
Hardware Implementation of SM9 Fast Algorithm
Based on FPGA

Shuai Jing1,a, XiaoTing Yang2,b, YeJi Feng3,c, XiaoDong Liu4,d, FuQing Hao5,e and

ZiHeng Yang6,f*

123456School of Electronic Engineering, Heilongjiang University, Nangang District, Harbin City, Heilongjiang
Province, China
a15315778557@163.com, b1217077150@qq.com, c3288618181@qq.com, d1354342202@qq.com,
e1824534850@qq.com, * fyzh@hlju.edu.cn

ABSTRACT
SM9 algorithm plays a very important role in the field of information security in our country, it can effectively solve
the problem of certificate management of PKI. The dot multiplication operation in the SM9 algorithm takes up a lot of
computing time, which seriously affects the operation efficiency. The traditional modular multiplication algorithm
uses a simple shift and addition method. To shorten the time consumed by the operation, this paper proposes an
improved modular multiplication algorithm that supports a four-stage pipeline. In addition, this paper also designs and
improves algorithms such as point addition, point doubling, and point multiplication. Through FPGA simulation and
verification, it only takes 0.848ms to realize one point multiplication operation, and the occupied resources are 18526
look-up tables (LUTs) and 13982 flip-flops (FFs). This research has great significance for the development of SM9,
making it have wider application value.

Keywords: FPGA, Dot multiplication, SM9, Identification encryption algorithm

1. INTRODUCTION

The Israeli cryptographer Shamir proposed identity-
based cryptography in 1984 [8], namely IBC (Identity-
Based Cryptography). The identity cryptographic
algorithm does not need to generate a public-private key
pair through a third party (such as a CA) center to
ensure the security of the key, nor does it need to use a
certificate to transmit the public key, but use user
identifiers such as name, IP address, email address The
identification information representing the user such as
address and mobile phone number is used as the public
key, and the key center (Key Generate Center, KGC for
short) calculates the private key according to the system
master key and the user ID. This simplification saves the
expenditure of traditional public-key cryptosystems in
key generation, certificate issuance, key management,
etc.

The SM9 identification cryptographic algorithm [10]
is the national cryptographic industry-standard (GM/T
0044-2016) promulgated by the State Cryptography
Administration of my country in March 2016. The

algorithm inherits many advantages in the identification
cryptography system, greatly simplifies the complexity
of key management in the traditional certificate system
and is easy to manage and use. However, the
mathematical calculation involved in the algorithm is
relatively complex, and the implementation performance
is low, which affects the popularization and use of the
cryptographic algorithm. Therefore, effectively
improving the computing performance of the SM9
cryptographic algorithm is the focus of research in
recent years.

The main factors that affect the performance of the
SM9 algorithm are the point multiplication operation
and the bilinear pairing operation. Dot multiplication
operations include modular addition and subtraction,
modular multiplication, modular inversion, point
addition, and multiplication. Each point multiplication
operation requires a lot of time. This paper mainly
improves the operation speed of point multiplication by
improving the above algorithms. In the literature [4][11],
a point multiplication operation method combining
software and hardware is proposed, the modular

© The Author(s) 2023
A. El-Hashash et al. (Eds.): IEIT 2022, ACSR 100, pp. 797–803, 2023.
https://doi.org/10.2991/978-94-6463-058-9_125

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-058-9_124-&domain=pdf

multiplication unit is implemented in hardware, and the
point multiplication operation is implemented in
software, but the software and hardware need to
constantly exchange information during the operation,
and waste a lot of time on information transmission. In
the literature [9], the point multiplication operation is
implemented in pure hardware, and the performance is
improved by improving the modular multiplication
operation. For 256-bit point multiplication, it can be
operated 94 times per second, that is, it takes 10.4ms to
calculate one point multiplication. Literature [1][6]
designed a high-speed modular multiplication algorithm,
which improved the computing performance by
rationally arranging the modules and optimizing the
algorithm. The literature [3] is aimed at improving the
modular inverse algorithm and reducing the modular
inverse operation time by optimizing the algorithm. The
above methods are all algorithm improvements for
modular multiplication or modular inversion alone, and
the final point multiplication algorithm is still inefficient.
In this paper, the modular multiplication, modular
inverse, point addition, point multiplication, and point
multiplication algorithms have undergone a series of
improvements, and the operation time is shortened by
optimizing the algorithm and using parallel computing
skills. Finally, the point multiplication operation
achieves the best performance.

