs two identical results with probability
distributions, and the results do not reflect any useful information about the data set.
Therefore, the value of ε should be combined with the specific needs to achieve the
output of the security and availability of the balance. As shown in Fig. 2.

3.1 Adversary Model

We assume a very strong adversary who has complete knowledge of the universe, i.e.,
full access to all records in the universe; thus each attribute value of all records in D
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Fig. 2. Output Probability of Random Algorithm on Neighboring Datasets

is known to the adversary. The adversary knows everything about the universe except
that which individual is missing in the database D0(i.e., who is on academic probation).
Assuming an adversary having complete knowledge about each individual since the
database is not unrealistic because differential privacy is supposed to provide privacy
given adversaries with arbitrary background knowledge.

In our model, the adversary has a databaseD consisting of N records, i.e., knowledge
of the exact attribute values of each individual in D, and has an infinite computational
power. Given a database D0 with N − 1 records sampled from D(i.e., D0 ∈ D and
|D0| = |D|−1), the adversary? goal is to figure out absence of a victim individual in
D0 by using knowledge of D. This is identical to find out other individuals? presences
in D. With respect to our example, a privacy breach is to allow the adversary to guess
absence/presence of an individual in D0 correctly with high probability.

3.2 Attack Model

To determine membership in D0, the adversary maintains a set of tuples hω, α, βi for
each possible combination w of D0, where α and β are the adversary’s prior belief and
posterior belief on X = ω given a query response. Let ψ denote the set of all possible
combinations of D0. For simplicity, we assume α is a uniform prior, i.e.

We refer to each possible combination w in ψ as a possible world. The posterior
belief β is defined in Definition 3. Definition 3 (Posterior belief on D0 = ω). Given
the query function f and the query response γ = kf (X0), for each possible world w, the
adversary’s posterior belief on w is defined as:

The posterior belief β(ω) represents the adversary’s changed belief on each possible
world that the underlying database being queried against isw. Tofigure outwhich individ-
uals are in the database, the adversary issues a query againstD0 and gets a noisy answer.
After seeing the query response, the adversary computes the posterior belief for each pos-
sible world. Finally, the adversary selects one with the highest posterior belief as a “best
guess”. The confidence of the adversary’s guess is calculated using Definition 4.

Definition 4 (Confidence level). Given the best guess, the adversary’s confidence in
guessing the missing element is defined as:

conf(ω0) = β(ω0) − α(ω0) (2)
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As the adversary’s posterior belief on each possibleworld becomes large, the chances
of disclosing any individual’s presence in the database also become high, which makes
disclosure of the statistics. This has an implication that the adversarys posterior belief
on each possible world can be thought of as the risk of disclosure.

4 Model Training on Sub-datasets

In this section, we traning the model on the sub-datasets then calculate privacy budget.
We base on the characteristic of differential privacy.

Theorem 1 Let Aibe an εi-differential private algorithm for i ∈ [n] on datasetD. Then
ifA[n] is defined to beA[n] = (A1 (D), A(D)2, ···, An(D)), thenA[n] is (

∑n
i=1εi)-differential

private.
Theorem 2 Let Aibe an εi-differential private algorithm for i ∈ [n] on disjoint dataset

D1, D2, ···, Dn. Then if A[n] is defined to be A[n] = (A1 (D), A(D)2, ···, An(D)), then A[n]
is (maxεi))-differential private.

Existing methods cannot solve the problem that privacy budgets accumulate as the
number of training steps. To solve this,wefind a approach of using theChebyshevExpan-
sion to derive polynomial approximations of nonlinear energybased objective functions,
such that differential privacy can be preserved by leveraging the functional mechanism.
In principle, many polynomial approximation techniques, e.g., Taylor Expansion, Euler
polynomial, Discrete Fourier transform, Hermite polynomial, Laguerre polynomial, and
even the stateof-the-art techniques including spectral methods and Finite Element meth-
ods, can be applied to approximate non-linear energy functions used in CDBNs. There
are two challenges in the traditional energy functionE (D,W ) that prevent us from apply-
ing it for private data reconstruction analysis: (1) Gibbs sampling is used to estimate the
value of every hkij; and (2) The probability of every hkij equal to 1 is a sigmoid function
which is not a polynomial functionwith parametersWk . Therefore, it is difficult to derive
the sensitivity and error bounds of the approximation polynomial representation of the
energy function E (D, W ). With these challenging issues, Chebyshev polynomial really
stands out.

In our method an input layer V and a hidden layer H. The layer of hidden units
consists of K groups, each of which is an NH× NHarray of binary units. There are NH

2

K hidden units in total. In addition, each group of hidden units has a bias bk , and all
visible units share a single bias c.