2. INTRODUCTION TO SM9 ALGORITHM

The operation of the National Secret SM9 is based
on the elliptic curve algorithm, and the most
complicated content in the algorithm process is the point
multiplication operation and the bilinear pairing
operation. The SM9 algorithm can be divided into five
levels, and there is a calling relationship between each
level. The highest layer is the protocol layer including
digital signature and key exchange, followed by bilinear
pairing, followed by the group operation layer including
point multiplication operation, followed by the point
operation layer including point addition and doubling
point operation, and finally the finite field modulo
operation layer. Including modular addition and
subtraction, modular multiplication and modular inverse
operations. This paper proposes an optimization scheme
for the point multiplication algorithm, which improves
the overall performance of SM9 through efficient
parallel scheduling. The structure of the SM9 algorithm
is shown in Figure 1.

Modular
multiplication

Modulo addition
and subtraction

Modular
inverse

Point addition Double point

Dot product
algorithm

Bilinear pair

Digital signature
algorithm

Key exchange
protocol

Finite field norm
Operation layer

Point operation
layer

Group operation
layer

Protocol layer

Bilinear pair

Figure 1: This caption has one line so it is centered.

2.1. Modular Multiplication Algorithm

In the elliptic curve algorithm, the modular
multiplication operation is one of the most critical basic
operations. Multiplication requires more resources and
time than addition, so try to reduce the use of
multiplication as much as possible. The traditional
modular multiplication algorithm uses a low-cost shift-
add method instead of multiplication. This algorithm has
less complexity and is very easy to implement in
hardware.

Algorithm 1:Modular multiplication of traditional
shift-add
Input:a,b,p ,0≤a,b<p
Output:c=a*b mod p
1. initialization c=0
2. for i from n-1 to 0, repeat the execution
2.1 c=2c+ai*b
2.2 if c≥p then c=c-p
3. return c

The improved parallel modular multiplication
algorithm supports a four-stage pipeline, in which steps
2.1, 2.2, 2.3 and 2.4 are parallel operations. This method
divides the multiplier equally into four segments of data,
and judges the value of ai in each segment. Taking the
first paragraph as an example, the value of ai1 is judged
from left to right. If it is 0, this bit can be skipped until it
encounters 1, so that b is shifted to the left by the i1 bit
and assigned to b1. Such an improved method can make
the shift operations of the four segments of data to be
performed simultaneously, fully utilize the advantages
of parallel operations, and greatly improve the operation
speed of modular multiplication. The multiplication
operation is replaced by the shift operation, which
simplifies the operation process and occupies fewer
resources. Finally, the simulation test shows that the
calculation time of the improved parallel modular
multiplication algorithm is shortened by about 75%
compared with the traditional algorithm.

798 S. Jing et al.

Algorithm 2:Improved Parallel Modular Multiplication
Input:a,b,p ,0≤a,b<p
Output:c=a*b mod p
1. initialization c=0
2. for j from (n/4)-1 to 0, repeat the execution
2.1. repeat for i1 from n-1 to 3n/4
if ai1=1 then b1=b<<i1
else then b1=0
2.2. repeat for i2 from (3n/4)-1 to n/2
if ai2=1 then b2=b<<i2
else then b2=0
2.3. repeat for i3 from (n/2)-1 to n/4
if ai3=1 then b3=b<<i3
else then b3=0
2.4. repeat for i4 from (n/4)-1 to 0
if ai4=1 then b4=b<<i4
else then b4=0
2.5. c=b1+b2+b3+b4+c
2.6. if c≥p then c=c-p
3. return c

2.2. Modular inverse algorithm

Common inversion methods are based on Euclidean
calculations or Fermat's little theorem. Among them,
Fermat's little theorem is suitable for the modular
inverse operation of the binary extended field, but not
suitable for the prime number field. The extended
Euclidean algorithm completes the modulo inverse
operation by turning and dividing and can replace the
division with a binary shift. This method occupies fewer
hardware resources and is convenient for hardware
implementation. Based on the above analysis, this paper
adopts the extended Euclidean algorithm.