4.1 Construction of the Loss Function with Chebyshev Expansion

The most important reason behind the usage of Chebyshev polynomial is that the upper
and lower bounds of the error incurred by approximating activation functions and energy
functions can be estimated and proved, we propose to preserve differential privacy in the
model before applying Gibbs sampling. The generality is still guaranteed since Gibbs
sampling is applied for all hidden units. In addition, we need to derive an effective
polynomial approximation of the energy function, so that differential privacy preserving

is feasible. First, we propose to consider the probability P
(
hkij = 1|v

)
= σ(Wk ∗v)+bk

instead of hkij in the energy function E (D, W ). The main goal of minimizing the energy
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function. Therefore, the generality of our proposed approach is still guaranteed. The
energy function can be rewritten as follows:

E1(D,W ) =
∑

t∈D

[

−
∑K=1

k=1

∑NH

i,j=1

∑NW

r,s=1
σ
((

Wk∗v
)

+ bk
)

× Wk
rsv

t
i+r - 1,j + s - 1−

∑NV

i,j=1
bk +

∑NW

r,s=1
σ(

(
Wk∗vt)ij + bk

)
−c

∑NV

i,j=1
vtij

] (3)

To solve the problem of sigmoid function, this paper constructs the sigmoid function
using Chebyshev’s inequality as follows:

σ

(
((Wk ∗ vt)ij + bk)

(Zijk)

)

=
∑∞

l=0
AlTl

(
((Wk ∗ vt)ij + bk)

(Zijk)

)

(4)

Now, there is still a challenge that prevents us from applying the functional mecha-
nism to preserve differential privacy in applying sigmoid function: The equation involves
an infinite summation. To address this problem, we remove all orders greater than L.
Based on the Chebyshev series, the polynomial approximation of the energy function
E1 (·) can be written as:

E1(D,W ) =
∑

(t∈D)

[

−
∑K=1

k=1

∑NH

i,j=1

∑NW

r,s=1

(
∑L

l=0
AlTl

(
(Wk ∗ vt)ij + bk

(Zk
ij )

))

× Wk
rsv

t
i+r−1,j + s−1

−
∑NV

i,j=1
bk

∑NH

i,j=1

∑L

l=0
AlTl

(
(Wk ∗ vt)ij + bk

(Zk
ij )

)

− c
∑NV

i,j=1
vtij

]

(5)

4.2 Construction of the Final Loss Function to Use Functional Mechanism

Weemploy the functional mechanism to perturb the objective functionE∗ (·) by injecting
Laplace noise into its polynomial coefficients. The hidden layer contains K groups of
hidden units. Each group is trained with a local region of input neurons, which will
not be merged with each other in the learning process. Therefore, it is not necessary
to aggregate sensitivities of the training algorithm in K groups to the sensitivity of the
function E∗ (·). Instead, the sensitivity of the function b E∗ (·) can be considered the
maximal sensitivity given any single group. As a result, the sensitivity of the function
E∗ (·) can be computed in the following lemma.

Theorem 3 (Phan, 2017) Let D and D0 be any two neighboring datasets. Let E∗
(D, W ) and E∗ (D0, W ) be the objective functions of regression analysis on D and D0,
respectively. α are Chebyshev polynomial coefficients. The following inequality holds:

	 ≤ 2 max
t,k

∑NH

i,j=1

∑L

l=0
|ηl |

⎡

⎣

(∑NW
r,s=1 v

t,k
ij,rs +1

zkij

)

+
∑NW

r,s=1

(∑NW
r,s=1 v

t,k
ij,r′s′ +1

zkij

)l ∣
∣
∣vt,kij,rs

∣
∣
∣

⎤

⎦ +
∑NV

i,j=1
vt,kij,rs

(6)

We use gradient descent to train the perturbed model E-(·). That results in private
hidden layers. We stack multiple private hidden layers and max-pooling layers on top of
each other. The pooling layers only play the roles of signal filters of the private hidden
layers. Therefore, there is no need to enforce privacy in max-pooling layers.
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5 Aggregation of the Deep Learning Model

In this section, we aggregation for multi-group training model for practical use. The
privacy guarantees of this model ensemble stems from its aggregation. And them be the
number of classes in our task. The label count for a given class j ∈ [m] and an input x∗
is the number of model that assigned class j to input x∗: nj(x∗) = |{i: i ∈ [N],f i(x∗) =
j}|. If we simply apply the largest count of ensemble’s model decision may depend on a
single model’s vote. Indeed, when two labels have a vote count differing by at most one,
there is a tie: the aggregated output changes if one model makes a different prediction.
We add random noise to the vote counts nj to introduce ambiguity:

f (x) = argmax
j

{

nj
(
x∗) + Lap

(
1

γ

)}

(7)

In this equation, γ is a privacy parameter and Lap(b) the Laplacian distribution with
location 0 and scale b. The parameter γ influences the privacy guarantee we can prove.
Intuitively, a large γ leads to a strong privacy guarantee, but can degrade the accuracy
of the labels, as the noisy maximum f above can differ from the true plurality.

6 Experiments

6.1 Experimental Environment and Dataset

In this section, we will analyze, verify and explain the effect of multi-group differential
privacy protection method with upper bounds algorithm through specific experiments.
The experimental environment is Intel Xeon CPU E5–2603 v3@1.6 GHZ, 8 GB RAM,
2 TITAN X, Ubuntu 16.04 64bit os. The experiment uses TensorFlow1.0 framework,
the algorithm is implemented by python.