Algorithm 3:Improved Euclidean Modular Inverse
Algorithm
Input: prime p, integer a, where a belongs to (0,p)
Output: a-1 mod p
1. u=a, v=p, x1=1, x2=0
2. repeat if u≠0
2.1 if u is even, repeat the execution
2.1.1 u=u/2
2.1.2 if x1 is even, then x1=x1/2
2.1.3 else x1=(x1+p)/2
2.2 repeat if v is even
2.2.1 v=v/2
2.2.2 if x2 is even, then x2=x2/2
2.2.3 else x2=(x2+p)/2
2.3 if u≥v, then u=u-v.
2.3.1 if x1≥x2, then x1=x1-x2
2.3.2 else x1=x1-x2+p
2.4 if u<v, then v=v-u.
2.4.1 if x2≥x1, then x2=x2-x1
2.4.2 else x2=x2-x1+p
3. if u=1, a-1mod p=x1 mod p;
else a-1mod p=x2 mod p

The Euclidean inversion algorithm is reflected in
improvements in hardware design. The division in steps
2.1.2 and 2.2.2 can be replaced by a binary right shift,
which is convenient for hardware implementation. Since
the variables in 2.1 and 2.2 do not affect each other,
when writing the state machine, design steps 2.1 and 2.2
in the same state at the same time, and then jump after
the next clock arrives, so that parallel operations can be
realized and the operation speed can be improved. .
Compared with the traditional modular inverse operation,
the improved modular inverse operation shortens the
time by about 22%.

2.3. Point addition algorithm

Point addition and point doubling algorithms belong
to the point operation layer and are implemented by
calling modulo addition/subtraction, modulo
multiplication, and modulo inverse. The algorithm rule
of point addition in the elliptic curve coordinate system
is: set P1(x1,y1), P2(x2,y2), the result is P3(x3,y3)=P1+P2.
Where x3=k2-x1-x2, y3=k(x1-x3)-y1, k=(y2-y1)/(x2-x1). It
can be seen that the point addition algorithm includes 6
modular additions and subtractions, 2 modular
multiplications and 1 modular inverse algorithm.

Algorithm 4:Design of point addition algorithm
Input: P1(x1,y1), P2(x2,y2), p
Output: P3(x3,y3)
1. t1=(x2-x1)mod p
2. t2=(x2+x1)mod p
3. t3=(y2-y1)mod p
4. t1=(t3/t1)mod p
5. t3=(t1*t1)mod p
6. t3=(t3-t2)mod p
7. t2=(x1-t3)mod p
8. t1=(t1*t2)mod p
9. t1=(t1-y1)mod p
10. Return x3=t3, y3=t1

Improvement in the hardware design of the point-
add algorithm: Since the operations of steps 1, 2, and 3
do not affect each other, operations can be performed
simultaneously to shorten the time. According to
ordinary logic, seven registers should be used, but only
three registers are needed after the improvement. This
method reduces the use of resources. The improved
point addition algorithm requires 1us for one operation,
and the hardware occupies 9512 LUTs and 6454 FFs.
Compared with the traditional operation method, the
improved point-adding algorithm shortens the time by
about 80%, and reduces the occupied resources by about
23%.

2.4. Point doubling algorithm

The rule of the point doubling algorithm is: set
P1(x1,y1), the result is P3(x3,y3)=P1+P1. Where x3=k2-2x1,
y3=k(x1-x3)-y1, k=(3x1

2+a)/2y1. It can be seen that the

Hardware Implementation of SM9 Fast Algorithm Based on FPGA 799

point doubling algorithm includes 4 modular
additions/subtractions, 6 modular multiplications and 1
modular inverse algorithm.