Health Social Network Data were collected fromOct 2010 to Aug 2011 as a collabo-
ration between Peace-Health Laboratories, SK TelecomAmericas, and the University of
Oregon to record daily physical activities, social activities (text messages, competitions,
etc.), biomarkers, and biometric measures (cholesterol, BMI, etc.) for a group of 254
overweight and obese individuals. In total, we consider three groups of attributes:

Behaviors: #competitions joined, #exercising days, #goals set, #goals achieved,
P(distances), avg(speeds);

#Inbox Messages: Encouragement, Fitness, Followup, Competition, Games, Per-
sonal, Study protocol, Progress report, Technique, Social network, Meetups, Goal,
Wellness meter, Feedback, Heckling, Explanation, Invitation, Notice, Technical fitness,
Physical;

Biomarkers and Biometric Measures: Wellness Score, BMI, BMI slope, Wellness
Score slope.

The MNIST database of handwritten digits consists of 60,000 training examples,
and a test set of 10,000 examples.

Each example is a 28 × 28 size gray-level image. The MNIST dataset is completely
balanced, with 6,000 images for each category, with 10 categories in total.
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6.2 The Effect of the Number of Groups on Accuracy on Two Database

As outlined in Sect. 3, this opinion is reflected by our data-dependent privacy analysis,
which provides stricter privacy bounds when the model is too much. We calculate the
number of votes for every possible result and measure the difference in votes between
the first popular label and the second most popular label, such as, the gap. If the gap is
small, introducing noise during aggregation might change the label assigned from the
first to the second.

6.3 The Effect of the Dataset Size on Accuracy on Health Social Network Dataset

The every model includes two hidden layers. We trained 10 first layer bases, each vari-
ables v, and 10-s layer bases. The pooling ratio was 2 for both layers. In the paper,
contrastive divergent algorithm (Hinton 2002) was used to optimize the energy function,
and back-propagation was used to optimize the cross-entropy error function in the soft-
max layer. Verify the accuracy of algorithms for different data sizes, thus the method
has been trained on daily and weekly datasets.

Competitive Models. We compare our method with two types of state-of-the-art
models, as follows:

a) Deep learning models for human behavior prediction, such as CDBN, TCDBN,
SctRBM.

b) Deep Private Auto-Encoder dPAH (Phan 2016).
c) Private convolutional deep belief network pCDBN.
Figure 3 shows the prediction accuracy of each algorithm as a function of the dataset

cardinality. We vary the size of m, which also can be considered as the sampling rate
of the dataset. In both datasets, there is a gap between the prediction accuracy of our
method and the original convolutional deep belief network (CDBN). However, the gap
dramatically gets smaller with the increase of the dataset cardinality. In addition, our
method outperforms the state-of-the-art dPAH and pCDBN in most of the case, and the
results are statistically significant.

Figure 4 shows Our approach compare with no privacy protection. It has reduced
compared to methods without privacy protection because differential privacy is achieved
by adding noise and can result in a loss of accuracy.
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(a) Weekly Dataset

(b) Daily Dataset

Fig. 3. Prediction accuracy vs. dataset size
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(a) Weekly Dataset

(b) Daily Dataset

Fig. 4. Prediction accuracy vs. dataset size (compare with no privacy protection)
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7 Exploring Applications in the Work of Adopting Group
Standards

From the application area of the method, the deep differential privacy protection method
based on multi-source data can be used for deep data mining and analysis in the field
of standardization. For example, in the research work on the mechanism of adopting
group standards for national standards, it is found that a large amount of group standard
data needs to be used for collaborative filtering. According to the public data of the
national group standard information platform, as of May 31, 2022, a total of 6276
social groups were registered in the national group standard information platform, and
a total of 38712 group standards were published, which covered 19 national economic
fields such as manufacturing, agriculture, construction, and education, thus covering
a large amount of data both in terms of the number of group standards and the areas
covered. Considering that group standards are standards developed by social groups in
coordination with related parties, and their implementation and application are agreed
to be used by their social groups themselves, privacy protection issues are inevitable
in the process of data mining of group standards. Therefore, for preventing the privacy
issues involved in the research of national standards adoption group standards frombeing
leaked and maintaining a high privacy protection power, the deep differential privacy
protection method based on multi-source data as a strict privacy definition can provide
an effective solution to solve the privacy protection problems involved and has good
application prospects.

8 Conclusions

In order to ensure that users’ sensitive information is not leaked in deep model appli-
cations, this paper proposes a deep differential privacy protection method based on
multi-source data. First, an upper limit of the corresponding privacy budget from the
attacker’s perspective. Second, the objective function of a conventional convolutional
deep belief network (CDBN) is scrambled by an approximate polynomial representation
obtained from Chebyshev’s inequality. Finally, the experimental results show that the
method achieves a better balance between user sensitive information protection and data
availability in the training dataset, which ensures the correct rate and also effectively
reduces information leakage. How to combine RNN and other sequence-based models
to protect different types of datasets can be considered in the study of further work.
As a new privacy protection method, there are still some difficulties in its theoretical
derivation and practical application, and the future development direction still needs to
be explored and studied in depth.
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