Algorithm 5:Design of point doubling algorithm
Input: P1(x1,y1), P2(x2,y2), p, a
Output: P3(x3,y3)
1. t1=(x1*x1)mod p
2. t1=(t1+t1+t1)mod p
3. t2=(y1+y1)mod p
4. t1=(t1+a)mod p
5. t1=(t1/t2)mod p
6. t2=(t1*t1)mod p
7. t2=(t2-x1)mod p
8. t2=(t2-x1)mod p
9. t3=(x1-t2)mod p
10. t1=(t1*t3)mod p
11. t1=(t1-y1)mod p
12. Return x3=t2, y3=t1

Improvements in the hardware design of the point
doubling algorithm: the calculation time of modular
multiplication is much greater than the calculation time
of modular addition and subtraction, so the modular
multiplication algorithm in steps 2, 3, 7, and 8 is
changed to the modular addition/subtraction algorithm
to shorten the operation time. In addition, steps 2 and 3
do not affect each other, and parallel operations can be
used. The improved doubling operation requires 8
modulo additions and subtractions, 3 modulo
multiplications, and 1 modulo inverse algorithm.
According to ordinary logic, nine registers should be
used, and only three registers are needed after the
improvement. This method reduces the use of resources.
The improved point doubling algorithm requires 2.2us
for one operation, and the hardware occupies 9330
LUTs and 6454 FFs. Compared with the traditional
computing method, the improved multi-point algorithm
shortens the time by about 77%, and reduces the
resource consumption by about 30%.

2.5. Point multiplication algorithm

According to the nature of the elliptic curve
operation, the point multiplication operation is the
repeated addition of the same point on the elliptic curve.
The dot multiplication algorithm is implemented by
calling the dot addition and dot doubling operations

multiple times. The common dot multiplication
algorithm is the left-to-right binary dot multiplication
algorithm.

Algorithm 6:Left-to-right binary dot multiplication
algorithm

Input: P, t-bit integer u=

1t

0

2
j

j
ju , uj∈{0,1}

Output: Q=[u]P
1. Q=0
2. Repeat for j from t-1 to 0
2.1 Q=[2]Q
2.2 If uj=1, then Q=Q+P
3. Return Q

Algorithm 7:Improved dot multiplication

Input: P, t-bit integer u=

1t

0

2
j

j
ju , uj∈{0,1}

Output: Q=[u]P
1. Repeat for j from t-1 to m
if uj=1, then Q=P, m=j;
else Q=0
2. Repeat for j from m-1 to 0
if uj=1, then Q=[2]Q, Q=Q+P;
else Q=[2]Q
3. Return Q

The improved dot multiplication algorithm judges
the value of the uj from left to right. When the uj is 0,
this bit is skipped and the next bit is judged. This
reduces t-m cycles, t-m left shifts and t-m addition
operations compared to traditional dot multiplication.
Such an improved method reduces a lot of time and
takes up fewer resources.

3. EXPERIMENTAL RESULTS

Some improved algorithms proposed in this paper
are tested on the ZYNQ development board of Xilinx
Company, and the algorithms are completed by Verilog-
HDL hardware description language. Figure 2 is a
simulation diagram of the dot product algorithm. It can
be seen from the figure that the clock frequency used is
200MHz, and it takes 0.848ms to operate a dot product.
Table 1 shows the operation time and occupied
resources of each algorithm after improvement.

800 S. Jing et al.

Figure 2: Simulation diagram of dot product algorithm

Table 1: Algorithm operation time and occupied
resources.

 Time(us) LUT FF
Modular

multiplication
0.32 1820 782

Modular
inverse

0.9 3922 1542

Point
addition

1 9512 6454

Point
doubling

2.2 9330 6454

Dot
multiplication

848 18526 13982

The improved dot multiplication algorithm takes
0.848ms to operate once, and occupies 18526 LUTs and
13982 FFs. Compared with other literature, the dot
product operation in this paper is much faster. Table 2 is
a comprehensive comparison of the dot product
algorithm in this paper and other literature. Since the
clock frequencies used in each document are different, a
unified clock frequency is required for comparison.
Figure 2 shows the comparison of the point
multiplication operation time with a clock of 200MHz.

Table 2: The comparison of the point multiplication
algorithm.

Literature Clock
frequency(MH

z)

dot
multiplication

time(ms)

(Gao 2021) 150 4.24

(Marzouqi
2016)

160 2.26

(Loi 2015) 251 3.95

This article 200 0.848

Figure 3. Comparison of the operation time of point

multiplication

4. CONCLUSIONS

In order to improve the efficiency of point
multiplication in the SM9 algorithm, this paper designs
a modular multiplication algorithm that supports a four-
stage pipeline. In this technology, this paper designs a
parallel architecture and optimizes other underlying
algorithms, thereby improving the operation speed of
point multiplication. After a series of improvements, the
efficiency of dot multiplication is greatly improved.
Through the comparative analysis with related literature,
the point multiplication operation in this paper is faster,
takes less time, and is more suitable for hardware
implementation. This research plays an important role in
the application and development of SM9.

REFERENCES

[1] Guo Xiao, Jiang Anping, Zong Yu. Hardware
Design of SM2 High Speed Dual Domain
Montgomery Modular Multiplication [J].
Microelectronics and Computers, 2013, 30(9): 17-
21.

Hardware Implementation of SM9 Fast Algorithm Based on FPGA 801

[2] Gao Wei, Luo Yixuan, Li Jiakun, Wu Haixia.
High-performance hardware implementation of
elliptic curve cryptographic dot product in prime
field[J]. Journal of Beijing Institute of Technology,
2021, 41(09): 977-984. DOI: 10.15918/j.tbit1001-
0645.2020 .216.

[3] Hu Jin, Li Yongbin. An Improved Modular Inverse
Algorithm and Hardware Implementation [J].
Journal of Hunan University (Natural Science
Edition), 2022, 49(02): 101-105. DOI:
10.16339/j.cnki.hdxbzkb.2022264 .

[4] Janssens S , Thomas J , Borremans W , et al.
Hardware/software Co-Design Of An Elliptic
Curve Public-Key Cryptosystem[C]// Signal
Processing Systems, 2001 IEEE Workshop on.
IEEE, 2001.

[5] Loi K , Ko S B . Scalable Elliptic Curve
Cryptosystem FPGA Processor for NIST Prime
Curves[J]. IEEE Transactions on Very Large Scale
Integration Systems, 2015, 23(11):2753-2756.

[6] Li Jiamin, Dai Zibin, Wang Yiwei. Research and
Design of Programmable and Scalable Dual
Domain Modular Multiplier-Adder [J]. Electronic
Technology Application, 2018,44(01):28-
32+36.DOI:10.16157/j.issn.0258 -7998.172194.

[7] Marzouqi H , Al-Qutayri M , Salah K , et al. A
High-Speed FPGA Implementation of an RSD-
Based ECC Processor[J]. IEEE Transactions on
Very Large Scale Integration Systems, 2015,
24(1):151-164.

[8] Shamir A. Identity-based cryptosystems and
signature schemes[C]//Workshop on the theory and
application of cryptographic techniques. Springer,
Berlin, Heidelberg, 1984: 47-53.

[9] Xie Tianyi, Huang Kai, Xiu Siwen, Tang Congxue,
Yan Xiaolang. VLSI Implementation of Prime
Field Elliptic Curve Cryptographic Accelerator [J].
Computer Engineering and Applications,
2016,52(01):89-94.

[10] Zhang Q, Wang A, Niu Y, et al. Side-channel
attacks and countermeasures for identity-based
cryptographic algorithm SM9[J]. Security and
communication networks, 2018, 2018.

[11] Zhang Shengshi, Hu Xianghong, Xiong Xiaoming.
FPGA Architecture Based on State Secret
Algorithm SM2 Software-Hardware Collaborative
System [J]. Microcontroller and Embedded System
Application, 2019, 19(7): 15-19.

802 S. Jing et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International
License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter s Creative Commons license, unless indicated
otherwise in a credit line to the material. If material is not included in the chapter s Creative Commons license and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder.

’
’

Hardware Implementation of SM9 Fast Algorithm Based on FPGA 803

